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Abstract:
Water uptake in rock fractures caused by rainfall plays a significant role in slope stability
analysis. Since the fracture network system has complicated structures and multiple scales,
the models based on the averaged system cannot account for these properties. On the
other hand, a model describing a single fracture with fractal characteristics and surface
roughness fails to deal with the case of multiple fractures at spatial scales. In this study, a
fracture-network model is established to account for the complex structures and multiple
scales of fractures. By considering the connectivity between fractures and the limited area
of aquifer, capillary pressure formulations in different fractures are derived based on the
Young-Laplace equation, and the final water level under specific rainfall conditions is also
obtained. The cross-section shapes and exhaust conditions of rainwater infiltration have
important influences on the final water level. The results indicate that the final water level
is proportional to the ratio of perimeter to cross-section area when the fracture is a cylinder,
and a circular pipe can reduce water level elevation in the fracture system.

1. Introduction
Slope stability is significantly influenced by water uptake

in ground material fractures caused by rainfall. Torrential
rainfalls may cause landslides in mountain areas around the
world, as rainwater infiltrates into the soil with an increasing
content and pressure, which could weaken soil strength and
stiffness (Terzaghi, 1950; Sidle and Swanston, 1982; Sitar et
al., 1992; Anderson and Sitar, 1995; Wang and Sassa, 2003;
Regmi et al., 2017). If the rain is a heavy torrential one,
landslides and slope failures may take place (Brand, 1984;
Brenner et al., 1985). Consequently, the permeation of water
into the soil and the resulting pore pressure variation are
crucial for understanding the transient conditions of slope
failure (Lu and Godt, 2013; Cho, 2016).

Researches on rainfall infiltration into fractures must con-
sider the morphology and distribution of these fractures. The
theory of continuous media has been widely employed in
this research topic, while rock and soil cannot be treated as
a continuous medium due to the presence of discontinuity,
anisotropy and inhomogeneity. These features give rise to

the difficulty of relevant theoretical research. In networked
fractures, different fractures have their respective distinctive
seepage parameters, and the fracture conjunctions are gener-
ally complex, thus it is hard to obtain theoretical results (Wang
et al., 1998). Moreover, due to the complex fracture structure
and undulation characteristics of the fracture surfaces, it is
difficult to characterize the fracture morphology. The fractal
dimensions of fracture surface morphology are within a certain
scale range, which are not the theoretical fractal objects (Dong,
2020). On the other hand, the flow of fluid in the fractures also
greatly impacts the fracture structures and commonly results
in the change of morphology and distribution. However, the
migration mechanism of water flow in fractures is still not fully
understood (Zheng et al., 2019). In order to resolve the above
problems, researchers have introduced many models to date.
While a practical seepage model for fractured rock mass could
describe the seepage mechanism of primary and secondary
fracture systems in detail, the double fracture systems seepage
principle provides a new method to analyze the seepage
rock mass fractures in engineering (Wang et al., 1998). The
fractal self-affinity rough fracture is taken into account in
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another model, and the Cuckoo Search algorithm optimizes the
segmentation of fracture surface, which can be used to study
the roughness characteristics of fracture surface (Dong, 2020).
The relationships among hydraulic gradient, flow rate and
solute transport law were studied in a single marble parallel
plate fracture (Zheng et al., 2019).

Although great progress has been made in the seepage
theory of water in fractures, it is difficult to extend the
existing theory to describe multiple fractures. In the theoretical
calculation of the complete fracture network model, many
specific parameters that never appear in single fractures are
largely ignored. In this work, a fracture network system is
established based on specific fracture morphology and distri-
bution. Considering the connectivity between fractures and the
limited area of the aquifer, capillary pressure under different
fractures is derived based on the Young-Laplace equation,
and the final water level under specific rainfall conditions is
obtained. The influences of cross section shapes and exhaust
conditions of rainwater infiltration on the final water level
are studied to make the theory applicable to more diverse
situations.

2. The influence of geometric features on water
level changes

2.1 Model description
It is assumed that the bottom of the rock and the soil mass

are impermeable boundaries, that is, water cannot penetrate
into the impermeable layer below. There are a series of
fractures within the rock and soil mass, which constitute a
fracture system. The space of each fracture is a four-prism,
which is perpendicular to the horizontal plane. The lateral
interface between the fracture space and the rock is called
fracture plane. Each fracture space has two pairs of parallel
fracture planes, thus they are called parallel fractures. The
shape of a parallel fracture is shown in Fig. 1.

The rock interlayer between fractures is impermeable, thus
water in one fracture cannot penetrate into another fracture
directly through the interlayer. Only the upper part of fractures
is free surface, while the bottom part is connected to the
aquifer that is always in contact with air. Water contained in
the aquifer cannot drain.

When rainfall occurs, water infiltrates the fracture system
resulting in the rise of water level, which in turn affects slope
stability (Kristo et al., 2017). The final water level is studied
under different conditions, including rainfall intensity, spatial

Fig. 1. Schematic diagram of each parallel fracture.

geometry (dimensions) of fractures, distribution forms of
fractures, initial water level, density of liquid and gas phases,
gravity, interfacial tension and wetting angle of liquid and gas
phases. The influence of temperature change is neglected. The
calculation of water level in fractures with different forms and
distributions under specific rainfall conditions by considering
capillary pressure has great geophysical significance. The
characteristics of fractures of rock and soil mass are highly
complex in nature, and the influence of the dynamic process
of penetration on slope stability is a persistent problem that
needs to be urgently solved.

2.2 Parallel and equal aperture vertical fractures
2.2.1 Bottom separation condition

Physical, chemical and biological processes influence dif-
ferent rock and soil masses that are formed under varying
geological conditions. These influence factors are specifically
reflected in the primary role of some geophysical processes
including metamorphism, melt and solidification cycles, and
plate movement, and in the secondary role of weathering
(Nesbitt et al., 1982). The masses formed include sedimentary
rocks, metamorphic rocks and magmatic rocks, which may
develop different fissures (Dill, 2016).

In this paper, it is assumed that the fracture surface of
the rock mass is continuous, isotropic, planar and vertically
distributed, and the top surface of the rock and soil mass is
horizontal. The inner surfaces of the fracture space are denoted
as the fracture surfaces, and opposite surfaces are parallel to
each other. The fractures are connected with the rest of the
rock mass at the bottom. They are mutually separated and
disconnected, and the interlayers between fractures are imper-
meable. The fracture system is connected to the precipitation
area, and the water volume at the top of the impermeable layer
is infinite compared to the pore cross-sectional area. Therefore,
the increase of water level caused by pore pressure cannot lead
to a decreased original water level. If the impermeable top
surface is called base surface, a Cartesian coordinate system
x− y− z, with the vertical direction as z and the base surface
as y−O− x surface, can be established. It is assumed that
the fractures are hydrophilic, that is, water is the wetting
phase while air is the non-wetting phase. In this case, the
wetting angle is less than 90◦, and thus capillary pressure will
provoke the rise of water in fractures. The fracture surface
is simplified as a rectangle with length l (vertical length)
and width b, and the fracture aperture is represented by t,
the fracture thus forming a four-prism. Let the initial water
level be z0. Precipitation with a total volume of V enters the
fracture system during investigation time ∆T , which has n
equal large fractures. During this period, if capillarity pressure
is neglected, the water level rise should be

∆z =
V

nbt
(1)

where ∆z is the variation of water level.
Consider the contribution of capillary pressure and assume

that the free interface is a meniscus surface in the x direction
and the y direction, i.e., the interface is ‘Mouhe Square Cover’,
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Fig. 2. Surface tension of water-air interface on cross-section bl.

Fig. 3. Surface tension of water-air interface on cross-section tl.

which can be regarded as the intersecting surface of two
cylindrical surfaces. Figs. 2 and 3 show the surface tension
of the water-air interface in different directions.

Based on the geometric relationships

R1 =
b

2cosθ
(2)

R2 =
t

2cosθ
(3)

the Young-Laplace equation (Liu and Cao, 2016) gives the
capillary pressure pc of a single fracture:

pc = 2σ cosθ

(
1
b
+

1
t

)
(4)

where θ represents the wetting angle at the water-fracture
interface, σ is the surface tension, b denotes the width of the
fracture surface, and t represents the aperture of the fracture.

Eq. (4) is based on the Young-Laplace equation:

pc = σ

(
1

R1
+

1
R2

)
(5)

where R1 and R2 are the radii of curvature circle in the
orthogonal direction of the interface.

Next, a simple force analysis is carried out for the process
of water level rise. Before the occurrence of capillarity, the
water content of the fracture system increases due to pre-
cipitation, and the water level consequently rises. The rising
height is V/nbt, as shown in Eq. (1). Due to capillarity,
the surface tension shows upward capillary pressure. The
hydraulic pressure in the fracture is unbalanced, thus water
transports upward. When the water level rises, the pore water
pressure will increase, and the fluid level will keep moving

until the upward capillary pressure is equal to the downward
gravity increment (neglecting the vibration process). When the
system reaches an equilibrium state, the water head is denoted
by z, and the actual height increment caused by capillary
pressure is represented by ∆h′, which satisfies

z = z0 +∆z+∆h′ (6)

The expressions of the capillary force F and the gravity
increment ∆G are now shown as

F = pcbt = 2σ cosθ

(
1
b
+

1
t

)
bt (7)

∆G = mg = (ρw−ρn)ghbt (8)

where m is the mass increment of the matter in the fracture,
ρn and ρw are non-wetting phase density and wetting phase
density, respectively, and g denotes gravitational acceleration.

According to Newton’s first law,

F = ∆G (9)

the water level height can be obtained as

h =
2σ cosθ

(ρw−ρn)g

(
1
b
+

1
t

)
(10)

which can be rewritten by multiplying the numerator and
denominator by bt:

h =
2σ cosθ(b+ t)
(ρw−ρn)gbt

(11)

Eq. (11) is a different form of h, which will be discussed
later.

Capillary pressure causes water level to rise. Accordingly,
the water level in the aquifer slightly drops, and can be
expressed as

Saqi∆h = bt∆h′ (12)

where Saqi represents the area of the aquifer exposed to the
atmosphere (the area of the fracture excepted), ∆h represents
the decrease of the water level of the aquifer exposed to the
atmosphere, and ∆h′ represents the actual rise of the water
level in the capillary. It can be obtained as

h = ∆h+∆h′ (13)

Eqs. (12) and (13) can be combined, and the linear equation
system with two unknown variables can be solved as follows

∆h =
bth

Saqi +bt
(14)

∆h′ = h− bth
Saqi +bt

(15)

It can be seen that Saqi + bt is the area of the water
connected with air.
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Fig. 4. Parallel equal aperture vertical separated fractures.

Fig. 5. Top view of fracture distribution in other cases.

Based on Eqs. (1), (6), (11) and (15), the following
equation can be derived:

z = z0 +
V

nbt
+

2σ cos(b+ t)Saqi

(ρw−ρn)gbt(Saqi +bt)
(16)

Eq. (16) describes the final position of the water level of
a single fracture under the condition of uniform precipitation.
The capillary phenomenon appears only when the aquifer is
exposed to air. Fig. 4 shows the parallel and equal aperture
vertical separated fractures.

It should be noted that the distribution modes include, but
are not limited to this condition. Fig. 5 shows one of the top
views of other fracture distributions.

It is clear from Eq. (16) that the water level is related
to the area of the aquifer exposed to air, the initial water
level, precipitation, number of fractures, width and aperture
of fractures, surface tension, wetting angle, and phase density.
The increase of the aquifer area exposed to air, the initial
water level, the precipitation, the surface tension, or the ratio of
perimeter to area together determine the degree of final water
level increase. Meanwhile, the increase of density difference
between the two phases, the gravitational acceleration, or the
cross sectional area of fracture influence the final water level
decrease.

2.2.2 Bottom interconnection condition

In this section, the water level change under the intercon-
nected condition of the fracture system (Ding et al., 2020) is
considered. Fig. 6 illustrates the parallel and equal aperture
vertical interconnected fractures.

Fig. 6. Parallel and equal aperture vertical interconnected fractures.

Compared to the change of water level of a system in
which the fractures are disconnected, the change of water
level in the connected case should take into consideration
the influence of water pressure. The liquid that connects the
fractures to each other as a communicator will eventually
maintain the same level (Sasaki et al., 2006), however, this
communicator principle is not applicable when the effect of
capillary pressure is considered. It is assumed that there are
two capillary pressures with different pore sizes, one of which
rises to a higher level. In this case, the liquid slice method is
used to carry out the force analysis, and it can be obtained as

pc1 +ρwgh2 = ρwgh1 + pc2 (17)

where h1 and h2 are the two liquid level heights related to the
water, while pc1 and pc2 represent the corresponding capillary
pressures. This can be rewritten as follows

pc1− pc2 = ρwg(h1−h2) (18)

Based on the above formula, the capillary with higher
capillary pressure has higher liquid level. That is, the com-
municator principle is not applicable and therefore cannot be
applied for parallel fracture systems.

Based on the communicator principle of a capillary, we
continue to derive the final liquid level height. By conduct-
ing the force analysis with the method of liquid slices, the
following equations can be obtained:

pc1 = ρwgh1 (19)

pc2 = ρwgh2 (20)

Capillary pressure causes the water level to rise. Accord-
ingly, the water level in the aquifer falls slightly, and can be
obtained as

Saq∆h = bt1∆h1 +bt2∆h2 (21)

where Saq represents the area of the aquifer exposed to the
air (the fracture area excepted), ∆h represents the decrease of
the water level of the aquifer exposed to the atmosphere, ∆h1
represents the actual rise of water level in capillary 1, and ∆h2
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represents the actual rise of water level in capillary 2. These
can be obtained as

h1 = ∆h+∆h1 (22)

h2 = ∆h+∆h2 (23)

Eqs. (21), (22) and (23) can be combined and solved as
follows

∆h =
bt1h1 +bt2h2

Saq +bt1 +bt2
(24)

∆h1 = h1−
bt1h1 +bt2h2

Saq +bt1 +bt2
(25)

∆h2 = h2−
bt1h1 +bt2h2

Saq +bt1 +bt2
(26)

It can be seen that Saq + bt1 + bt2 is the area of water
connected to air.

Based on Eq. (11), it is obvious that if the aperture, width,
the wetting angle and surface tension of each capillary are the
same, equal water level rises can be obtained, such as

h1 = h2 (27)

Therefore, ∆h, ∆h1, and ∆h2 will be also equal.
The above deduction can be extended to the case of n

fractures. Under the condition of equal aperture, the actual
water level rise of the fractures will be

∆h′ = h− nbth
Saq +nbt

(28)

where ∆h′ represents the actual water level rise of each
fracture, and h is the nominal water level rise of each fracture.
The water level of the aquifer exposed to the atmosphere is
reduced by nbth/(Saq +nbt).

According to Eqs. (1), (6), (11) and (28), the final water
level of each fracture in the parallel fracture system can be
expressed as

z = z0 +
V

nbt
+

2σ cosθ(b+ t)Saq

(ρw−ρn)gbt(Saq +nbt)
(29)

It can be seen that Eqs. (29) and (16) are the same except
for the areas of the aquifer and the farctures exposed to the
atmosphere. Thus, interconnected fractures can be considered
as a whole. When the water level variation of vertical fractures
with equal aperture is calculated, the interconnected fractures
are calculated as a whole, and the isolated fractures are
calculated separately.

2.3 Parallel unequal aperture vertical fractures
2.3.1 Bottom separation condition

The water level change of parallel vertical fractures with
equal aperture has been studied above. However, in the real-
istic situations, the apertures of fractures are rarely the same.
Therefore, the research scope is extended to discuss the change
of aperture t. It is assumed that aperture t always changes with

Fig. 7. Parallel and vertical separated fractures with unequal aperture.

the fracture, and the aperture of the ith fracture is expressed
as ti. Due to the assumption that fractures are separated, they
do not affect each other. Fig. 7 shows the parallel and vertical
separated fractures with unequal apertures.

If the precipitation entering the fracture system is V , then
the water level growth ∆z caused by precipitation will be

∆z =
V

b∑ ti
(30)

where the value range of i is 1 to n, and n represents the
number of fractures in the fracture system. In the first i
fracture, the water level increment hi due to capillary pressure
is

hi =
2σ cosθ(b+ ti)
(ρw−ρn)gbti

(31)

Considering the decrease of aquifer water level, it can be
deduced that

∆hi = hi−
btihi

Saqi +bti
(32)

where ∆hi represents the actual water level rise of the ith

fracture, and Saqi is the area of the aquifer of the ith fracture
exposed to the atmosphere.

According to Eqs. (6), (30), (31) and (32) for the whole
fracture system, the final water level of each fracture should
be

zi = z0 +
V

b∑ ti
+

2σ cosθ(b+ ti)Saqi

(ρw−ρn)gbti(Saqi +bti)
(33)

The above formula shows that the final water level of a
specific fracture changes with its own aperture, whose value
is t. That is, z is a function of t. The decisive factor of the
final water level is discussed in 2.2.1, and will not be repeated
here.

2.3.2 Bottom interconnection condition

Fig. 8 shows the parallel and vertical interconnected frac-
tures with unequal aperture.

Since the fracture system is connected, the equation appli-
cable to the ith connected fracture can be extended similarly
to Eqs. (24) and (28):

∆h =
b∑(tihi)

Saq +b∑ ti
(34)
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Fig. 8. Parallel and vertical interconnected fractures with unequal aperture.

∆hi = hi−
b∑(tihi)

Saq +b∑ ti
(35)

where ∆hi represents the actual water level rise of each
fracture, and hi is the nominal water level rise of each fracture.

Referring to the hi of a single fracture under the separation
condition, the nominal water level rise under the interconnec-
tion condition agrees with that according to Eq. (31).

The water level of the aquifer exposed to air is reduced
by b∑ tihi/(Saq +b∑ ti). According to Eqs. (6), (30), (31) and
(35), the final water level zi of each fracture in the parallel
fracture system will be

zi = z0 +
V

b∑ ti
+

2σ cosθ(b+ ti)Saq

(ρw−ρn)gbti(Saq +b∑ ti)
(36)

It should be noted that the larger the area of the aquifer
exposed to the atmosphere, the higher the final water level
of each fracture. In addition, the decrease of fracture aperture
also causes the final level of each fracture to increase.

3. Modification and extension of the final water
level formula

3.1 Extension of inclination angle
The fracture distribution discussed above is for the vertical

situation, which rarely occurs in natural rock and soil masses.
Most of the fractures and joints have a certain inclination an-
gle. Therefore, this paper aims to study the effects of fracture
distribution on the water level under the inclination condition.
All conditions for the vertical fracture system are retained
except that the inclination angle is less than 90◦. The same
conditions for rainfall are also retained, including intensity
and distribution. Since the area of the horizontal section of the
fracture remains unchanged, it is still expressed as bt, and the
amount of water entering the fracture remains V . According to
a large number of past studies, the height increment caused by
capillary pressure is independent of inclination angle (Cui et
al., 2015). Fig. 9 shows the distribution of inclined fractures,
while Fig. 10 presents an alternative distribution of inclined
fractures. Therefore, the final water level satisfies Eq. (16).

Fig. 9. Schematic diagram of distribution of inclined fractures.

Fig. 10. Alternative distribution of inclined fractures.

The final water level under this condition is equal to that
under the vertical condition, and the inclination angle will not
affect the final water level of the fracture system. This principle
is also applicable to parallel non-uniform aperture fractures,
which can be derived by Eq. (33).

Under the interconnection condition, Eqs. (29) and (36) are
also applicable to the equal aperture and the unequal aperture
conditions.

3.2 Correction of incoming water
The influence of water inflow into the fracture system

on water level under a uniform and identical rainfall model
has already been discussed (Wang et al., 2021). However,
the factors affecting water inflow have not been investigated
fully. In China, rainfall intensity is defined as the volume of
precipitation per unit area per hour (mm/h) or as the depth
of precipitation within 12 or 24 hours. It is assumed that, at
a given intensity, the rainfall will be the same at different
locations, in other words, the water level increment will the
same. In the falling process, however, rainwater will touch
the inner surface of the fracture. Due to the effect of friction
and surface tension, rainwater will stay on the inner surface,
resulting in residual water. Therefore, the actual amount of
water to enter the fracture and raise the water level will be
smaller than the theoretical value discussed above.

Assuming that water droplets are spherical, when they
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approach the inner surface of the fracture and reach a critical
distance, water will be adsorbed to the inner surface and
eventually settle in the form of continuous film. The shape
of water film is toroidal cylinder, while the interface of water-
gas phase is cylindrical. Thus, the water film may not cover all
of the inner surface. If time is not long enough and the rainfall
is only light, water close to the inner fracture surface will be
insufficient to cover the whole surface. The size of toroidal
cylinder is not only related to rainfall intensity and rainfall
time, but also to the shape, mass and movement speed of
raindrops, the roughness of fracture inner surface, wettability,
and other factors. Specific situations will be analyzed in detail.
At present, it is difficult to give a definite unified numerical
relation expression for naturally occurring scenarios, thus the
effect of these factors can only be studied in an ideal model.
It is assumed that all raindrops are spherical with the same
size and mass, and that the mass of the raindrops is too small
to enable them to split. Raindrops are adsorbed to the inner
fracture surface when reach the critical distance d (the vertical
distance between the center of gravity and the inner surface),
which is generally less than the radius of the raindrop. Rain
falls in a uniform distribution. That is, the center of gravity
appears in each position with the same probability, and the
reference domain is the rectangular of width b and aperture
t. Fig. 11 illustrates the rainfall distribution range in a single
fracture, where droplets are not absorbed into the inner surface
of the fracture.

According to the geometric models of probability, it can
be derived that

P =
(b−2d)(t−2d)

bt
(37)

where P represents the probability that rainwater will enter the
fracture, but cannot be adsorbed to the inner surface, and d is
the critical distance. The rainfall intensity is defined as

Q =
H

∆T ′
=

V ′

S∆T ′
(38)

where Q represents the rainfall intensity, H represents the
rainfall accumulation height, ∆T ′ represents the time interval,
V ′ represents the volume of rainfall, and S represents the
calculated area.

For this case, rainfall intensity can be rewritten as

Q =
V ′

bt∆T ′
(39)

The above-mentioned rainfall model agrees with the uni-
form distribution, therefore the mathematical expectation is

E (Q) =
(b−2d)(t−2d)

bt
Q (40)

where E(Q) denotes the mean value of the amount of water
that is not adsorbed to the rectangular domain, and Q is the
rainfall intensity.

Fig. 11. Rainfall distribution range.

The above equation describes that, with the rainfall inten-
sity (b− 2d)(t − 2d)Q/bt. For parallel isopachous fractures,
this can be further obtained as follows

V ′′ = (b−2d)(t−2d)Q∆T (41)

where V ′′ indicates the effective inflow volume of a single
fracture, and ∆T represents the time interval between water
level changes.

By substituting Eq. (41) into Eq. (16), it can be derived
that

z =z0 +
PaqiSaqi +(b−2d)(t−2d)

Saqi +bt
Q∆T

+
2σ cosθ(b+ t)Saqi

(ρw−ρn)gbt(Saqi +bt)

(42)

where Paqi represents the probability that rainwater will enter
the ith aquifer. As for the parallel and unequal aperture
separated fractures, it is deduced that

V ′′′ = (b−2d)Q∆T (ti−2d) (43)

where V ′′′ represents the effective inflow volume of a single
fracture, and ∆T represents the time interval between water
level changes.

The substitution of Eq. (43) into V mentioned in Eq. (33)
leads to the following equation:

zi =z0 +
PaqiSaqi +(b−2d)(ti−2d)

Saqi +bti
Q∆T

+
2σ cosθ(b+ ti)Saqi

(ρw−ρn)gbti(Saqi +bti)

(44)
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Fig. 12. A cylindrical fracture with an arbitrarily shaped cross-section.

The final water levels in fractures with equal aperture or
unequal aperture under the interconnection conditions can be
obtained as follows

z =z0 +
PaqSaq +n(b−2d)(t−2d)

Saq +nbt
Q∆T

+
2σ cosθ(b+ t)Saq

(ρw−ρn)gbt(Saq +nbt)

(45)

zi =z0 +
PaqSaq +(b−2d)∑(ti−2d)

Saq +b∑ ti
Q∆T

+
2σ cosθ(b+ ti)Saq

(ρw−ρn)gbti(Saq +b∑ ti)

(46)

where Paq represents the probability that rainwater will enter
the aquifer.

From the above formula, it can be seen that the horizontal
section shape of the fracture has an effect on the effective
water inflow.

3.3 Extension to fracture space
In the aforementioned Eq. (11), which is derived from Eq.

(10), the unit of (b+ t) is the length unit, while the unit of
bt is the area unit, and they represent two physical quantities
of perimeter and area, respectively. The question is whether
the final formula will still be involved in these two physical
quantities if the shape of the section is changed. The fracture
space is extended from a quadrangular prism (cuboid) to any
column. The column can be a cylinder, a triangular prism, a
hexagonal prism, or even a cylinder with an arbitrarily shaped
section. Fig. 12 shows the shape of the cylindrical fracture,
which has an arbitrary cross-section.

From this point, this research is no longer limited to a
fracture with parallel surface. In such fracture spaces, the
water-air interface is assumed to be an arc surface, which
is subject to surface tension σ , with a wetting angle θ , and
that is isotropic. Regardless of the water-air cylinder interface,
the vertical component of surface tension on the water-gas

spherical interface is σ cosθ , and the arc integral is performed
around the horizontal section:

F =
∮

σ cosθds (47)

which, through calculation, can be expressed as

F = σC cosθ (48)

where F represents the capillary force, and C represents the
circumference of the horizontal section.

As the liquid level rises, the water phase invades the gas
phase, and the total gravity change in the fracture is expressed
as

∆G = (ρw−ρn)gSh (49)

According to Newton’s first law, the following equation
can be obtained:

σC cosθ = (ρw−ρn)gSh (50)

Transposing this equation yields the formula

h =
σ cosθC

(ρw−ρn)gS
(51)

When the surface tension, wetting angle, densities of the
two phases and the gravitational acceleration are the same,
the smaller the ratio of area perimeter, the less the water level
rises. In other words, as capillarity is less effective, according
to geometric knowledge, given the same circumference, the
area of a circle will be the largest. In this case, the water
level will rise the least. Therefore, the capillary effects can be
alleviated through a circular pore.

It can be seen that Eq. (11) is a special case of Eq. (51).
Next, the water inflow is corrected. The water inflow reduction
factor of a cylindrical fracture is assumed to be

U =
S′

S
(52)

where S′ indicates the total area of the center of gravity
distribution outside the critical distance of raindrops, and S
represents the total area of the horizontal section. Thus, the
final water level in the fracture space of a congruent cylinder
will be

z = z0 +UQ∆T +
σ cosθCSaq

(ρw−ρn)gS(Saq +S)
(53)

and the final water level in the fracture space of similar
cylinders will be

zi = z0 +UQ∆T +
σ cosθCiSaq

(ρw−ρn)gSi(Saq +S)
(54)

where Ci represents the circumference of the cross-section of
similar cylindrical fracture spaces, and Si is the area of the
cross-section. Under the conditions of congruent interconnec-
tion, similar separation, and similar interconnection, the final
water level is expressed as follows

z = z0 +UQ∆T +
σ cosθCSaq

(ρw−ρn)gS(Saq +nS)
(55)
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zi = z0 +UQ∆T +
σ cosθCiSaqi

(ρw−ρn)gSi(Saqi +∑Si)
(56)

zi = z0 +UQ4T +
σ cosθCiSaq

(ρw−ρn)gSi(Saq +∑Si)
(57)

3.4 Extension to exhaust conditions
The conditions discussed above are based on the premise

that fractures are large enough for water droplets to reach
their bottom. If fractures are too narrow, water converges in
a small cross-section, making the longitudinal length of the
liquid phase larger. Under the action of capillary pressure,
gravity, and internal and external air pressure, the flexural
rigidity of the liquid phase will then be greater than that of
the liquid phase with a larger cross-section. For this reason,
water will not easily reach the bottom. Let us suppose that
the fractures are narrow enough so that water droplets cannot
reach their bottom and displace the gas. They gather together
instead, standing in the way between the gas in the fracture and
the atmosphere outside. At last, they settle in an equilibrium
position. Fig. 13 shows the situation of one droplet balanced
in the fracture.

In this case, the capillary pressures at the top and bottom
of the liquid column are equal in value, but opposite in
direction. The liquid column is subjected to both gravity and
total air pressure differences. When the liquid column finally
reaches the equilibrium position, the following equation can
be obtained:

G1 + p0S = p1S (58)

where G1 represents the gravity of the liquid column, p0 is
the atmospheric pressure on the top of the liquid column, p1
represents the air pressure on the bottom of the liquid column,
and S is the cross-section area of the fracture. Based on Eq.
(46), it can be derived that

p1 =
G1

S
+ p0 (59)

Assume that the gas in the fracture is an ideal gas and
obeys the Ideal Gas Law (Abolpour and Shamsoddini, 2018)

pV = γRT (60)

where p is the pressure of the ideal gas, V denotes the volume,
represents the amount of substance, R is the universal gas
constant, γ and T denotes the thermodynamic temperature.
The situation is consistent with Boyle’s law (West, 1999), and
depends on the constant temperature:

pV =C (61)

where C represents the constant. This process is called isother-
mal change, and can be obtained as

p0V0 = p1V ′1 (62)

Fig. 13. Single liquid column condition without air exhaust.

where V0 is the initial volume of the air column, and V1 is the
volume of the air under the liquid column. The volume of air
under the liquid column is as follows

V ′1 = l1bt (63)

where l1 indicates the air height below the liquid column.
According to the previous hypothesis, the three edges of the
fracture space are l, b and t respectively. The initial air length
is l0, and it can be derived that

V0 = l0bt (64)

By substituting Eqs. (63), (64) and (59) into (62), the
following can be obtained:

p0l0bt =
(

G1

S
+ p0

)
l1bt (65)

which can be simplified into

l1 =
l0Sp0

G1 +Sp0
(66)

Due to the connection between the aquifer and the atmo-
sphere, when water droplets enter the fracture, the original
water level in the fracture will decrease. As determined
through analysis, the height difference between the bottom
position of the lowest confined space and the water level of the
aquifer in the final equilibrium position is V1/bt. The falling
height of gas in the confined space is not equal to the height
increase of the aquifer, and satisfies the following formula:

V1

bt
= ∆h

(
1+

S
Saq

)
(67)

where ∆h represents the falling height of gas in the confined
space, and Saq represents the area of the aquifer (excluding
the fracture). It can be obtained that

∆h =
V1Saq

(Saq +S)bt
=

V1Saq

(Saq +bt)bt
(68)

Assuming that the volume of the water droplets entering
the fracture is V1, the length of the air column above the liquid
column is l′2, which satisfies the following equation:
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l′2 =
l0G1

G1 +Sp0
− V1

S
+∆h (69)

Replacing S by bt, and substituting Eq. (68) into Eq. (69)
yields

l′2 =
l0G1

G1 +bt p0
− V1

bt +Saq
(70)

The top surface height z1 of the liquid column is

z1 = z0 +
l0bt p0

G1 +bt p0
+

V1

bt
−

V1Saq

(Saq +bt)bt
(71)

where z0 is the initial level of the fissure water after capillarity
occurs. The simplification can be obtained as follows

z1 = z0 +
l0bt p0

G1 +bt p0
+

V1

bt +Saq
(72)

It can be seen from the above formula that the water level
rise caused by a single droplet entering the fracture is related
to the gravity, volume and cross-section area of the fracture,
as well as the aquifer area. The expression V1/(bt +Saq) can
be regarded as the equivalent water level rise after a raindrop
enters the fracture.

Assuming that the second water droplet enters the fracture,
the air height can be calculated by using the same method:

l2 =
l′2Sp0

G2 +Sp0
(73)

where G2 represents the gravity of the second water droplet.
By substituting Eq. (70) into Eq. (73), the following equation
is obtained:

l2 =
l0Sp0G1

(G2 +Sp0)(G1 +bt p0)
− V1Sp0

(G2 +Sp0)(bt +Saq)
(74)

by substituting bt into S, it can be derived that

l2 =
l0bt p0G1

(G2 +bt p0)(G1 +bt p0)
− V1bt p0

(G2 +bt p0)(bt +Saq)
(75)

due to the entry of the second water droplet, the volume of
gas in the lowest of confined spaces gets compressed, and the
final air column length will be

l1,2 =
l0bt p0

G1 +G2 +bt p0
(76)

in the above formula, l1,2 represents the length of the first
confined space after the second water droplet has entered the
fracture.

Fig. 14. Multi-liquid column condition without air exhaust.

The length of the air column above the second liquid
column is

l′3 = l0− l1,2− l2−
V1

bt +Saq
− V2

bt +Saq

=
l0G2

G2 +bt p0
− l0bt p0

G1 +G2 +bt p0
− V1 +V 2

bt +Saq

+
l0(bt p0)

2

(G2 +bt p0)(G1 +bt p0)
+

V1bt p0

(G2 +bt p0)(bt +Saq)

(77)

The height z2 of the top surface of the second liquid column
is

z2 =z0 +
l0bt p0

G1 +G2 +bt p0
+

V1 +V2

bt +Saq

+
l0bt p0G1

(G2 +bt p0)(G1 +bt p0)
− V1bt p0

(G2 +bt p0)(bt +Saq)
(78)

Similarly, the third, fourth and nth water droplet may enter
the fracture. Fig. 14 shows the situation of multiple droplets
balanced in the fracture.

This scenario satisfies the following equations:

ln =
l′nbt p0

Gn +bt p0
(79)

l′n =l0− l1,n + l2,n + l3,n + . . .+ ln−2,n−1 + ln−1

− V1 +V2 + . . .+Vn−1

bt +Saq

(80)

li,n =
l′ibt p0

G1 +G2 +G3 + . . .Gn +bt p0
(81)

zn =z0 + l1,n + l2,n + l3,n + . . .+ ln−2,n−1 + ln−1

− V1 +V2 + . . .+Vn−1

bt +Saq

(82)

where ln represents the length of the nth air column after the
nth liquid droplet has entered the fracture; l′n represents the
length of the rest air column in the fracture space before the
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nth liquid droplet has entered the fracture; and li,n represents
the length of the ith air column after the nth liquid droplet has
entered the fracture. It is important to note that ln in nature is
the same as ln,n in nature. The variable zn is the water level
after the nth droplet has entered the fracture, and z0 denotes
the initial water level. When the water level zn exceeds the
highest position z0 + l0 of the fracture, water overflows and
the final water level stays at z0 + l0. Therefore, the applicable
condition of Eqs. (79), (80), (81) and (82) is zn 6 z0 + l0.

4. Conclusions
In this work, the parallel fractures of rock and soil mass

were discussed. The interconnected fractures were calculated
as a whole, while the isolated fractures were calculated sep-
arately. Results showed that the final water level in parallel
fractures is related to the initial water level, rainfall intensity,
rainfall distribution, the shape, mass and motion velocity of the
incoming raindrop, the geometric characteristics (shape and
size) of the horizontal section of the fracture, the wettability
of the fracture, and temperature. When the fracture space is
a cylinder, the larger the ratio of perimeter to the horizontal
section area, the higher the capillary pressure will be, result-
ing in a more obvious capillary phenomenon. Moreover, the
corresponding rainfall reduction coefficient is affected by the
shape of the horizontal section. Multiple water droplets may
enter the small fracture space. Under the condition of no air
exhaust, this scenario can be expressed by the iterative relation,
and the water level cannot exceed the highest position of the
fracture.

Nomenclature
z = water level
z0 = initial water level
V = volume of water
b = width
l = length
pc = capillary force
∆G = gravity increment
ρn = non-wetting phase density
h = water head
σ = surface tension
Saq = area of aquifer exposed to the air
∆hi = actual water level increment of the ith fracture
d = critical distance
Q = rainfall intensity
∆T ′ = rainfall time interval
E(Q) = mean value of the amount of water
Paq = probability that rainwater will enter the aquifer
Paqi = probability that rainwater will enter the ith aquifer.
∆T = time interval between water level changes
T = thermodynamic temperature
S = area of the horizontal section
Si = area of the cross-section of cylindrical fracture spaces
p0 = atmospheric pressure
R = universal gas constant
∆z = water level variation
∆h′ = actual height increment

n = number of fractures
t = aperture
R1,R2 = curvature radii
F = force
ρw = wetting phase density
g = gravitational acceleration
ti = aperture of the ith fracture
∆h = water head variation
Sagi = area of the ith aquifer exposed to the air
hi = water head of the ith fracture
θ = wetting angle
H = rainfall accumulation height
V ′ = volume of rainfall
V ′′ = effective inflow volume
V ′′′ = total effective inflow volume of the fracture system
U = water inflow reduction factor
S′ = total area of the center of gravity distribution outside

the critical distance of raindrops
Ci = circumference of the cross-section of cylindrical

fracture spaces
zi = water level of the ith fracture
γ = amount of substance
l0 = initial length of the air column
V0 = initial volume of the air column
li,n = length of the ith air column
Gn = gravity of the nth water droplet
l′n = length of the rest air column
ln = length of the nth air column
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