Theoretical and experimental analysis of surface anchoring in the surface stabilization of ferroelectric liquid crystal cells

Rihab Zgueb, Hassen Dhaouadi

Abstract view|11|times       PDF download|3|times

Abstract


Based on the response of a chiral smectic liquid crystal to electrical excitation, this paper develops a theoretical calculation to explain the observed phenomenon in a confined structure, with the aim to establish a connection between these phenomena and the surface anchoring energy. To demonstrate the influence of surface anchoring on the observed phase behaviors in the surface stabilization of ferroelectric liquid crystal cells, an experimental validation of the theoretical calculations is conducted. Importantly, it is possible to express the transition thermal shift as a function of the anchoring energy by calculating this energy as a function of the square of the tilt angle. Our calculations allow for the utilization of experimental outcomes in determining distinctive parameters such as the anchoring energy and the elastic constant, two quantities that are essential for understanding and controlling ferroelectric liquid crystal devices.

Document Type: Original article

Cited as: Zgueb, R., Dhaouadi, H. Theoretical and experimental analysis of surface anchoring in the surface stabilization of ferroelectric liquid crystal cells. Capillarity, 2024, 11(2): 31-40. https://doi.org/10.46690/capi.2024.05.01


Keywords


Chiral smectic liquid crystals, phase transition, electro-optics, surface anchoring energy

Full Text:

PDF

References


Bawa, A., Choudhary, A., Sharma, G., et al. Surface constraints controlled structural dynamics of ferroelectric liquid crystals. Applied Surface Science, 2020, 526 :146743.

Bawa, S. S., Biradar, A. M., Chandra, S. Frequency dependent polarization reversal and the response time of ferroelectric liquid crystal by triangular wave method. Japanese Journal of Applied Physics, 1986, 25: L446.

Biswas, S., Mukherjee, P. K. Confinement-driven smectic-A to chiral smectic-C∗ phase transition. Journal of Molecular Liquids, 2019, 287: 110913.

Cai, J., Sun, S., Wang, H. Current advances in capillarity: Theories and applications. Capillarity, 2023, 7(2): 25-31.

Chemingui, M., Soltani, T., Marcerou, J. P., et al. Effect of enantiomeric excess on the SmC∗ phase under electric field. Phase Transitions, 2016, 89(3): 221-231.

Clark, N. A., Rieker, T. P. Erratum: Smectic-C “chevron,” a planar liquid-crystal defect: Implications for the surface-stabilized ferroelectric liquid-crystal geometry. Physical Review A, 1989, 39: 5450.

Cole, K. S., Cole, R. H. Dispersion and absorption in dielectrics I. Alternating current characteristics. The Journal of Chemical Physics, 1941, 9: 341-351.

De Gennes, P. G., Prost, J. The Physic of Liquid Crystal, 2ed. Oxford, UK, Clarendon Press, 1993.

Dhaouadi, H., Zgueb, R., Riahi, O., et al. Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method. Chinese Physics B, 2016, 25(5): 057704.

Dupont, L., Galvan, J. M., Marcerou, J. P., et al. On the Smectic a Smectic C∗ phase transition in high polarization ferroelectric liquid crystals. Ferroelectrics, 1988, 84(1): 317-325.

Essid, S., Manai, M., Gharbi, A., et al. Synthesis and characterization of a novel liquid crystal series with tribenzoat cores and monofluoro-substitution on the phenyl ring near the chiral chain. Liquid Crystals, 2004, 31: 1185-1193.

Guo, Q., Kexin, Y., Vladimir, C., et al. Ferroelectric liquid crystals: Physics and applications. Crystals, 2019, 9(9): 470.

Khan, S., Prakash, J., Chauhan, S., et al. Partially unwound helical mode in surface stabilized ferroelectric liquid crystal geometry. Journal of Molecular Liquids, 2020, 305: 112767.

Khan, S., Prakash, J., Chauhan, S. Weak anchoring resolved substrate interface and bulk mode processes in surface stabilized ferroelectric liquid crystal. Journal of Molecular Liquids, 2021, 325: 114705.

Kumar, S., Lokesh, K. G., Choudhary, A., et al. Ferroelectric ordering at interface of paraelectric phase of liquid crystal and solid substrate in confined geometry. Applied Surface Science, 2019, 496: 143695.

Lagerwall, S. T., Dahl, I. Ferroelectric liquid crystals. Molecular Crystals and Liquid Crystals, 1984, 114: 151-187.

Liu, M., Chen, Y., Cheng, W., et al. Controllable electrome-chanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity, 2022, 5(3): 51-64.

Manai, M. Etude des propriétés électriques et optiques decristaux liquides présentant des phases smectiques chirales et les phases frustrées SmQ et L. Bordeaux, Université Sciences et Technologies-Bordeaux I, 2006.

Patel, J. S., Goodby, J. W. The dependence of the magnitude of the spontaneous polarization on the cell thickness in ferroelectric liquid crystals. Chemical Physics Letters, 1987, 137: 91-95.

Riahi, O., Trabelsi, F., Dhaouadi, H., et al. Effect of defects and surface anchoring on the phase behavior of chiral smectic liquid crystals. Phase Transitions, 2017, 90(3): 299-311.

Roy, S. S., Majumder, T. P., Roy, S. K., et al. Effect of spontaneous polarization on smectic C∗ smectic A∗ phase transition temperature and the thickness dependence of the spontaneous polarization of ferroelectric liquid crystal. Liquid Crystals, 1998, 25(1): 59-62.

Sasaki, Y., Le, K. V., Aya, S., et al. High-resolution calorimetric study of phase transition in chiral smectic-C liquid crystalline phases. Physical Review E, 2012, 86: 061704.

Srivastava, A. K., Chigrinov, V. G., Kwok, H. S. Ferroelectric liquid crystals: Excellent tool for modern displays and photonics. Journal of the Society for Information Display, 2015, 23(6): 253-272.

Vaupotic, N., Copic, M. Effect of spontaneous polarization and polar surface anchoring on the director and layer structure in surface-stabilized ferroelectric liquid crystal cells. Physical Review E, 2003, 68: 061705.

Watson, S. J., Matkin, L. S., Baylis, L. J., et al. Influence of electric fields on the smectic layer structure of ferroelectric and antiferroelectric liquid crystal devices. Physical Review E, 2002, 65: 031705.

Yamada, K., Takanishi, Y. Sign inversion of liquid-crystalinduced circular dichroism observed in the Smectic-A and chiral smectic-Cα phases on binary mixture systems. Physical Review E, 1997, 56: R43-R46.

Zgueb, R., Dhaouadi, H., Othman, T. Dielectric relaxation spectroscopy and electro-optical studies of phase behaviour of a chiral smectic liquid crystal. Liquid Crystals, 2014, 14: 1394-1401.

Zgueb, R., Dhaouadi, H., Othman, T. Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals. Chinese Physics B, 2018, 27(10): 107701.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright ©2018. All Rights Reserved