Supporting Information: Effects of impurity gases on interfaces of the hydrogen-water-decane three-phase system: A square gradient theory investigation

Yafan Yang^{1, *}, Jingyu Wan¹, Jingfa Li², Weiwei Zhu³, Guangsi Zhao¹, Xiangyu Shang^{1, *}

¹State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China

²School of Mechanical Engineering and Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102617, P. R. China

³Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China

*Corresponding Author: Yafan Yang. Email: yafan.yang@cumt.edu.cn; ORCID: 0000-0001-7119-623X;

Xiangyu Shang. Email: xyshang@cumt.edu.cn; ORCID: 0000-0003-4738-2424

Appendix A.

Fig. A1 Pressure dependence of IFT in the gas- H_2O 2-phase systems: (a) H_2 , (b) N_2 , (c) CH_4 , and (d) CO_2 at various temperatures. Predictions from SGT are shown as lines and the experimental data from Refs. S1-S7 are

shown as filled symbols.

Fig. A2 Pressure dependence of IFT in the H2O-decane 2-phase systems at various temperatures. Predictions from SGT are shown as lines and the experimental data from Ref. S8 are shown as filled symbols.

Fig. A3 Pressure dependence of IFT in the gas-decane 2-phase systems: (a) H_2 , (b) N_2 , (c) CH_4 , and (d) CO_2 at various temperatures. Predictions from SGT are shown as lines and the experimental data from Refs. S9-S14 are shown as filled symbols.

Fig. A4 Equilibrium distributions of different species in the H_2 - H_2O - $C_{10}H_{22}$ 3-phase system for the interface between H_2O -rich phase and H_2 -rich phase at (a) 298 K, 5 MPa, (b) 298 K, 70 MPa, (c) 373 K, 5 MPa, and (d) 373 K, 70 MPa. The solid, dotted, and dashed lines denote H_2O , decane, and H_2 , respectively. The data are taken from Ref. S15.

Fig. A5 Solubilities in the H_2O -rich phase in gas- $H_2-H_2O-C_{10}H_{22}$ 3-phase systems. Top, middle, and bottom panels show solubilities in systems containing N_2 , CH_4 , and CO_2 , respectively. The data for dashed lines are taken from Ref. S15.

Fig. A6 Solubilities in the H_2 -rich phase in gas- H_2 - H_2 O- $C_{10}H_{22}$ 3-phase systems. Top, middle, and bottom panels show solubilities in systems containing N_2 , CH_4 , and CO_2 , respectively. The data for dashed lines are taken from Ref. S15.

Fig. A7 Equilibrium distributions of different species in the $H_2-H_2O-C_{10}H_{22}$ 3-phase system for the interface between H_2O -rich phase and $C_{10}H_{22}$ -rich phase at (a) 298 K, 5 MPa, (b) 298 K, 70 MPa, (c) 373 K, 5 MPa, and (d) 373 K, 70 MPa. The solid, dotted, and dashed lines denote H_2O , decane, and H_2 , respectively. The data are taken from Ref. S15.

Fig. A8 Solubilities in the $C_{10}H_{22}$ -rich phase in gas- H_2 - H_2O - $C_{10}H_{22}$ 3-phase systems. Top, middle, and bottom panels show solubilities in systems containing N₂, CH₄, and CO₂, respectively. The data for dashed lines are taken from Ref. S15.

Fig. A9 Equilibrium distributions of different species in the H_2 - H_2O - $C_{10}H_{22}$ 3-phase system for the interface between H_2 -rich phase and $C_{10}H_{22}$ -rich phase at (a) 298 K, 5 MPa, (b) 298 K, 70 MPa, (c) 373 K, 5 MPa, and (d) 373 K, 70 MPa. The solid, dotted, and dashed lines denote H_2O , decane, and H_2 , respectively. The data are taken from Ref. S15.

Fig. A10 Component enrichments of the H_2 - H_2O - $C_{10}H_{22}$ interface. Top, middle, and bottom panels show surface excesses in systems containing N_2 , CH_4 , and CO_2 , respectively. Dashed lines are taken from Ref. S15.

Fig. A11 Component surface excesses of the H_2 - H_2O - $C_{10}H_{22}$ interface. Top, middle, and bottom panels show surface excesses in systems containing N_2 , CH_4 , and CO_2 , respectively. Dashed lines are taken from Ref. S15.

References

S1. Chow, Y. F., Maitland, G. C., & Trusler, J. M. (2018). Interfacial tensions of (H_2O+H_2) and $(H_2O+CO_2+H_2)$ systems at temperatures of (298–448) K and pressures up to 45 MPa. Fluid Phase Equilibria, 475, 37-44.

S2. Chow, Y. F., Maitland, G. C., & Trusler, J. M. (2020). Erratum to "Interfacial tensions of (H_2O+H_2) and $(H_2O+CO_2+H_2)$ systems at temperatures of (298 to 448) K and pressures up to 45 MPa" [Fluid Phase Equil. 475 (2018) 37–44].

S3. Chow, Y. F., Maitland, G. C., & Trusler, J. M. (2016). Interfacial tensions of the (CO₂+N₂+H₂O) system at temperatures of (298 to 448) K and pressures up to 40 MPa. The Journal of Chemical Thermodynamics, 93, 392-403.

S4. Wiegand, G., & Franck, E. U. (1994). Interfacial tension between water and non-polar fluids up to 473 K and 2800 bar. Berichte der Bunsengesellschaft für physikalische Chemie, 98(6), 809-817.

S5. Kashefi, K., Pereira, L. M., Chapoy, A., Burgass, R., & Tohidi, B. (2016). Measurement and modelling of interfacial tension in methane/water and methane/brine systems at reservoir conditions. Fluid Phase Equilibria, 409, 301-311.

S6. Sachs, W., & Meyn, V. (1995). Pressure and temperature dependence of the surface tension in the system natural gas/water principles of investigation and the first precise experimental data for pure methane/water

at 25 C up to 46.8 MPa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 94(2-3), 291-301.

S7. Pereira, L. M., Chapoy, A., Burgass, R., Oliveira, M. B., Coutinho, J. A., & Tohidi, B. (2016). Study of the impact of high temperatures and pressures on the equilibrium densities and interfacial tension of the carbon dioxide/water system. The Journal of Chemical Thermodynamics, 93, 404-415.

S8. Georgiadis, A., Maitland, G., Trusler, J. M., & Bismarck, A. (2011). Interfacial tension measurements of the (H₂O+n-decane+CO₂) ternary system at elevated pressures and temperatures. Journal of Chemical & Engineering Data, 56(12), 4900-4908.

S9. Linstrom, P. J., & Mallard, W. G. (2001). The NIST Chemistry WebBook: A chemical data resource on the internet. Journal of Chemical & Engineering Data, 46(5), 1059-1063.

S10. Pereira, L. M., Chapoy, A., Burgass, R., & Tohidi, B. (2016). Measurement and modelling of high pressure density and interfacial tension of (gas+n-alkane) binary mixtures. The Journal of Chemical Thermodynamics, 97, 55-69.

S11. Stegemeier, G. L., Pennington, B. F., Brauer, E. B., & Hough, E. W. (1962). Interfacial tension of the methane-normal decane system. Society of Petroleum Engineers Journal, 2(03), 257-260.

S12. Amin, R., & Smith, T. N. (1998). Interfacial tension and spreading coefficient under reservoir conditions. Fluid phase equilibria, 142(1-2), 231-241.

S13. Pan, Z., & Trusler, J. M. (2023). Measurement and modelling of the interfacial tensions of CO₂+decaneiododecane mixtures at high pressures and temperatures. Fluid Phase Equilibria, 566, 113700.

S14. Georgiadis, A., Llovell, F., Bismarck, A., Blas, F. J., Galindo, A., Maitland, G. C., Trusler, J. M. & Jackson, G. (2010). Interfacial tension measurements and modelling of (carbon dioxide+n-alkane) and (carbon dioxide+ water) binary mixtures at elevated pressures and temperatures. The Journal of Supercritical Fluids, 55(2), 743-754.

S15. Yang, Y., Wan, J., Li, J., Zhao, G., & Shang, X. (2023). Molecular modeling of interfacial properties of the hydrogen+water+decane mixture in three-phase equilibrium. arXiv preprint, arXiv: 2307.15356.