Impacts of CO2-brine-rock interaction on sealing efficiency of sand caprock: A case study of Shihezi formation in Ordos basin
Abstract view|429|times PDF download|221|times
Abstract
Large anthropogenic emission of CO2 causes earth temperature becoming higher and higher, which may lead to the melting of glaciers, the rising of sea levels, extreme weather and so on. An effective way of reducing emissions is to capture and sequestrate CO2 while not giving up the fossil fuels. Caprock seal is critical for CO2 long term storage. CO2-brine-rock interaction will change minerals composition and pore structure of both reservoir and caprock. This paper analyzes the variation trend of porosity and permeability due to CO2-brine-rock interaction in caprock of Shihezi formation in Ordos basin, where TOUGHREACT is used as simulation tool. Geological data of numerical model are acquired from core samples. Simulations show that minerals interaction plays an important role on sealing efficiency of caprock. Overall, porosity and permeability of caprock decrease with CO2 sequestration, which indicates that main mineral reaction in caprock is precipitation, and caprock sealing efficiency is enhanced.
Cited as: Liu, B., Fu, X., Li, Z. Impacts of CO2-brine-rock interaction on sealing efficiency of sand caprock: A case study of Shihezi formation in Ordos basin. Advances in Geo-Energy Research, 2018, 2(4): 380-392, doi: 10.26804/ager.2018.04.03
Keywords
Full Text:
PDFReferences
Alemu, B., Aagaard, P., Munz, I., et al. Caprock interaction with CO2 : A laboratory study of reactivity of shale with supercritical CO2 and brine. Appl. Geochem. 2011, 26(12): 1975-1989.
Bear, J. Dynamics of fluids in porous media. Eng. Geol. 1972, 7(2): 174-175.
Busch, A., Alles, S., Gensterblum, Y., et al. Carbon dioxide storage potential of shales. Int. J. Greenhouse Gas Control 2008, 2(3): 297-308.
Celia, M., Bachu, S., Nordbotten, J., et al. Quantitative estimation of CO2 leakage from geological storage: Analytical models, numerical models, and data needs. Greenhouse Gas Control Technol. 2005, 1: 663-671.
Chopping, C., Kaszuba, J.P. Supercritical carbon dioxidebrine-rock reactions in the Madison Limestone of Southwest Wyoming: An experimental investigation of a sulfur-rich natural carbon dioxide reservoir. Chem. Geol. 2012, 322: 223-236.
Corey, A. The Interrelation between gas and oil relative permeabilities. Prod. Mon. 1954, 19: 38-41.
Credoz, A., Bildstein, O., Jullien, M., et al. Mixed layer illite-smectite reactivity in acidified solutions: Implications for clayey caprock stability in CO2 geological storage. Appl. Clay Sci. 2011, 53(3): 402-408.
Dong, J., Li, Y., Yang, G., et al. Numerical simulation of CO2 -water-rock interaction impact on caprock permeability. Geol. Sci. Technol. Inf. 2012, 31(1): 115-121.
Galarza, C., Buil, B., Pe ˜na, J., et al. Preliminary results from the experimental study of CO2 -brine-rock interactions at Elevated T & P: Implications for the pilot plant for CO2 storage in Spain. Procedia Earth Planet. Sci. 2013, 7: 272-275.
Garrido, D.R.R., Lafortune, S., Souli, H., et al. Impact of supercritical CO2 /water interaction on the caprock nanoporous structure. Procedia Earth Planet. Sci. 2013, 7: 738-741.
Gaus, I. Role and impact of CO2 -rock interactions during CO2 storage in sedimentary rocks. Int. J. Greenhouse Gas Control 2010, 4(1): 73-89.
Gaus, I., Azaroual, M., Czernichowski-Lauriol, I. Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem. Geol. 2005, 217(3-4): 319-337.
He, B., Xu, T., Yuan, Y., et al. An analysis of the influence factors on CO2 injection capacity in a deep saline formation: A case study of Shiqianfeng Group in the Erdos Basin. Hydrogeol. Eng. Geol. 2016, 43(1): 136-142.
Kong, W., Bai, B., Li, X., et al. Sealing efficiency of combined caprock for CO2 storage in saline aquifer. Chin. J. Rock Mech. Eng. 2015, 34: 2671-2678.
Li, F., Xu, T., Yang, L., et al. Numerical simulation for the water-rock interaction with the participation of CO2 in different clastic mineral. Acta Petrolei Sinica 2016, 37(9): 1116-1128. (in Chinese)
Liu, N., Liu, L., Ming, X., et al. Petrologic and geochemical characteristics and carbon sequestration capability of the Permian Shiqianfeng Formation around Ejin Horo Banner of Ordos Basin. Acta Petrol. Mineral. 2014, 33(2): 255-262.
Liu, X., Wang, F., Yue, G., et al. Assessment of Sequestration Capacity of CO2 in the Shihezi Formation, Ordos Basin. Bulletin of Mineralogy Petrology and Geochemistry 2015, 34(2): 395-400. (in Chinese)
Luo, C., Jia, A., Wei, T., et al. CO2 storage conditions and capacity in saline aquifer of Shan2 in Zizhou area, Ordos basin. Journal of Northeast Petroleum University 2016, 40(1): 14-24. (in Chinese)
Metz, B., Davidson, O., De Coninck, H., et al. IPCC special report on carbon dioxide capture and storage. Cambridge, UK, Cambridge University Press, 2005.
Ming, X., Liu, L., Liu, N., et al. Carbon sequestration potential of Yanchang formation sandstone of JX well, Ordos basin. Acta Sedimentologica Sinica 2015, 33(1): 202-210. (in Chinese)
Mitiku, A., Li, D., Bauer, S., et al. Geochemical modelling of CO2 -water-rock interactions in a potential storage formation of the North German sedimentary basin. Appl. Geochem. 2013, 36(3): 168-186.
Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12(3): 513-522.
Olabode, A., Radonjic, M. Experimental investigations of caprock integrity in CO2 sequestration. Energy Procedia 2013, 37: 5014-5025.
Qu, X., Liu, L., Wang, Z., et al. Chemical features and origin of dawsonite-bearing stratum water in Wuerxun sag. Journal of Daiqing Petroleum Institute 2006, 30(5): 7-10.
(in Chinese) Thomas, D. Carbon Dioxide Capture for Storage in Deep Geologic Formations-Results From the CO2 Capture Project. Amsterdam, Holand, Elsevier, 2005.
Thomas, M., Stewart, M., Trotz, M., et al. Geochemical modeling of CO2 sequestration in deep, saline, dolomitic-limestone aquifers: Critical evaluation of thermodynamic sub-models. Chem. Geol. 2012, 306: 29-39.
Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44: 892-898.
Wang, T., Wang, H., Zhang, F., et al. Simulation of CO2 -water-rock interactions on geologic CO2 sequestration under geological conditions of China. Mar. Pollut. Bull. 2013, 76(1-2): 307-314.
Watson, M., Daniel, R., Tingate, P., et al. CO2 -related seal capacity enhancement in mudstones: Evidence from the pine lodge natural CO2 accumulation, Otway Basin, Australia. Greenhouse Gas Control Technol. 2005, 2(2): 2313-2316.
Xu, T., Apps, J., Pruess, K. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem. Geol. 2005, 217(3-4): 295-318.
Xu, T., Sonnenthal, E., Spycher, N., et al. Toughreact: A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration. Comput. Geosci. 2006, 32(2): 145-165.
Xu, T., Sonnenthal, E., Spycher, N., et al. Toughreact V3.0-OMP sample problems. Lawrence Berkeley National Laboratory-Earth & Environmental Sciences, 2014.
Xu, Y., Zhang, K., Wang, Y. Numerical investigation for enhancing injectivity of CO2 storage in saline aquifers. Rock & Soil Mechanics 2012, 33(12): 3825-3832. (in Chinese)
Yu, Z., Liu, L., Yang, S., et al. An experimental study of CO2 -brine-rock interaction at in situ pressure-temperature reservoir conditions. Chem. Geol. 2012, 326-327(11): 88-101.
Zhai, M., Lin, Q., Zhong, L., et al. Economic assessment of carbon capture and storage combined with utilization of deep saline water. Modern Chemical Industry 2016, 36(4): 8-12. (in Chinese)
Refbacks
- There are currently no refbacks.
Copyright (c) 2018 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.