Geometrical, fractal and hydraulic properties of fractured reservoirs: A mini-review
Abstract view|922|times PDF download|102|times
Abstract
Fractures and fracture networks play an important role in fluid flow and transport properties of oil and gas reservoirs. Accurate estimation of geometrical characteristics of fracture networks and their hydraulic properties are two key research directions in the fields of fluids flow in fractured porous media. Recent works focusing on the geometrical, fractal and hydraulic properties of fractured reservoirs are reviewed and summarized in this mini-review. The effects of several important parameters that significantly influences hydraulic properties are specifically discussed and analyzed, including fracture length distribution, aperture distribution, boundary stress and anisotropy. The methods for predicting fractal dimension of fractures and models for fracture networks and fractured porous media based on fractal-based approaches are addressed. Some comments and suggestions are also given on the future research directions and fractal fracture networks as well as fractured porous media.
Cited as: Wei, W., Xia, Y. Geometrical, fractal and hydraulic properties of fractured reservoirs: A mini-review. Advances in Geo-Energy Research, 2017, 1(1): 31-38, doi: 10.26804/ager.2017.01.03
Keywords
Full Text:
PDFReferences
Andrade Jr, J., Oliveira, E., Moreira, A., et al. Fracturing the optimal paths. Phys. Rev. Lett. 2009, 103(22): 225503.
Askari, M., Ahmadi, M. Failure process after peak strength of artificial joints by fractal dimension. Geotech. Geol. Eng. 2007, 25(6): 631-637.
Babadagli, T. Fractal analysis of 2-D fracture networks of geothermal reservoirs in south-western Turkey. J. Volcanol. Geotherm. Res. 2001, 112(1): 83-103.
Baghbanan, A., Jing, L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int. J. Rock Mech. Min. Sci. 2007, 44(5): 704-719.
Baghbanan, A., Jing, L. Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. Int. J. Rock Mech. Min. Sci. 2008, 45(8): 1320-1334.
Barton, C.A., Zoback, M.D. Selfsimilar distribution and properties of macroscopic fractures at depth in crystalline rock in the Cajon Pass Scientific Drill Hole. J. Geophys. Res. 1992, 97(B4): 5181-5200.
Barton, C.C. Fractal analysis of scaling and spatial clustering of fractures, in Fractals in the Earth Sciences, edited by C. C. Barton and P. R. La Pointe, Plenum, New York, pp. 141-178, 1995.
Barton, N., Quadros, E. Anisotropy is everywhere, to see, to measure, and to model. Rock Mech. Rock Eng. 2015, 48(4): 1323-1339.
Berkowitz, B. Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 2002, 25(8): 861-884.
Bonneau, F., Caumon, G., Renard, P. Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks. J. Geophys. Res. 2016, 121(8): 5641-5658.
Brown, S.R., Bruhn, R.L. Fluid permeability of deformable fracture networks. J. Geophys. Res. 1998, 103(B2): 2489-2500.
Cai, J., Wei, W., Hu, X., et al. Fractal characterization of dynamic fracture network extension in porous media. Fractals 2017, 25(2): 1750023.
Cai, J.C., Guo, S.L., You, L.J., et al. Fractal analysis of spontaneous imbibition mechanism in fractured-porous dual media reservoir. Acta Phys. Sin. 2013, 62(1): 014701.
Cai, J.C., Sun, S.Y. Fractal analysis of fracture increasing spontaneous imbibition in porous media with gas-saturated. Int. J. Mod. Phys. C 2013, 24(8): 1350056.
Chang, J., Yortsos, Y.C. Pressure transient analysis of fractal reservoirs. SPE Form. Eval. 1990, 5(1): 31-38.
Chelidze, T., Gueguen, Y. Evidence of fractal fracture. Int. J. Rock Mech. Min. 1990, 27(3): 223-225.
Chen, M., Bai, M., Roegiers, J.C. Permeability tensors of anisotropic fracture networks. Math. Geol. 1999, 31(4): 335-373.
Chen, M., Yu, B., Xu, P., et al. A new deterministic complex network model with hierarchical structure. Phys. A 2007, 385(2): 707-717.
Chen, X., Yao, G., Cai, J., et al. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images. J. Nat. Gas Sci. Eng. 2017, 48: 145-156.
De Dreuzy, J.R., Davy, P., Bour, O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution 2. Permeability of networks based on lognormal distribution of apertures. Water Resour. Res. 2001, 37(8): 2079-2095.
De Dreuzy, J.R., Davy, P., Bour, O. Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture. Water Resour. Res. 2002, 38(12): 12-1-12-9.
Fan, D., Ettehadtavakkol, A. Semi-analytical modeling of shale gas flow through fractal induced fracture networks with microseismic data. Fuel 2017, 193: 444-459.
Figueiredo, B., Tsang, C.F., Niemi, A., et al. Review: The state-of-art of sparse channel models and their applicability to performance assessment of radioactive waste repositories in fractured crystalline formations. Hydrol. J. 2016, 24(7): 1607-1622.
Fossen, H., Hesthammer, J. Geometric analysis and scaling relations of deformation bands in porous sandstone. J. Struct. Geol. 1997, 19(12): 1479-1493.
Ge, X., Fan, Y., Li, J., et al. Pore structure characterization and classification using multifractal theory-An application in Santanghu basin of western China. J. Pet. Sci. Eng. 2015, 127: 297-304.
Gerritsen, M.G., Durlofsky, L.J. Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 2005, 37: 211-238.
Guha Roy, D., Singh, T. Fluid flow through rough rock fractures: Parametric study. Int. J. Geomech. 2015, 16(3): 04015067. Haugen, ˚A., Fern, M.A., Graue, A., et al. Experimental study of foam flow in fractured oil-wet limestone for enhanced oil recovery. SPE Reserv. Eval. Eng. 2012, 15(2): 218-228.
Indraratna, B., Thirukumaran, S., Brown, E., et al. Modelling the shear behaviour of rock joints with asperity damage under constant normal stiffness. Rock Mech. Rock Eng. 2015, 48(1): 179-195.
Jafari, A., Babadagli, T. Estimation of equivalent fracture network permeability using fractal and statistical network properties. J. Pet. Sci. Eng. 2012, 92: 110-123.
Jafari, A., Babadagli, T. Relationship between percolation-fractal properties and permeability of 2-D fracture networks. Int. J. Rock Mech. Min. Sci. 2013, 60: 353-362.
Javadi, M., Sharifzadeh, M., Shahriar, K., et al. Critical Reynolds number for nonlinear flow through roughwalled fractures: The role of shear processes. Water Resour. Res. 2014, 50(2): 1789-1804.
Juanes, R., Spiteri, E., Orr, F., et al. Impact of relative permeability hysteresis on geological CO2 storage. Water Resour. Res. 2006, 42(12). Klinkenberg, B. A review of methods used to determine the fractal dimension of linear features. Math. Geosci. 1994, 26(1): 23-46.
Kolyukhin, D., Torabi, A. Power-law testing for fault attributes distributions. Pure Appl. Geophys. 2013, 170(12): 2173-2183.
Kruhl, J.H. Fractal-geometry techniques in the quantification of complex rock structures: A special view on scaling regimes, inhomogeneity and anisotropy. J. Struct. Geol. 2013, 46: 2-21.
Leung, C.T., Zimmerman, R.W. Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties. Transp. Porous Media 2012, 93(3): 777-797.
Li, B., Jiang, Y., Koyama, T., et al. Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Int. J. Rock Mech. Min. Sci. 2008, 45(3): 362-375.
Li, C., Shen, Y., Ge, H., et al. Analysis of spontaneous imbibition in fractal tree-like network system. Fractals 2016a, 24(3): 1650035.
Li, C., Shen, Y., Ge, H., et al. Analysis of capillary rise in asymmetric branch-like capillary. Fractals 2016b, 24(2): 1650024.
Li, J., Du, Q., Sun, C. An improved box-counting method for image fractal dimension estimation. Pattern Recognit. 2009, 42(11): 2460-2469.
Liang, M., Yang, S., Miao, T., et al. Analysis of electroosmotic characters in fractal porous media. Chem. Eng. Sci. 2015, 127: 202-209.
Liu, R., Jiang, Y., Li, B., et al. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Comput. Geotech. 2015, 65: 45-55.
Liu, R., Jiang, Y., Li, B., et al. Estimating permeability of porous media based on modified Hagen-Poiseuille flow in tortuous capillaries with variable lengths. Microfluid. Nanofluid. 2016a, 20(8): 120.
Liu, R., Li, B., Jiang, Y. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Adv. Water Resour. 2016b, 88: 53-65.
Liu, R., Li, B., Jiang, Y., et al. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks. Hydrol. J. 2016c, 24(7): 1623-1649.
Liu, R., Yu, L., Jiang, Y. Fractal analysis of directional permeability of gas shale fracture networks: A numerical study. J. Nat. Gas Sci. Eng. 2016d, 33: 1330-1341.
Long, J., Witherspoon, P.A. The relationship of the degree of interconnection to permeability in fracture networks. J. Geophys. Res. 1985, 90(B4): 3087-3098.
MacMinn, C.W., Szulczewski, M.L., Juanes, R. CO2 migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 2010, 662: 329-351.
MacQuarrie, K.T., Mayer, K.U. Reactive transport modeling in fractured rock: A state-of-the-science review. Earth-Sci. Rev. 2005, 72(3): 189-227.
Miao, T., Yang, S., Long, Z., et al. Fractal analysis of permeability of dual-porosity media embedded with random fractures. Int. J. Heat Mass Transf. 2015a, 88: 814-821.
Miao, T., Yu, B., Duan, Y., et al. A fractal analysis of permeability for fractured rocks. Int. J. Heat Mass Transf. 2015b, 81: 75-80.
Min, K.B., Jing, L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method. Int. J. Rock Mech. Min. Sci. 2003, 40(6): 795-816.
Mora, P., Wang, Y., Alonso-Marroquin, F. Lattice solid/Boltz-mann microscopic model to simulate solid/fluid systemsa tool to study creation of fluid flow networks for viable deep geothermal energy. J. Earth Sci. 2015, 26(1): 11-19.
Neretnieks, I. Channeling effects in flow and transport in frac-tured rocks-Some recent observations and models. Paper Presented at Proceedings of GEOVAL-87, International Symposium, Stockholm, Sweden, April, 1987.
Okubo, P.G., Aki, K. Fractal geometry in the San Andreas fault system. J. Geophys. Res. 1987, 92(B1): 345-355.
Olsson, R., Barton, N. An improved model for hydromechan-ical coupling during shearing of rock joints. Int. J. Rock Mech. Min. Sci. 2001, 38(3): 317-329.
Pyrak-Nolte, L., Morris, J. Single fractures under normal stress: The relation between fracture specific stiffness and fluid flow. Int. J. Rock Mech. Min. Sci. 2000, 37(1): 245-262.
Roman, A., Ahmadi, G., Issen, K.A., et al. Permeability of fractured media under confining pressure: A simplified model. Open Pet. Eng. J. 2012, 5: 36-41.
Roy, A., Perfect, E., Dunne, W.M., et al. Fractal characteri-zation of fracture networks: An improved box-counting technique. J. Geophys. Res. 2007, 112: B12201.
Sahimi, M. Flow and transport in porous media and fractured rock: From classical methods to modern approaches. New Jersey, USA, John Wiley & Sons, 2011.
Selroos, J.O., Walker, D.D., Strm, A., et al. Comparison of alternative modelling approaches for groundwater flow in fractured rock. J. Hydrol. 2002, 257(1): 174-188.
Tsang, Y., Tsang, C., Hale, F., et al. Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 1996, 32(10): 3077-3092.
Velde, B., Dubois, J., Moore, D., et al. Fractal patterns of fractures in granites. Earth Planet. Sci. Lett. 1991, 104(1): 25-35.
Vignes-Adler, M., Le Page, A., Adler, P.M. Fractal analysis of fracturing in two African regions, from satellite imagery to ground scale. Tectonophysics 1991, 196(1-2): 69-86.
Vu, M.N., Pouya, A., Seyedi, D.M. Modelling of steady-state fluid flow in 3D fractured isotropic porous media: Application to effective permeability calculation. Int. J. Numer. Anal. Methods Geomech. 2013, 37(14): 2257-2277.
Wang, H., Liu, Y., Song, Y., et al. Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging. J. Appl. Geophys. 2012, 86: 70-81.
Xie, S., Cheng, Q., Ling, Q., et al. Fractal and multifractal analysis of carbonate pore-scale digital images of petroleum reservoirs. Mar. Pet. Geol. 2010, 27(2): 476-485.
Xiong, X., Li, B., Jiang, Y., et al. Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear. Int. J. Rock Mech. Min. Sci. 2011, 48(8): 1292-1302.
Xu, P., Yu, B., Feng, Y., et al. Analysis of permeability for the fractal-like tree network by parallel and series models. Phys. A 2006, 369(2): 884-894.
Xu, P., Yu, B.M., Qiu, S.X., et al. An analysis of the radial flow in the heterogeneous porous media based on fractal and constructal tree networks. Phys. A 2008, 387(26): 6471-6483.
Yasuhara, H., Kinoshita, N., Ogata, S., et al. Coupled thermo-hydro-mechanical-chemical modeling by incorporating pressure solution for estimating the evolution of rock permeability. Int. J. Rock Mech. Min. Sci. 2016, 86: 104-114.
Zhao, Z. Gouge particle evolution in a rock fracture undergoing shear: A microscopic DEM study. Rock Mech. Rock Eng. 2013, 46(6): 1461-1479.
Zhou, C.B., Sharma, R.S., Chen, Y.F., et al. Flow-stress coupled permeability tensor for fractured rock masses. Int. J. Numer. Anal. Methods Geomech. 2008, 32(11): 1289-1309.
Zimmerman, R., Main, I. Hydromechanical behavior of fractured rocks. Int. Geophys. 2004, 89: 363-422.
Zimmerman, R.W., Bodvarsson, G.S. Hydraulic conductivity of rock fractures. Transp. Porous Media 1996, 23(1): 1-30.
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.