Displacement behavior of methane in organic nanochannels in aqueous environment

Jingjing Huai, Zhang Xie, Zheng Li, Gang Lou, Jun Zhang, Jianlong Kou, Hui Zhao

Abstract view|529|times       PDF download|217|times

Abstract


Shale is rich in organic nanopores where shale gas mainly resides. Shale gas development is often accompanied by water, so studying interactions of gas and water in organic nanopores has become an important topic. Here, we performed molecular dynamics simulations to study the interaction of gas and water in organic nanochannels. It was found that water molecules in the nanochannel could be displaced by methane molecules. And the entered methane molecules would exhibit different layered structures. The above phenomenon is attributed to the fact that methane molecules have lower potential of mean force than water molecules in nanochannels. The revealed mechanism of displacing water molecules with methane molecules in organic nanochannels provides an insight into the interaction of water molecules and methane molecules in organic nanochannels and has tremendous potentials in the development of shale gas.

Cited as: Huai, J., Xie, Z., Li, Z., Lou, G., Zhang, J., Kou, J., Zhao, H. Displacement behavior of methane in organic nanochannels in aqueous environment. Capillarity, 2020, 3(4): 56-61, doi: 10.46690/capi.2020.04.01


Keywords


Molecular dynamics simulation, gas-water interaction, organic nanochannel

Full Text:

PDF

References


Bai, J., Zeng, X.C. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Proc. Natl. Acad. Sci. USA 2012, 109(52): 21240-21245.

Beckstein, O., Sansom, M.S.P. Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 2003, 100(12): 7063-7068.

Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91(24): 6269-6271.

Bhethanabotla, V.R., Steele, W.A. Molecular dynamics simulations of oxygen monolayers on graphite. Langmuir 1987, 3(4): 581-587.

Bousige, C., Ghimbeu, C.M., Vix-Guterl, C., et al. Realistic molecular model of kerogen’s nanostructure. Nat. Mater. 2016, 15: 576-583.

Bussi, G., Donadio, D., Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126(1): 014101.

Chalmers, G.R., Bustin, M.R. The effects and distribution of moisture in gas shale reservoir systems. Presentation at AAPG Annual Convention and Exhibition, New Orleans, Louisiana, 11-14 April, 2010.

Clarkson, C.R., Bustin, S., Bustin, R.M. Pore structure characterization of North American shale gas reservoirs; using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013, 103: 606-616.

Dammer, S.M., Lohse, D. Gas enrichment at liquid-wall interfaces. Phys. Rev. Lett. 2006, 96(20): 206101.

Gregory, K.B., Vidic, R.D., Dzombak, D.A. Water manage-ment challenges associated with the production of shale gas by hydraulic fracturing. Elements 2011, 7(3): 181-186.

Gu, X., Cole, D.R., Rother, G., et al. Pores in marcellus shale: A neutron scattering and FIB-SEM study. Energy Fuels 2015, 29(3): 1295-1308.

Hess, B., Kutzner, C., Spoel, D.V.D., et al. GROMACS 4: Algorithms for highly ecient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4(3): 435-447.

Hummer, G., Rasaiah, J.C., Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414: 188-190.

Humphrey, W., Dalke, A., Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14(1): 33-38.

Jin, Z., Firoozabadi, A. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations. J. Chem. Phys. 2015, 143(10): 104315.

Kaminski, G., Duffy, E.M., Matsui, T., et al. Free energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. J. Phys. Chem. 1994, 98(49): 13077-13082.

Kerr, R.A. Natural gas from shale bursts onto the scene. Science 2010, 328(5986): 1624-1626.

Koga, K., Gao, G.T., Tanaka, H., et al. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412: 802-805.

Kou, J.L., Lu, H., Wu, F., et al. Electricity resonance-induced fast transport of water through nanochannels. Nano Lett. 2014, 14(9): 4931-4936.

Kou, J.L., Yao, J., Lu, H.J., et al. Electromanipulating water flow in nanochannels. Angew. Chem. Int. Ed. 2015, 54(8): 2351-2355.

Kumar, S., Rosenberg, J.M., Bouzida, D., et al. Multidi-mensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem. 1995, 16(11): 1339-1350.

Lee, J., Aluru, N.R. Mechanistic analysis of gas enrichment in gas-water mixtures near extended surfaces. J. Phys. Chem. C 2015, 115(35): 17495-17502.

Li, J., Gong, X., Lu, H., et al. Electrostatic gating of a nanometer water channel. Proc. Natl. Acad. Sci. USA 2007, 104(10): 3687-3692.

Li, J., Li, X., Wu, K., et al. Water sorption and distribution characteristics in clay and shale: Effect of surface force. Energy Fuels 2016, 30(11): 8863-8874.

Li, J., Li, X., Wu, K., et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. Int. J. Coal Geol. 2017a, 179: 253-268.

Li, Z., Liu, D., Cai, Y., et al. Multi-scale quantitative char-acterization of 3-D pore-fracture networks in bituminous and anthracite coals using FIB-SEM tomography and X-ray µ -CT. Fuel 2017b, 209: 43-53.

Li, Z., Yao, J., Kou, J. Mixture composition effect on hydrocarbon-water transport in shale organic nanochan-nels. J. Phys. Chem. Lett. 2019a, 10(15): 4291-4296.

Li, Z., Yao, J., Ren, Z., et al. Accumulation behaviors of methane in the aqueous environment with organic matters. Fuel 2019b, 236: 836-842.

Liu, K., Ostadhassan, M. The impact of pore size distribution data presentation format on pore structure interpretation of shales. Adv. Geo-Energy Res. 2019, 3(2): 187-197.

Loucks, R.G., Reed, R.M., Ruppel, S.C., et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J. Sediment. Res. 2009, 79(12): 848-861.

Mayfield, E.N., Cohon, J.L., Muller, N.Z., et al. Cumulative environmental and employment impacts of the shale gas boom. Nat. Sustain. 2019, 2: 1122-1131.

Mosher, K., He, J., Liu, Y., et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems. Int. J. Coal Geol. 2013, 109-110: 36-44.

Nose, S., Klein, M.L. Constant pressure molecular dynamics for molecular systems. Mol. Phys. 1983, 50(5): 1055-1076.

Roux, B. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 1995, 91(1-2): 275-282.

Shen, W., Li, X., Cihan, A., et al. Experimental and numerical simulation of water adsorption and diffusion in shale gas reservoir rocks. Adv. Geo-Energy Res. 2019, 3(2): 165-174.

Striolo, A., Cole, D.R. Understanding shale gas: Recent progress and remaining challenges. Energy Fuels 2017, 31(10): 10300-10310.

Sun, H., Yao, J., Cao, Y., et al. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis. Int. J. Heat Mass Transf. 2017, 104: 227-239.

Torrie, G.M., Valleau, J.P. Non-physical sampling distributions in monte-carlo free-energy estimation-umbrella sampling. J. Comput. Phys. 1977, 23(2): 187-199.

Vidic, R.D., Brantley, S.L., Vandenbossche, J.M., et al. Impact of shale gas development on regional water quality. Science 2013, 340(6134): 1235009.

Wang, S., Javadpour, F., Feng, Q. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale. Fuel 2016, 181: 741-758.

Yao, J., Sun, H., Huang, Z.Q., et al. Key mechanical problems in the developmentof shale gas reservoirs. Scientia Sinica Physica, Mechanica & Astronomica 2013, 43(12): 1527-1547. (in Chinese)

Yethiraj, A., Striolo, A. Fracking: What can physical chemistry offer? J. Phys. Chem. Lett. 2013, 4(4): 687-690.

Zhao, W.H., Bai, J., Wang, L., et al. Formation of bilayer clathrate hydrates. J. Mater. Chem. A 2015, 3: 5547-5555.

Zhao, W.H., Wang, L., Bai, J., et al. Highly confined water: Two-dimensional ice, amorphous ice, and clathrate hydrates. Acc. Chem. Res. 2014a, 47(8): 2505-2513.

Zhao, W.H., Wang, L., Bai, J., et al. Spontaneous formation of one-dimensional hydrogen gas hydrate in carbon nanotubes. J. Am. Chem. Soc. 2014b, 136(30): 10661-10668.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright ©2018. All Rights Reserved