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Current minireview
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Abstract:
Wettability is a critical interface property for two-phase flow and reactive transport process
in porous media. Wettability alteration is considered as the dominated mechanism for
enhanced oil recovery during low salinity waterflooding. The conventional characterization
of wettability by contact angle at a single substrate and Amott method at core are
limited. In this minireview, we introduce recent improvements in characterization of the
electrochemical properties of an interfacial layer formed at the mineral-water interface,
and review the application of surface potential (i.e., zeta potential) as an invasive and
reliable technique to characterise the wetting behaviour of sample core across different
geochemistry conditions. In order to resolve the puzzle of the wettability alteration in an
oil-brine-rock system, experimental studies combined with numerical simulations across
multiscale and variable geochemistry conditions are required for the future investigation.

1. Introduction
The interfacial properties of porous media imposed signifi-

cant influence on unsaturated flow, dynamics of reactive trans-
port, and processes of adsorption and desorption (Heberling
et al., 2014; Lutzenkirchen et al., 2018). The most important
interfacial behaviour in the hydrogeology and petrophysics
community is the wetting behaviour of the soil and rock
surface (Khishvand et al., 2017). The wetting behaviour of
porous media is critical to petroleum engineering, hydrogeo-
logical processes, and water purification technology (Sheng,
2014; Arif et al., 2017; Ding and Rahman, 2017; Khishvand
et al., 2017). The wetting behaviour determines the hysteresis
of capillary pressure and relative permeability in unsaturated
flow. As for the pore throat with reactive mineral surfaces,
the interface properties play an important role in the kinetic
and adsorption process, wettability alteration (Kallel et al.,
2017; Khishvand et al., 2017; Wu et al., 2017) as well as
specific ions transport process (Werkhoven et al., 2018). A
full understanding of the effect of surface charge on transport
of ion through charged porous media is still missing (Tian and
Wang, 2017).

In this paper, we review the surface characterization tech-
niques including wettability and zeta potential measurements,
then introduce the recent improvement in the correlation

between the wettability and zeta potential, finally discuss the
future investigation required to improve our understanding of
the mechanism of wettability alteration correlated with its
electrical properties.

2. Characterization of wettability alteration and
zeta potential measurements

The wetting behaviour is affected by both the rock sur-
face and fluid properties. Across different types of mineral
surface, clay minerals and carbonates are more hydrophobic
than silica sand. For a given type of mineral surface, the
mineral surface structure and adsorptive organic materials at
the mineral also affects its overall wetting behaviour. Apart
from the solid phase, the groundwater chemistry also plays
a role in the surface adsorption and its wetting behaviour.
Due to the complexity of the wetting behaviour, the accurate
experimental measurement is quite difficult to characterize the
wetting behaviour (Ding and Rahman, 2017). The contact
angle measured at a single substrate could represent the
wetting behaviour properly (Mugele et al., 2016; Alhammadi
et al., 2017). The Amott method used in reservoir wettability
has a large uncertainty (Sheng, 2014; Jackson et al., 2016b).

The zeta potential can sensitively probe the electrochemical
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Fig. 1. The correlation between zeta potential change and the Amott water index (a) (Jackson et al., 2016a) and its correlation with oil recovery (b) (Collini
et al., 2020).

change at the nanoscale level. The streaming potential method
has been widely employed from a single pore to intact core
sample (Vinogradov et al., 2010; Walker and Glover, 2018).
The macroscopic properties of streaming potential can be
inferred to the zeta potential at the mineral-water interface
accurately, and it is quite sensitive to the change of interface
phenomena. As the electrical double layer formed at solid-
water interface, the zeta potential is controlled by both rock
physics properties and water chemistry (Walker and Glover,
2018) under given pressure and temperature (Al Mahrouqi et
al., 2016). Thus, the zeta potential is a promising property
which can characterise the mineral-water interaction in porous
media.

3. The correlation between zeta potential and
wettability alteration

Jackson et al. (2016a) proposed an alternative method to
characterise the wetting behaviour by employing an electrical
property, zeta potential. As the mineral surface in contact with
electrolyte, the electrical double layer is formed at the mineral-
water interface due to the deprotonation of surface functional
group (Hunter, 1981; Eriksson et al., 2007). In their experi-
mental study, they found a good correlation between the zeta
potential change and wettability alteration during controlled
salinity waterflooding, as shown in Fig. 1(a). The correlation
of zeta potential change and enhanced oil recovery also has
been quantitatively established. They found the electrostatic
force plays a critical role in the wettability alteration and
suggested that the injected brine to produce more oil only
works when water chemistry induces the zeta potential to
produce a repulsive electrostatic force at the mineral-water
interface. The following experimental study (Collini et al.,
2020) across different carbonates samples and crude oils also
confirmed this correlation between the zeta potential and oil
recovery (see Fig. 1(b)). Notice that these experimental results
only occurred in the carbonates, but not for other types of
mineral surface of clay and silica sand (Sheng, 2014; Jackson

et al., 2016b). In addition, measurements of zeta potential
at the mineral surface via streaming potential method has
been proved successfully to characterize the electrochemical
property of intact core sample (Vinogradov et al., 2010).

4. Discussion of the mechanism of wettability
alteration with zeta potential

A theoretical description of the role of electrostatic force
has also proposed to explain the rock surface interaction at
the equilibrium state, such as Derjaguin, Landau, Vervey, and
Overbeek (DLVO) theory (Jackson and Vinogradov, 2012;
Jackson et al., 2016). The electrostatic force is an important
contribution to the overall interaction compared to other sur-
face forces including structure force, van der Waals force. The
local force measurement has also been conducted by using
atomic force microscopy and surface force apparatus (Gebbie
et al., 2013; Brown et al., 2016; Dhopatkar et al., 2016; Xing
et al., 2018). The local force and energy can be calculated
analytically at the mineral surface from the thermodynamic
prospective (Alshakhs and Kovscek, 2016; Eftekhari et al.,
2017). But its application to explain and interpret the results
for the representative volume element (RVE) and core scale is
still limited.

During the wetting behaviour modification, the role of zeta
potential at high salinity is difficult to explain (Vinogradov et
al., 2010) as well as the thickness of the electrical double
layer (Huang, 2018). Regarding the structure of the electrical
double layer, a dynamic Stern layer model has been proposed
to explain the anomalous behaviour of zeta potential trend
(Werkhoven et al., 2018). Recently, Li et al. (2018) found
an anomalous trend for the zeta potential measurements. The
role of electrical double layer has gained more attention for
wettability investigation based on the successful low salinity
waterflooding in clayey sandstone (Jackson et al., 2016b).

The dynamic process of low waterflooding may influence
the change of wetting behaviour with time, the zeta potential
before and after is not enough to capture the transient be-
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Fig. 2. The schematic picture of wettability of oil-water-mineral system can be altered from oil-wet (a) to water-wet (b), corresponding to the directly
experimental visualization of the faceted quartz wetted by water and oil and three-phase contact point (c) (modified from Schmatz et al., 2015).

haivour. Theoretical and numerical simulation of the dynamic
transport of flow and transport are needed. During the water
flow, the role of electrical double layer is important for
the interaction of solid-fluid interface. Karadimitriou et al.
(2019) presented a micromodel experimental study to show
that the flow rate and ionic strength also play an important
role in the wettability alteration by validating the two-phase
model with the experimental two-phase flow on the salinized
polydimethylsiloxane (PDMS) micromodel. As shown in Fig.
2, the evolution of wettability during core flooding can be
visualized experimentally (Schmatz et al., 2015). In a silica
nanotube experiment, Lis et al. (2014) proved that flow rate
could impact the surface charge density and eventually the
streaming potential. The direct experimental evidence between
flow dynamic and wettability alteration via surface charge
change has not yet been reported. The coupling between solute
transport in porous media and surface charge change has been
simulated in a recent finite element study (Werkhoven et al.,
2018).

5. Conclusions
In summary, the electrical properties and wetting behaviour

are critical to the understanding of the mechanism of en-
hanced oil recovery. In addition to the electrostatic force
at the mineral surface, the fluid flow and transport process
could influence the overall oil recovery technology adapted
in the petroleum engineering. The correlation between surface

electrostatic force with wetting behaviour has been found in
carbonates samples at static condition. The role of fluid flow
and solute transport coupled with surface charge variation as
well as the wettability alteration during low salinity flooding
needs further experimental investigations.
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