The impact of sulfur precipitation in developing a sour gas reservoir with pressure-sensitive effects
Abstract view|612|times PDF download|190|times
Abstract
Cited as: Ru, Z., An, K., Hu, J. The impact of sulfur precipitation in developing a sour gas reservoir with pressure-sensitive effects. Advances in Geo-Energy Research, 2019, 3(3): 268-276, doi: 10.26804/ager.2019.03.05
Keywords
Full Text:
PDFReferences
Bian, X., Zhang, L., Du, Z., et al. Prediction of sulfur solubility in super critical sour gases using grey wolf optimizer-based support vector machine. J. Mol. Liq. 2018, 261: 1735-1760.
Bian, X., Zhang, Q., Du, Z., et al. A five-parameter empirical model for correlation the solubility of solid compounds in supercritical carbon dioxide. Fluid Phase Equilibr. 2016, 411: 74-80.
Cen, F., Lai, F., Jiang, H., et al. An improved calculation method for reserve of constant-volume sour gas reservoirs. Oil & Gas Geology 2007, 28(3): 320-323. (in Chinese)
Chen, Y. Reservoir simulation basis. Beijing, Petroleum Industry Press, 1989. (in Chinese)
Chrastil, J. Solubility of solids and liquids in supercritical gases. Phys. Chem. 1982, 86: 3016-3021.
Clark, P.D., Lesage, K.L., Sarkar, P. Application of aryl disulfides for the mitigation of sulfur deposition in sour gas wells. Energy Fuels 1989, 3(3): 315-320.
Fan, Z., Li, H., Liu, J., et al. The elemental sulfur deposition and its corrosion in high sulfur gas fields. Natural Gas Industry 2013, 33(9): 102-109. (in Chinese)
Guo, X., Du, Z., Yang, X., et al. Sulfur deposition in sour gas reservoirs: Laboratory and simulation study. Pet. Sci. 2009, 6(4): 405-414.
Guo, X., Wang, P., Liu, J., et al. Gas well water breakthrough time model for high sulfur gas reservoirs considering sulfur deposition. J. Pet. Sci. Eng. 2017, 157: 999-1006.
Guo, X., Wang, Q. A new prediction model of elemental sulfur solubility in sour gas mixtures. J. Nat. Gas Sci. Eng. 2016, 31: 98-107.
He, J., Rui, Z., Ling, K. A new method to determine Biot’s coefficients of Bakken samples. J. Nat. Gas Sci. Eng. 2016, 35: 259-264.
Hu, J., Chong, Z., Zhe, H., et al. Fractured horizontal well productivity prediction in tight oil reservoirs. J. Pet. Sci. Eng. 2017b, 151: 159-168.
Hu, J., Lei, Z., Chen, Z., et al. Effect of sulfur deposition on well performance in a sour gas reservoir. Can. J. Chem. Eng. 2017a, 96(4): 886-894.
Hu, J., Zhao, J., Wang, L., et al. Prediction model of elemental sulfur solubility in sour gas mixtures. J. Nat. Gas Sci. Eng. 2014, 18: 31-38.
Karan, K., Heidemann, R.A., Behie, L.A. Sulfur solubility in sour gas: Predictions with an equation of state model. Ind. Eng. Chem. Res. 1998, 37(5): 1679-1684.
Li, C., Liu, G., Peng, Y. Predicting sulfur solubility in hydrogen sulfide, carbon dioxide, and methane with an improved thermodynamic model. RSC Adv. 2018, 8: 16069-16081.
Li, Z., Gu, T., Guo, X., et al. Characterization of the unidirectional corrosion of oilwell cement exposed to H2S under high-sulfur gas reservoir conditions. RSC Adv. 2015, 5: 71529-71536.
Mao, J., Yang, X., Wang, D. Optimization of effective sulfur solvents for sour gas reservoir. J. Nat. Gas Sci. Eng. 2016, 36: 463-471.
Ou, C., Rui, R., Li, C., et al. Multi-index and two-level evaluation of shale gas reserve quality. J. Nat. Gas Sci. Eng. 2016, 35: 1139-1145.
Pirzadeh, P., Lesage, K.L., Marriott, R.A. Hydraulic fracturing additives and the delayed onset of hydrogen sulfide in shale gas. Energy Fuels 2014, 28(8): 4993-5001.
Ren, Z., Wu, X., Liu, D., et al. Semi-analytical model of the transient pressure behavior of complex fracture networks in tight oil reservoirs. J. Nat. Gas Sci. Eng. 2016, 35: 497-508.
Roberts, B.E. The effect of sulfur deposition on gas well inflow performance. SPE Reserv. Eng. 1997, 12(2): 118-123.
Roberts, B.E. Flow impairment by deposited sulfur-A review of 50 years of research. J. Nat. Gas Eng. 2017, 2(1): 84-105.
Santos, J., Lobato, A., Moraes, C., et al. Comparison of different processes for preventing deposition of elemental sulfur in natural gas pipelines: A review. J. Nat. Gas Sci. Eng. 2016, 32: 364-372.
Sun, C., Chen, G. Experimental and modeling studies on sulfur solubility in sour gas. Fluid Phase Equilibr. 2003, 214(2): 187-195.
Sun, J., Gamboa, E., Schechter, D., et al. An integrated workflow for characterization and simulation of complex fracture networks utilizing micro seismic and horizontal core data. J. Nat. Gas Sci. Eng. 2016, 34: 1347-1360.
Wang, F., Li, X., Couples, G., et al. Stress arching effect on stress sensitivity of permeability and gas well production in Sulige gas field. J. Pet. Sci. Eng. 2015, 125: 234-246.
Wang, R., Xiang, A., Zhao, R., et al. Effect of stress sensitivity on displacement efficiency in CO2 flooding for fractured low permeability reservoirs. Pet. Sci. 2009, 6(3): 277-283.
Wang, S. The relationship between sulfur deposition and gas production capacity. Pet. Explor. Dev. 1999, 5: 56-58.
Wang, W., Liu, C., Mu, L., et al. Technical policy optimization for the development of carbonate sour gas reservoirs. Oil & Gas Geology 2011, 32(2): 302-310. (in Chinese)
Yang, C. Natural gas production engineering. Beijing, Petroleum Industry Press, 2001. (in Chinese)
Zeng, D., Peng, X., Fu, D., et al. Development dynamic monitoring technologies used in the Puguang high-sulfur gas field. Natural Gas Industry 2019, 6(3): 191-197. (in Chinese)
Zeng, P., Zhao, J., Zhou, H. Formation damage from elemental sulfur deposition in sour gas reservoir. Pet. Explor. Dev. 2005, 32(6): 113-115.
Zhao, X., Rui, Z., Liao, X., et al. A simulation method for modified isochronal well testing to determine shale gas well productivity. J. Nat. Gas Sci. Eng. 2015, 27(2): 479-485.
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 The Author(s)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.