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Abstract:
In recent studies, dynamic capillary pressure has shown significant impacts on the flow
behaviors in porous media under transient flow condition. However, the effect of dynamic
capillary pressure effect on tight sandstone is still not very clear. Since lattice Boltzmann
method (LBM) is a very promising and widely used method in analyzing flow behaviors,
therefore, a two-phase D3Q27 LBM model is adopted in this paper to simulate the flow
behaviors and analyze the dynamic capillary pressure effect in tight sandstone. Moreover,
a new pore segmentation method for tight sandstone base on U-net deep learning model is
implemented in this study to improve the pore boundary qualities of pore space, which is
crucial for two-phase LBM simulation of tight sandstone. A total of 3800 3D sub-volume
data sets extracted from computed tomography data of 19 tight sandstone samples are
selected as ground truth data to train the network and segment the pore space afterward. The
simulation results based on the segmented digital rock model, show that nonwetting phase
fluid prefer the path with lower dynamic capillary pressure in the seepage process before
breaking through the porous model. Furthermore, the increase of injection rate causes the
saturation changes more quickly, injection rate also shows apparent positive correlation
relationship with capillary pressure, which implies that dynamic capillary pressure effect
also exists in tight sandstone, and LBM based two-phase flow simulation could be used
to quantitatively analyze such effect in tight sandstone.

1. Introduction
Capillary pressure plays a vital role in multiphase flow

of tight sandstone (Chen et al., 1991; Landry et al., 2014;
Tang et al., 2017), it is a generic term that includes dynamic
capillary pressure and static capillary pressure (Das et al.,
2005; Abidoye et al., 2014; Cai et al., 2014). Recent studies
indicate that dynamic capillary pressure is better than static
capillary pressure concept for describing transient two-phase
flow under dynamic conditions (Hassanizadeh et al., 2002;
Dahle et al., 2005; Niasar et al., 2010; Bottero et al., 2011;
Diamantopoulos et al., 2016; Li et al., 2018c). To study the
mechanism of dynamic capillary pressure, many simulation
methods are used to simulate the multiphase flow behaviors in
pore-scale, including smooth particle hydrodynamic methods
(Tartakovsky and Meakin, 2006; Kunz et al., 2016), fluid
volume method (Blunt et al., 2002; Raeini et al., 2014),
and lattice Boltzmann method (LBM). Comparing with other
numerical methods (Zhu and Li, 2020), LBM can adapt to
capillary pressure and viscous force while maintaining the
geometry of pore space (Cekmer et al., 2016; Tang et al.,

2018), and it is a widely used and promising method in
simulation transient flow behaviors (Wang et al., 2019; Zhang
et al., 2019). We implement a new pore segmentation method
to optimize the digital rock model of tight sandstone. Then,
based on the constructed digital rock model, we carry out two-
phase flow simulations based on LBM, to analyze the dyanmic
capillary pressure effect in tight sandstone.

Recent years, many researches have been carried out on
pore segmentation of tight sandstone. From the qualitative
evaluation of pores develops into the quantitative evaluation
of pore distribution at the micron-nanometer level (Loucks et
al., 2009; Andrew et al., 2014; Liu et al., 2018; Zhu et al.,
2018; Li et al., 2019; Qu et al., 2020; Shan et al., 2020;
Zhao et al., 2020), from 2D analysis relying on scanning
electron microscopy (SEM) develops into 3D feature analysis
using focused ion beam scanning electron microscopy (FIB-
SEM) (Curtis et al., 2012; Tartakovsky et al., 2015; Shaina et
al., 2016; Alexandra et al., 2020; Chen et al., 2020; Choi et
al., 2020; Goral et al., 2020). But most of these researches
are focus on imaging technology, the essence of the pore
segmentation method is still based on the gray-scale threshold
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Fig. 1. D3Q27 model schematic diagram.

without any significantly improvement (Kang et al., 2019;
Shou et al., 2020). While using the gray-scale threshold to
segment the pores from the rock, lots of uncontrollable reasons
can cause the inconsistent of gray-scale ranges (Chen et al.,
2017). It will cause serious consequences, such as appear a
large number of isolated pores which disconnect from each
other (Tavanaei and Salehi, 2015), or a few small pores con-
nected by the throat are mistakenly thought to be a large pore
(Liu and Ostadhassan, 2017). With lots of iterative training, U-
net model can record the 3D representation parameters of all
pores (LeCun et al., 2015). What’s more, it can also take into
account the topological structure of most pore areas (Wang
et al., 2020; Xu et al., 2020). Therefore, U-net can segment
the pores from the rock more accurately and improve the pore
boundary qualities.

In this paper, the pores of digital rock model will be
segmented by U-net model. The training data set and the
testing data set of U-net are manually modified based on the
gray-scale threshold pore segmentation results. Based on the
results of pore segmentation, LBM two-phase flow simulation
is carried out to study the dynamic capillary pressure mecha-
nism of tight sandstone.

2. Methods

2.1 LBM basic principle

3D LBM method is used to simulate the rock displacement
characteristics of 3D digital rock in this paper. There are
four common 3D lattice Boltzmann models: D3Q15, D3Q19,
D3Q24 and D3Q27, which discretize the continuous velocity
direction of fluid into 15, 19, 24 and 27 velocity components in
3D, respectively (Tang et al., 2018, 2019a, 2019b). In order to
improve the calculation accuracy, the D3Q27 model is adopted
in this simulation (Fig. 1).

LBM is a method to reconstruct the discrete model of
mathematical physics problems, the macroscopic properties of

physical systems are calculated by evolutionary equations. In
porous media, the pore space is discretized into a series of
regular grids (Wang et al., 2019; Zhang et al., 2019). The
evolution of fluid particle distribution function on the grid is
used to simulate the macroscopic movement law of fluids. The
particle distribution function satisfies the following Boltzmann
transport equation (Tang et al., 2018, 2019a, 2019b):

f α
k (x+ek∆t, t +∆t)− f α

k (x, t) =
∆t
[

f α
k (x, t)− f α,eq

k (x, t)
]

τα

(1)
where k is the discrete velocity number; f α,eq

k (x, t) is the
particle distribution function; ∆t is the time step length;
the “eq” on f α,eq

k (x, t) denotes the distribution function at
equilibrium; α is a fluid phase; τ is the relaxation factor based
on Boltzmann transport equation, the BGK equation can be
obtained as follows:

∂ f α
k

∂ t
+ek ·∇ f α

k =
f α,eq
k (x, t)− f α

k (x, t)
τα

(2)

The relationship between fluid viscosity µα , relaxation
factor τ , and sound velocity cs can be deduced from the BGK
equation:

µ
α = c2

s (τ
α − ∆t

2
) (3)

In order to complete the solution, the equilibrium distribu-
tion function f α,eq

k (x, t) is given as:

f α,eq
k (x, t) = wkρ

α

×

{
1+

ek ·uα(x, t)
c2

s
+

[ek ·uα(x, t)]2− c2
s |uα(x, t)|2

2c4
s

}
(4)

where | · | is the absolute value symbol, wk is a distribution
factor, ρα is the density of phase α , and uα(x, t) is the phase
velocity:

ρ
α = Σk f α

k (x, t) (5)

uα =
1

ρα
Σk f α

k ek (6)

Multiphase flow simulation is achieved by Shan-Chen
pseudo force model. According to the Shan-Chen model, the
pseudo force Fα

f f acting on phase α (Sukop and Thorne, 2006)
can be written as:

Fα
f f =−Ψα(x, t)ΣS

ᾱ=1Σ
b
k=0Gαᾱ wkΨᾱ(x+ek∆t, t)ek (7)

where Ψα(x, t) is constraint force function, S is phase code.
Shan-Chen model updates the velocity of each phase through
the equilibrium velocity u(x, t)

′
, which is defined as:

u(x, t)
′
=

ΣS
α=1Σb

k=1
f α
k ek
τα

ΣS
α=1Σb

k=1
f α
k

τα

(8)

After the completion of LBM simulation, we propose a
model for the calculation of dynamic capillary pressure based
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Fig. 2. Schematic diagram of U-net based on segmentation method.

on the law of conservation of energy (Tang et al., 2017, 2018,
2019a, 2019b; Li et al., 2018a, 2018b), which achieves good
results in conventional porous media, and its expression is
written as:

PDC =
dW ext

p −dWvis−dEkin

Qdt
, (Q 6= 0) (9)

where PDC is dynamic capillary pressure, W ext
p is the work of

external pressure, Wvis is the work of viscous force, Ekin is the
kinetic energy, and Q is the flow rate:

Q =
dV
dt

(10)

where V is the volume of injected fluid. The essence of Eq. (9)
is conservation of energy. The work done by external pressure
provides input energy (W ext

p ), which is consumed by viscous
resistance (Wvis) and dynamic capillary pressure (PDC), the rest
is converted into kinetic energy (Ekin). It is worth noting that
in the stationary state (Q = 0) this formula does not apply.

2.2 Pore segmentation based on U-net

U-net uses jump join to fuse multi-scale low-level fine-
grained information and high-level abstract semantic informa-
tion to achieve accurate segmentation. By encoding and de-
coding the image features and fusing the semantic features of
the high and low layers of the network, a better segmentation
effect can be achieved (Xu et al., 2018; Xiang et al., 2019;
Zhang et al., 2019). Comparing with other deep learning net-
works, U-net can complete model training and image segment
with a small sample size. In the process of U-net iterative
training, in order to maximize the use of GPU memory, we
tend to reduce the number of input batches and increase the
number of input images in each batch (Ronneberger et al.,
2015).

3. Data preparation
Fig. 2 shows the U-net structure used in this paper. In

Fig. 2, the blue blocks represent the convolutional layer
and the black blocks represent the transposed-convolutional
layer. The gray line represents replication, the red arrow
represents convolution, and the green arrow represents ac-
tivation (transposed-convolution). The inputs and outputs of
the network are all images. The size of the input layer C0
is 240×240×50. Layer C0 convolve to layer C1, C1’s size
is 120×120×100. After three times of convolution to the
convolution kernel, the activation function is used to activate
it. Layer A3’s size is 15×15×400, and layer A2’s size is
30×30×200. A total of three times of activation to the image
output layer A0. In the training process of the network, the
gray-scale change law of the region matching the pores is
stored in the form of convolution kernel, which can be used
for pore extraction of other images. What’s more, U-net can
analyze the spatial topology around the pores through a series
of the convolution rocks from small to large, which is very
important for the correct extraction of pores.

The training set and testing set of U-net model are very
important, they directly affect the training result of U-net.
Therefore, in the process of preparing the training set and
testing set, we use manually modify the gray-scale threshold
segmentation result, and the final processing result is shown
in Fig. 3. Before we start training, it is necessary to expand
the image data. A total of 3800 3D data sets extracted from
19 tight sandstone samples are selected as basic data to train
the network, and data enhancement is carried out before the
training process by random cut and rotation. In the testing
process, 185 images (150 training pieces, 35 testing pieces)
and 185 labels (150 training pieces, 35 testing pieces) are
randomly selected for each batch. After the training, the
segmentation results are presented in the form of 3D.

In order to analyze the 3D flow behaviors and improve the



Cao, Y., et al. Capillarity 2020, 3(2): 28-35 31

(d) (e) (f)

(a) (b) (c)

Fig. 3. Schematic diagram of training samples ((a) shows 2D scan-image of the rock, (b) shows 2D pore segmentation results by gray-scale threshold, (c)
shows 2D image manual calibration result, (d) shows 3D scan-image of the rock, (e) shows 3D pore segmentation results by gray-scale threshold, and (f)
shows 3D image manual calibration result).

Table 1. D3Q27 model system parameters.

Model cs Parameters Wk

(0, 0, 0) 8/27 (k: 0)

D3Q27 1√
3

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 2/27 (k: 1-6)

(±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1) 1/54 (k: 7-18)

(±1, ±1, ±1) 1/216 (k: 19-26)

calculation accuracy, we chose D3Q27 model with the highest
accuracy for simulation. The parameters of the model system
are shown in Table 1.

4. Results

4.1 Pore segmentation based on U-net

After iterative training of U-net, the final pore segmentation
results are shown in Fig. 4. The size of the generated model is
240×240×50, and the number of training epochs is 500. As
shown in Figs. 4(b2), 4(c2), and 4(d2), as the with training
epochs progress, U-net can identify pores more and more
accurately, isolated pores are gradually eliminated, and the
segmentation results are gradually improved.

In addition, as shown in Figs. 4(d2) and 4(e2), the segmen-
tation effect of U-net is obviously better than the traditional
gray-scale threshold segmentation, the boundary of pores are
also smoother. The traditional gray-scale threshold segmenta-
tion method can only set a specific threshold simply. Due to
the influence of many factors, the gray-scale scale range of the
rock is not consistent. There will be many isolated pores that
are not connected to each other in the segmentation result, as
shown in Fig. 5(e2), but these pores do not exist in reality. With

iterative training, U-net can take into account the pore gray-
scale threshold range and the pore 3D topology, which has
obvious advantages comparing with the traditional threshold
division method, as shown in Fig. 5(d2).

4.2 Dynamic capillary pressure simulation based on
LBM

Fig. 5 shows the simulation results of the nonwetting phase
flow process in a reconstructe porous model generated from U-
net based segmentation. The displacing process with a uniform
wettability of 140◦ and different injection rate of 0.3 mm/s
and 0.5 mm/s. When the nonwetting phase invades the porous
model that is initially occupied by the wetting phase, a convex
nonwetting phase front is formed as a result of the hydrophilic
characteristic of sandstone (Figs. 5(a1) and 5(b1)). When
more nonwetting phase fluid is injected into the sandstone,
the nonwetting phase fluid selects preferential paths with
lower capillary resistance (Fig. 5(a2) and 5(b2)). When further
nonwetting phase fluid is injected into the sandstone, the
nonwetting phase fluid finally breaks through the porous model
(Fig. 5(a3) and 5(b3)). Raeini et al. (2014) also presented a
similar nonwetting phase flow process in a more hydrophilic
sandstone based on the pseudo-potential LBM. Unfortunately,



32 Cao, Y., et al. Capillarity 2020, 3(2): 28-35

(a2)

(b2)

(d2)

(e2)

(c2)

(a1)

(b1)

(d1)

(e1)

(c1)

Fig. 4. U-net pore segmentation result diagram, the left column represents the 3D image, the right column represents the 2D image, where (a1) and (a2)
show scan-image of the rock, (b1) and (b2) show pore segmentation training result on epoch 10, (c1) and (c2) show pore segmentation training result on
epoch 100, (d1) and (d2) show pore segmentation final results, (e1) and (e2) show traditional gray-scale threshold pore segmentation result.
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Fig. 5. Snapshots of crude oil behavior during oil injection with a contact angle of 140◦ and different injection speeds. The left column represents the
simulation results of case A with an injection speed of 0.3 mm/s, while the right column represents the simulation results of case B with injection speed of
0.5 mm/s, where (a1), (a2) and (a3) show the snapshots of 40, 60, 80 ms, respectively, and (b1), (b2) and (b3) show the snapshots of 30, 45 and 55 ms,
respectively. The red color represents the displacing nonwetting phase; the light blue color represents the pore space filled with the wetting phase. The fluids
are set a partially transparent, while the solid matrix is set as completely transparent to highlight the distribution of fluids.
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Fig. 6. Evolution of the saturation versus time and the dynamic capillary pressure versus saturation curves. (a) Saturation versus time of case A and B with
different injection speeds. (b) dynamic capillary pressure-saturation curves for case A with injection speed of 0.3 mm/s and case B with injection speed of
0.5 mm/s.

dynamic capillary pressure and the breakthrough process are
not considered in their simulations.

Fig. 6(a) shows the results of saturation as a function
of time for cases A and B. Because the saturation of the
nonwetting phase (Snw) and the saturation of the wetting-phase
(Sw) is conjugated as:

Snw = 1−Sw (11)

We only discuss the result of the nonwetting phase satu-
ration in the following. It is worth noting that the evolution
curves of saturation fluctuate when the nonwetting phase starts
to entry the porous media, due to the boundary effects, then the
saturation will increase almost linearly before breakthrough
time. Fig. 6(a) shows that a higher injection rate leads to a
more rapid change of the saturation, and the nonwetting phase
saturation ultimately reaches an asymptotic limit.

Fig. 6(b) shows curves of dynamic capillary pressure
versus the wetting phase saturation of cases A and B. It
shows that the dynamic capillary pressure is larger for a larger
injection rate. Fig. 6(b) also shows non-monotonic trend for
all cases, such phenomenon is also called overshoot, which is
agree with the experimental results of Bottero et al. (2011),
while studying dynamic capillary pressure with a constant-
pressure boundary condition.

5. Conclusions
A U-net based pore segmentation method is established to

optimize 3D digital rock model. Then, different LBM two-
phase displacing simulations with different injection speeds
are used to analyze the dynamic capillary pressure effect in
tight sandstone. The results show that the U-net can optimize
the digital rock model by taking into account both the gray
threshold and topological structure of pore structure. Dynamic
capillary pressure effect is recovered based on digital rock

model and LBM method. The simulation results show that
the injection speed affect the absolute value of dynamic
capillary pressure. The higher the injection speed, the greater
the capillary pressure, and a non-monotonic trend of dynamic
capillary pressure are also recovered from the proposed U-net
based LBM method. It shows that the proposed method can
effectively analyze dynamic effects, and further study about
the U-net based minerals segmentation and dynamic capillary
pressure simulation will be carried out in the very near future.
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