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Abstract:
Phase field method has been widely utilized to study multiphase flow problems, but
has seldom been applied to the study of imbibition. Previous methods used to simulate
imbibition, such as moving mesh method, need to specify capillary pressure as a
boundary condition a priori, whereas phase field method can calculate capillary pressure
automatically for various geometries. Therefore, phase field method would be a versatile
tool for the study of imbibition in various geometries. In this paper, phase field method
is employed to solve dynamical imbibition problem in various geometries, including
straight tube, conical tube and structures in which the topology changes. The variation
of the imbibition height with respect to time from phase field simulation is verified with
theoretical predictions from Lucas-Washburn law in a straight capillary tube with three
gravitational scenarios. In addition, the capillary pressure and velocity field are found
to be consistent with Laplace-Young equation and Hagen-Poiseuille equation in various
geometries. The applicability and accuracy of the phase field method for the study of
imbibition in structures with changing topology are also discussed.

1. Introduction
Imbibition is a spontaneous flow behavior driven by cap-

illary pressure, which means no additional energy input is
needed to propel the flow. Imbibition is ubiquitous in nature,
for example, it is crucial for transportation of water from
soil to leaves in plants (Wheeler and Stroock, 2008). On the
other hand, people have utilized imbibition to assistant the
extraction of underground oil, and to predict liquid transport
in the printing and textile industries. Recently, researchers
have developed paper-based microfluidic devices, a cheap
and portable alternative to conventional microfluidic chip, in
which imbibition is the sole driving force of liquid flow and
therefore pumps are no longer required (Osborn et al., 2010;
Mehrabian et al., 2011; Cate et al., 2015). Therefore, given its
scientific and engineering significance, a better understanding
of imbibition is warranted.

The driving force of imbibition, i.e., capillary pressure,
is determined by interfacial properties (interfacial tension,
contact angle, and geometry of the media). The well-known
Lucas-Washburn equation indicates that the wetted length l
increases as a function of time t in the form l ∼ t1/2, which is

appropriate for one-dimensional imbibition (Washburn, 1921).
As the geometry expands from one dimension to two or
three dimensions (Xiao et al., 2012), different time exponents
have been discovered: 1/4, 1/3, 0.46, etc. At the same time,
imbibition is a dynamical process, and it is also influenced
by inertia and body force such as gravity (Fries and Dreyer,
2009; Masoodi et al., 2013).

The effects of geometry on imbibition invite investigations
from different aspects. When a channel is not uniform, there
exists an optimum combination of geometrical parameters that
provides the fastest imbibition (Shou et al., 2014a, 2014b).
Also, in the presence of two branches of channels, preferred
imbibition in one of the channels has been found (Mehrabian
et al., 2011; Sadjadi et al., 2015). Fractal theory has also
been used to characterize the interconnected networks of
porous media (Cai and Yu, 2011; Cai et al., 2012). For
complex geometries, analytical solutions are extremely scarce,
so numerical simulation is an important approach for the study
of imbibition.

One special aspect of simulations of imbibition is that the
wetted region evolves, and consequent computational domain
changes. Moving mesh method has been adopted to account
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for evolving domains (Xiao et al., 2018), but capillary pressure
has to be known a priori, which is not appropriate for complex
geometries. Interface tracking methods such as phase field
method, level set method and volume-of-fluid method provide
powerful tools for different geometries. Level set method
(Bashir et al., 2011; Akhlaghi Amiri and Hamouda, 2013) is
not as accurate as phase field method in terms of pressure
gradients and velocity profiles, and phase field method is
more successful in capturing the physical details especially
in complicated porous media. Moreover, level set method has
the problem of volume conservation. On the other hand, it
is difficult for volume-of-fluid method (Liu and Yu, 2016) to
describe complex geometry on the interface and define the
interfacial tension, while the evolution of a complicated free
surface can be naturally followed without any special consid-
eration for phase field method. Although phase field method is
generally used for multiphase problems (Jacqmin, 1999; Yue
et al., 2004; Qin and Bhadeshia, 2010; Akhlaghi Amiri and
Hamouda, 2013; Bai et al., 2017), it will be shown in this paper
that phase field method can be utilized to accurately solve
imbibition problems and can readily accommodate various
geometries. Through this research, it will be demonstrated that
phase field method is a powerful tool in the study of imbibition
in complex geometries.

2. Theory and model
The phase field method combines Navier-Stokes equation

with Cahn-Hilliard diffusion equation (Badalassi et al., 2003;
Qin and Bhadeshia, 2010; Zhou et al., 2010; Bai et al., 2017;
Rokhforouz and Akhlaghi Amiri, 2017):
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where p is the pressure, u is the fluid velocity field, t is time,
µ is the viscosity of liquid, γ is the mobility parameter, ψ is an
auxiliary variable (Qin and Bhadeshia, 2010) that decomposes
a fourth-order equation into two second-order equations, λ is
the mixing energy density, and ε is a control parameter for the
interface thickness that scales with thickness of the interface.
The parameters λ and ε are related to interfacial tension σ

through the equation:
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2
√

2
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where φ is the phase variable, which varies in [-1, 1]: φ = 1
in the pure liquid phase and -1 in the pure gas phase, while it
changes in (-1, 1) at the gas-liquid mixing zone.

The interfacial tension in phase field method is imple-
mented as a body force:
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)
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where G is the chemical potential, the value of which is
calculated according to the formula:
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where ∂ f/∂φ is a user-defined source of free energy. The
source of free energy is taken as 0 in this work. Fg is the
body force exerted on the fluids, such as gravity. Fext is an
external force due to the user-defined source of free energy,
and Fext = 0 in this work. The specific theory and details
of phase field method have been widely discussed (Jacqmin,
1999; Qin and Bhadeshia, 2010; Fakhari et al., 2018), and will
not be elaborated in this paper.

In the phase field model, the interfacial thickness ε and
mobility γ are two particularly important parameters. Too
small an interfacial thickness ε will lead to a great increase
in computing cost and cause difficulties in convergence with
the phase field method, and too large a value of ε will
increase the numerical error. The value of ε is half of the
maximum mesh size in this study. The mobility parameter
γ determines the time scale of the Cahn-Hilliard diffusion,
and it thereby governs the diffusion-related time scale for
the interface. Too small a mobility parameter may lead to
distortion of the meniscus. The specific value of the mobility
parameter usually needs to be determined in combination with
specific experiments or existing theories.

The study of effect of mobility parameters is illustrated
in Fig. S in Appendix material. Different mobility parameters
result in different rise height for one dimensional imbibition.
When the mobility parameter γ is 0.2 m·s/kg, the results from
simulation agree well with the theoretical results. However,
when the mobility parameter is less than 0.2, the imbibition
height from phase field method obviously lags behind the
theoretical curve; when the mobility parameter is 1, the
imbibition height from phase field method will be ahead of
the theoretical value. It can also be seen from Figs. S(b)-(d)
that when the mobility parameter is different, there will be
obvious difference in the curvature of the meniscus. When the
mobility parameter γ is 2×10−4 m·s/kg, the interface is flat,
and the curvature of the meniscus is infinite, which is contrary
to the setting of contact angle (θ = π/6). When the mobility
parameter γ is 1 or larger, the curvature of the meniscus
would be too small and the imbibition velocity would be too
fast. When the mobility parameter γ is 0.2 m·s/kg, the result
from phase field method is in line with theory from Washburn
(1921). Therefore, γ = 0.2 m·s/kg is selected, and it is applied
for other geometries in this paper.

In this work, commercial finite element software COMSOL
Multiphysics is employed to solve the phase field model. For
the boundary conditions in phase field model, the pressure at
the source is set as atmospheric pressure p0, as is the pressure
at the exit. The pressure at the wetting front doesn’t need
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Table 1. Parameters of simulation.

Parameters Values Description

ρ 1000 kg/m3 Density of silicone oil

µ 0.1 Pa·s Viscosity of silicone oil

σ 0.03 N/m Interfacial tension

θ π/6 Contact angle

r 0.1 mm Radius of straight capillary tube

γ 0.2 m·s/kg Mobility parameter

h 0.02 mm The maximum mesh size

ε h/2 Control parameter for the interface thickness

α 4◦ Opening angle of expended conical tube

r0 0.1 mm Initial radius of conical tube

Fig. 1. Two-dimensional axisymmetric model for the imbibition process.

to be set a priori, since it can be calculated automatically
using phase field model, which replicates the real imbibition
process.

Fluid properties have a great influence on imbibition
height. The parameters of the fluid and tube in the simulation
are taken as follows: Density ρ = 1× 103 kg/m3, viscosity
µ = 0.1 Pa·s, interfacial tension σ = 0.03 N/m , contact angle
θ = π/6, and radius r = 0.1 mm. The specific parameters in
simulations are listed in Table 1.

Fig. 1 shows the geometry of the simulated domain. The
two-dimensional axisymmetric model is used, with the blue
area filled with liquid and the gray area with air initially.
Usually, the value of γ is determined experimentally, in this
work, γ is 0.2 m·s/kg. Hydrodynamic mesh calibration and a
structured mapping mesh are used, and the maximum mesh
size h is taken as 0.02 mm. The specific settings of boundary
conditions are shown in Table 2.

3. Results and discussion
In order to verify the accuracy of the phase field method,

the imbibition results are analyzed under three imbibition con-

Table 2. Boundary conditions for simulations.

Boundary Condition

Inlet Pressure = atmospheric pressure

Outlet Pressure = atmospheric pressure

Wall Velocity: no slip

Axis of symmetry Axis of symmetry

ditions in a straight capillary tube: Gravity-free, gravity in-
duced acceleration, and gravity induced deceleration, and the
capillary pressure is examined in detail.

Fig. 2 shows the imbibition height with respect to time.
When neglecting gravity, the result of simulation is in good
agreement with the classic Lucas-Washburn law at large time
t. In the classic Lucas-Washburn law, the Laplace-Young
pressure is assumed to be a constant, which means the wetting
front assumes the shape of a meniscus after the initial stage.
However, there is a transitional period for the wetting front
during which it changes from a flat shape to a meniscus. Phase
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Fig. 2. Comparison of imbibition results in a straight tube without gravity,
with gravity acting as an accelerator, and with gravity acting as a decelerator.
The results in the three scenarios are shown in terms of dimensionless time
T = 2Pct/µ and imbibition height L = 2

√
2l/r.

field simulation is able to capture the transition and the con-
sequent increase in capillary pressure. Therefore, imbibition
from theoretic prediction is faster than that from simulation in
the initial period. After this transitional period, it can be seen
that the simulation results are consistent with the theoretical
predictions, which will also be demonstrated by a subsequent
pressure analysis.

There has been much theoretical research on imbibition
under the influence of gravity. It has been found that under
different effects of gravity, the relationship between imbibition
height and time exhibits different exponents. The phase field
method is also used to simulate the imbibition phenomenon
under different gravitational effects. Fig. 2 shows the dy-
namical change of imbibition height when gravity acts as a
decelerator or an accelerator. When the dynamical effect of the
meniscus is ignored in the early stage, it can be seen that the
results from phase field method are consistent with theoretical
predictions (Xiao et al., 2018).

3.1 Verification of pressure

The capillary pressure due to interfacial tension is the driv-
ing force of the imbibition phenomenon. Therefore, capillary
pressure has an important influence on imbibition, which can
be calculated using Laplace-Young equation:

Pc =
2σ cosθ

r
(8)

According to Eq. (8), the theoretical value of capillary
pressure is 519.6152 Pa when gravity is ignored. The capillary
pressure is three orders of magnitude smaller than atmospheric
pressure, and consequently the pressure changes are small. In
order to better observe the change of pressure, atmospheric
pressure is subtracted from the interfacial pressure, and the
resulting relationship between pressure and time is described
below.

Fig. 3 shows the dynamical changes in capillary pressure
with time from phase field model. In the very short time of the
initial period, the liquid surface transforms from a flat shape
to a meniscus, with a consequent change in its curvature. This

Fig. 3. Dynamical changes in capillary pressure with time in phase field
simulation. By calculating the minimum pressure at different radii, the
capillary pressure at the interface is captured.

change in shape of the interface is called the entrance effect
(Blake and Coninck, 2004; Hultmark et al., 2011). The en-
trance effect is neglected in classic Lucas-Washburn theory,
which leads to a discrepancy between the capillary pressure
calculated by phase field model and theoretical capillary
pressure in the initial stage. As can be seen from Fig. 3,
the capillary pressure from phase field model converges to
theoretical capillary pressure at long times. Therefore, the
phase field model is reliable in calculating capillary pressure
and is capable of capturing the precise changes in capillary
pressure in the transitional stage.

3.2 Verification of velocity

From Eq. (2), it can be seen that the divergence of velocity
is zero in the process of imbibition. Therefore, the following
equation holds:

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (9)

where u, v, and w are the velocity components in the x, y, and
z directions, respectively. In the axisymmetric model, since
there are no velocity components in the x and y directions,
Eq. (9) simplifies to:

∂w
∂ z

= 0 (10)

which means velocity must be uniform in the vertical direction.
The velocity of imbibition is affected by fluid properties
and tube geometry. According to Lucas-Washburn theory, the
relationship between the imbibition velocity in the vertical
direction and time can be obtained by taking the derivative
of the rise height, with the following result:

v =
1
2

(
rσ cosθ

2µ

) 1
2

t−
1
2 (11)

Fig. 4 shows the velocity changes during imbibition. It
can be seen from Fig. 4(a) that the velocity decreases with
time, and the velocity obtained from the simulation model is
consistent with the theoretical velocity at any time. Fig. 4(b)
shows the variation of velocity distribution with height in a
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Fig. 4. (a) Comparison of simulated and theoretical velocities at x = 0.707r. The circles represent the result derived from the phase field method, and the
curve shows Hagen-Poiseuille velocity distribution according to Eq. (11). The inset shows the velocity distribution on the meniscus at t = 7 s. (b) vertical
velocity distribution in a straight tube at t = 0.1, 0.5, 1, 5, and 7 s (curves from top to bottom). The solid line represents the average velocity, while the
dashed line represents the actual velocity distribution in the capillary tube.

straight tube at different times. There is a small step region
on the velocity curves, which is caused by the thickness of the
interface in the phase field model. The complex flow state in
the liquidair mixing region leads to the oscillations of velocity,
which will not be discussed further in this paper. Focusing on
the liquid phase in Fig. 4(b), it can be seen that the velocity
does not change in vertical direction, which is consistent with
Eq. (10). It further verifies the accuracy of the phase field
model.

The velocity distribution on the meniscus will affect the
accuracy of the imbibition flow, so it needs to be verified. The
inset of Fig. 4(a) shows the velocity distribution on the menis-
cus at t = 7 s. It can be seen that velocity distribution conforms
to the velocity distribution of fully developed laminar flow,
i.e., a parabolic profile, which illustrates the universality of the
phase field method from the aspect of velocity distribution.

Mass conservation is one of the conditions that should be
verified for phase field method. Since silicone oil is assumed to
have an infinite supply in this simulation model, it is difficult
to directly verify the dynamic mass conservation. Therefore,
conservation of mass can be indirectly proved by verifying
the conservation of flow. Because the capillary tube section
is uniform, the flow is conserved as long as the velocity is
uniform according to Eq. (10). It can be seen from Fig. 4(b)
that the velocity distribution is constant except for the velocity
fluctuations at the interface (the meniscus). Therefore, if the
average velocity at the fluctuation is consistent with the veloc-
ity distribution curve, the model satisfies mass conservation.
Fig. 4(b) shows the average velocity curve near the interface
and the overall velocity distribution at different times. As can
be seen from the figure, the average velocity is consistent with
the distribution of the overall velocity distribution at any given
moment, which indirectly indicates that the model satisfies the
conservation of mass.

3.3 Effects of geometry

In the above work, the phase field method has been used
to analyze the imbibition in a straight tube. By comparing
with Lucas-Washburn law and other classical theories, the
reliability of the phase field method has been verified through
the capillary pressure and the velocity distribution. However,
most imbibition occurs in more complex geometries, where
expansion and bifurcation are common. In this subsection,
capillary flow in conical tubes and bifurcated-coalescent tubes
will be studied using phase field method.

The dynamical changes of imbibition flow in conical tubes
have been studied from the perspective of both theory and
experiment (Reyssat et al., 2008; Berli and Urteaga, 2014). In
an expanded conical tube, the curvature of the wetting front is
constantly changing, which means capillary pressure changes
with meniscus position. When phase field method is used to
simulate imbibition in an expanded conical tube, the capillary
pressure need not be set a priori, and it can be calculated
automatically in the simulation. The boundary conditions are
same to that in straight tube illustrated in Fig. 1 and Table 2.
In this discussion, the effect of gravity will be ignored, the
opening angle of the expanded conical tube will be taken as
4◦, and the initial inner radius r0 as 0.1 mm, while the other
parameters are the same as those for the straight tube.

Fig. 5 shows the relation between the imbibition height and
time in an expanded conical tube. The full curve represents
the theoretical results of Reyssat et al. (2008) and the dashed
curve the variation of imbibition height with time obtained by
simulation using phase field method. It can be seen that the
simulation results are consistent with the theoretical deriva-
tion.

In a conical tube, as the meniscus moves forward, the inner
diameter increases, which leads to a change in the curvature
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Fig. 5. Dimensionless plot of imbibition height vs time for imbibition in an
expanding conical tube. Time and imbibition height are nondimensionalized
as T = 2σα2t cos(θ +α)/(µr0) and L = αl/r0, respectively.

of the wetting front. Therefore, the capillary pressure does
not remain constant. It is therefore crucial to verify the
relationship between the capillary pressure and the position
of the meniscus.

According to theoretical derivation, the capillary pressure
in a conical tube is given by:

pc =
2σ cos(θ +α)

R
(12)

where R is the inner diameter of the conical tube corresponding
to the imbibition height l, and is related to the latter by:

R = r0 + lα (13)

Combining Eqs. (12) and (13) gives the following rela-
tionship between capillary pressure pc and imbibition height
l:

pc =
2σ cos(θ +α)

r0 + lα
(14)

Fig. 6 shows the variation of capillary pressure with
meniscus position in a conical tube. As can be seen, when the
imbibition height l < 1 mm, there is a discrepancy between
the theoretical results and those from the simulation. This is
because in the phase field model, the wetting front is converted
from the initial flat surface to a meniscus, which means
capillary pressure takes a certain time to change from a very
small value to a normal capillary pressure. However, in the
theoretical analysis, the meniscus dynamics is not taken into
account, and it is assumed that the capillary pressure remains
constant as the imbibition height increases. Therefore, there is
a discrepancy between the theoretical and simulated pressures
when the imbibition height is small. At large imbibition times,
the theoretical and simulated capillary pressure converge on
each other, which indicates the universality of the phase field
method for imbibition in complex geometric structures.

Topological changes, such as bifurcation and coalescence,
are another very important aspect of geometry in the imbi-
bition media. For example, the imbibition in the leaves of
plants can be seen as involving a complex structure composed
of numerous bifurcated-coalescent tubes. Therefore, study of

Fig. 6. Variation of capillary pressure with imbibition height. The solid curve
represents the theoretical variation according to Eq. (14) and the dotted curve
the variation according to the phase field model.

Fig. 7. Schematic of complex topological structure and the rise height of the
meniscus at different times. (a) Model of bifurcated-coalescent tube. (b) The
meniscus breaks into two small menisci at the bifurcation. (c) Imbibition in the
wide tube eventually becomes faster than that in the narrow tube. (d) A single
meniscus is reconstructed at the terminus of the bifurcation. (e) Imbibition
continues in the coalescent tube after reconstruction of the meniscus.

imbibition in such structures is necessary for understanding
transportation of liquids in complex geometries.

Fig. 7(a) shows a bifurcated-coalescent structure. Boundary
conditions are similar to that in straight tube and expanded
tube. Accurate theoretical study of imbibition in this kind
of capillary tube is difficult because of the occurrence of
meniscus splitting and reconstruction. However, it is much
easier to study such complex geometric structures using the
phase field method, and the detailed movement of meniscus
can be observed, which can provide guidance for theoretical
derivations.

Figs. 7(b)-7(e) show simulation results of capillary phe-
nomena in a bifurcated-coalescent tube using phase field
method. The tube has a small common area before bifurcation,
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Fig. 8. Imbibition height vs time in a bifurcated-coalescent tube: The blue curve is the imbibition height in the narrow tube and the red curve that in the
wide tube. The inset shows that imbibition is faster in the narrow tube for a very short initial period. The vertical dashed lines correspond to different states
in Figs. 7(b)-7(e).

which is called the root tube. When the wetting front reaches
the peak of the root tube, the meniscus splits into two small
menisci, which enter the wide and narrow tubes, respectively.
For a very small period of time after entering the bifurcation,
the wetting front rises faster in the narrow tube. But after a
long period of time, it rises faster in the wide tube than in
the narrow one, as shown in Fig. 7(c). This is consistent with
theories from literature (Sadjadi et al., 2015) which describes
the imbibition in a bifurcated capillary tube in experiments.
When the meniscus in the narrow capillary reaches the ter-
minus of the bifurcation, reconstruction of a single meniscus
commences (Fig. 7(d)). In this regime, the menisci are pinned,
and the meniscus in the narrow tube merges with that in
the wide tube to re-form a single large meniscus. When the
reconstruction of the meniscus is complete (Fig. 7(e)), it begins
to rise again.

As shown in Fig. 8, for a very short period of time after
the menisci enter the bifurcated structure, the meniscus in the
narrow tube rises faster, because the capillary pressure in the
narrow tube is greater, resulting in faster capillary rise, and
capillary pressure initially plays the dominant role. However,
after about 0.0017 s, the capillary rises faster in the wide tube.
This is because viscous dissipation has a more significant
effect with increasing rise height and decreasing rise speed,
and it also has a larger effect in that narrow tube than in the
wide one. Thus, the wide tube has faster imbibition at later
times (Tsunazawa et al., 2016).

4. Conclusion
In this paper, phase field method has been used to simulate

the imbibition in various geometries, including those with
topology change. The relationship of imbibition height to time,
the dynamical effect of capillary pressure, and the imbibition
velocity have been analyzed systematically, and the results

from phase field method have been shown to be consistent
with the theoretical predictions, which proves that phase field
method is an accurate and versatile tool for the study of
imbibition. Compared with moving mesh method, phase field
method can readily accommodate imbibition in geometries
with complex topology, and there is no need to set capillary
pressure as a boundary condition a priori. Previous studies of
imbibition didn’t examine capillary pressure and imbibition
velocity, which are the two major factors affecting imbibition,
whereas here the capillary pressure and imbibition velocity
from phase field simulation are verified with Laplace-Young
equation and Hagen-Poiseuille equation. The entrance effect,
which represents the transition of the wetting front from a
flat shape to a meniscus, is clearly revealed by the phase
field method, although it was neglected in previous studies of
imbibition. Through this research, the phase field method is
proved to be a powerful tool to study imbibition in geometries
with complex topology, and it is deemed to be an effective tool
to study the transport phenomena in paper based microfluidic
device.
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Appendix

Fig. S.  (a) Imbibition height curves corresponding to different mobility parameters; (b) the meniscus shape and position when t = 0.2 s and γ = 0.0002 m·s/kg; (c) 
the meniscus shape and position when t = 0.2 s and γ = 0.2 m·s/kg; (d) the meniscus shape and position when t = 0.2 s and γ = 1 m·s/kg.


