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Abstract:
CO2 injections into deep saline aquifers create a multiphase flow system within the porous
media. In this context, relative permeability and capillary pressure, as saturation functions,
are key parameters that control flow dynamics, simulation accuracy, and operational
decisions. Since various models have been proposed for the saturation functions, this
study aims to assess the existing models and investigate which model performs best
under different circumstances. To this end, we first gathered a comprehensive data set
to evaluate the existing models. Following that, the nonlinear fitting of experimental data
was used to obtain the parameters of each model. Finally, the root-mean-square error and
correlation coefficients were used to assess the accuracy of the fit. Based on the results of
capillary pressure analysis, the models can be classified into two main categories. The first
category includes models with power-law behavior suitable for homogeneous formations
(single curvature), such as Brooks-Corey, Li-Horne, Lambda, Thomeer, Leverett J-function,
and modified J-function models. The second category includes Van Genuchten, Kosugi,
Skelt-Harison, Johnson, and Jing-Van Wunnik, which can be applied to homogeneous
and heterogeneous formations (capture more than one curvature). Regarding relative
permeability, the L.E.T., Chierici, Van Genuchten, and Corey models exhibit comparable
performance across all scenarios. Corey offers simplicity with minimal parameters, while
Van Genuchten provides more adaptability for complex data sets with more physically
based parameters.

1. Introduction
The idea of Carbon Capture and Storage has been advo-

cated as one potential approach for reducing CO2 emissions
and addressing global warming (Falkowski et al., 2000; Jia
et al., 2018). CO2 sequestration is commonly used to target
different geological formations such as deep saline aquifers,
depleted hydrocarbon reservoirs, and coal seams (Pini et

al., 2012; Wang et al., 2013; Raza et al., 2019; Hashemi
et al., 2020; Bakhshian et al., 2020; Faramarzi-Palangar et
al., 2021a). The potential of deep saline aquifers to store
substantial amounts of CO2 makes them the most important
CO2 sinks among all the geological formations (Choi et
al., 2013; Dai et al., 2018). The injection of CO2 into deep
saline aquifers constitutes a drainage process wherein the
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nonwetting phase (CO2) displaces the wetting phase (brine),
resulting in a two-phase flow system (CO2-brine). Multiphase
flow involving two or more immiscible phases within a porous
medium is complicated to understand; therefore, features such
as relative permeability, displacement process, and saturation
distribution are essential to explore using numerical models
and core scale experiments (Bennion and Bachu, 2008b; Silin
et al., 2011; Berg et al., 2013; Pini et al., 2013; Alizadeh
and Piri, 2014; Bakhshian and Hosseini, 2019; Bakhshian et
al., 2020; Faramarzi-Palangar et al., 2021a, 2021b).

The most significant parameters for defining multiphase
flow behavior in porous media are relative permeability and
capillary pressure. To assess the reservoir performance and
make the optimal operational decisions, these parameters must
be precisely analyzed (Li, 2010; Zhang and Yang, 2013). Cap-
illary pressure and relative permeability curves are typically
expressed as functions of local fluid saturation, microscopic
porous media characteristics, and pore-scale flow dynamics
(Tsakiroglou et al., 2003; Zhang and Yang, 2013; Faramarzi-
Palangar et al., 2021b).

Four techniques are usually employed to determine a
capillary pressure curve: (I) Mercury injection, (II) restored-
state (the porous diaphragm), (III) centrifugal, and (IV) vapor
desorption. In comparison to other methods, mercury injec-
tion is frequent and less expensive (Brown, 1951; Greder
et al., 1997; Newsham et al., 2004). Obtaining relative per-
meability data is also challenging in some circumstances,
such as remarkably low-permeable rocks and atypical fluid
systems with significant phase transition and mass transfer
between two phases. This is why numerous mathematical
models have been presented to calculate relative permeability
from capillary pressure data (Li and Horne, 2001; Li, 2004,
2010). Purcell (1949) devised a method for determining rela-
tive permeability based on the pore size distribution acquired
from mercury injection capillary pressure curves. According
to Gates and Lietz (1950), this technique is used to measure
two-phase relative permeabilities. As a result, it is better to
study the capillary pressure and relative permeability simul-
taneously (Sun and Mohanty, 2003; Zhang and Yang, 2013).
There have been several models developed for capillary pres-
sure and relative permeability in the literature (Bennion and
Bachu, 2006, 2008a, 2008b; Pentland et al., 2011; Akbarabadi
and Piri, 2013). Among these, the Van Genuchten (1980) and
Brooks and Corey (1966) models are the most commonly
used, with their applicability primarily determined by the
heterogeneity of the porous media and physical parameters
such as pore size distribution. The Van Genuchten model
is generally applied to more heterogeneous media with a
broader range of pore sizes, whereas the Brooks-Corey model
is typically suited to media with more uniform pore size
distributions (Oostrom et al., 2016, Ren et al., 2016). The
Brooks-Corey model (Brooks and Corey, 1966) is also well-
known for determining relative permeability, and like Purcell’s
model, it uses capillary pressure for its calculations (Li and
Horne, 2006; Yu and Archer, 2019).

One of the most critical complications in CO2 storage is
the absence of relative permeability and capillary pressure data
for CO2-brine, and thus the majority of capillary pressure data

have been obtained by converting mercury injection capillary
pressure data (Imbus et al., 2006; Liu et al., 2010; Berg et
al., 2013; Zhang and Yang, 2013). The Mercury injection
capillary pressure (MICP) method, which uses small rock sam-
ples, is a frequent approach for testing the capillary pressure
(Pc)-water saturation (Sw) relationships. Pentland et al. (2011)
stated that there is considerable agreement across the mercury
air, oil-brine, and CO2-brine datasets; however, some other
researchers believe that MICP data do not accurately represent
reservoir flow conditions (Christoffersen and Whitson, 1995;
Pini et al., 2012) as the assumptions underlying the application
of the Young-Laplace equation for converting data from the
mercury-air system to the CO2-water system have not yet been
validated. The accuracy of converted data is not comparable
to that of direct CO2-brine data (Pini et al., 2012; Al-Menhali
et al., 2015; Iglauer et al., 2015). However, using the MICP
data was a problem that earlier studies had overlooked.

CO2-brine flow characterization requires a significant in-
vestment of time and money; therefore, data scarcity is a
significant problem. There have been a few studies on CO2-
brine systems. Oostrom et al. (2016) assessed six relative
permeability models for two radial injection scenarios, using
data from four well-characterized sandstone types: Berea,
Paaratte, Tuscaloosa, and Mt. Simon. Their analysis revealed
that the endpoint power-law model produced exceptionally
low, uniform gas saturation outside the dry-out zone in the
Tuscaloosa sandstone. This outcome was attributed to the
rapid decline in aqueous phase relative permeability. Ren et
al. (2016) also evaluated the accuracy of five capillary pressure
models by converting mercury-injection data from 13 sets of
experimental data from different shales in a gas-water system.
The Van Genuchten and Kosugi models outperformed the
others, while the modified J-function, Brooks and Corey, and
Li-Horne models underperformed.

As mentioned earlier, the lack of relative permeability
and capillary pressure data in the CO2-brine system due
to challenges in running experiments, time, and cost is a
significant issue. On the other hand, these kinds of data are
crucial in studies. Thus, we attempted to collect direct CO2-
brine published data, creating a data bank. The unique aspect
of the collected data set is that it includes a wide range
of formations (sandstone, shale, and carbonate), as well as
different pressure and temperature conditions, rock properties,
and measurement techniques such as steady state and unsteady
state methodologies. In addition, this study reviews the eleven
capillary pressure and six relative permeability models. Con-
sidering the data diversity and models, the main objective
of this research is to suggest the best capillary pressure and
relative permeability model for different circumstances. Thus,
we expect that the results of this study will be helpful for the
environmental and petroleum industries. Engineers will also
be able to use the best models in their specific cases under
study. Section 2 reviews the models for capillary pressure and
relative permeability, and then discusses the collected data and
its preprocessing. Section 3 indicates the results, and finally,
Section 4 summarizes this study.
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2. Method of investigation
There have been several empirical and theoretical models

developed to fit or predict capillary pressure and relative
permeability. One or more fitting parameters are included
in these models to characterize the relative permeability or
capillary pressure curve. On the collected data, we applied
some of the most commonly used models for predicting
capillary pressure and relative permeability to evaluate and
compare them. Sections 2.1 and 2.2 introduce the capillary
pressure and relative permeability models, followed by Section
2.3 which describes the experimental data. It was necessary
to make some corrections to the experimental data before
the curve fitting process. Therefore, Section 2.4 discusses the
corrections made in this study.

2.1 Capillary pressure models
The J-function is the first semi-empirical relation to endur-

ing time that was proposed by Leverett (1941). The J-function
shows how rocks with the same lithology but different physical
properties could be described by a single dimensionless func-
tion that normalizes capillary pressure curves by considering
absolute permeability and porosity in the form of hydraulic
radius (

√
k/φ ) (Gao et al., 2014):

J(Sw) =
cJPc

σ

√
k
φ

(1)

where Pc is capillary pressure (KPa), σ is surface tension
(mN/N), k, and φ are permeability (mD) and porosity (frac-
tion), respectively. cJ in this formula, is for unit conversion.
A fractal model to characterize the pore structure of lithology
was proposed based on the existing J-function and fractal
geometry theory (Goda and Behrenbruch, 2011). However,
capillary pressure theories suggest that the Leverett J-function
(LJF) should also be a function of irreducible water saturation,
tortuosity, and pore size distribution. As a result, the LJF
should only be used to scale capillary pressure in formations
in which the pore size distribution and irreducible water
saturation are equal (Sarwaruddin et al., 2001). To incorporate
wettability, a revised version of Eq. (1) was employed, which
includes contact angle:

J(Sw) =
cLJF Pc

σ cosθ

√
k
φ

(2)

J(Sw) = ALJF SBLJF
w (3)

where θ is contact angle, Sw is wetting phase saturation. ALJF ,
and BLJF in Eq. (3) are the constants of the model, and cLJF
is for unit conversion. As Xu et al. (2016) have shown, B in
Eq. (3) is equal to −1/λ where λ is defined as the pore size
distribution that characterizes the relative frequency of various
pore sizes within the medium. This index is typically deter-
mined by fitting the model to experimental data, with larger
λ values indicating a more uniform pore size distribution and
smaller values reflecting a wider range of pore sizes (Brooks
and Corey, 1966; Li, 2004). It is possible to predict capillary
pressure by combining both Eqs. (2) and (3). For clean
sandstone formations, the J-function method was first assumed

to be universal. However, various experiments have shown that
using the J-function to correlate heterogeneous formations is
ineffective. As a result, the approach works best when data
from core plugs with comparable pore size distributions are
normalized (Goda and Behrenbruch, 2011). It was a commonly
used model since the equation formulation is simple and has
equal weighting on both petrophysical and capillary pressure
(Lalanne and Rebelle, 2014). It is, however, limited to water-
wet reservoirs and only works well for homogenous formations
(Shi et al., 2018). In recent years, various modified versions of
the LJF model according to different purposes were developed.
In this study, in addition to the J-function model, the following
model was used as the modified J-function model (MJF)
(Gdanski et al., 2009):

Se =

(
σ

a2,MJF Pc

√
φ

k

)1/a1,MJF

(4)

where a1,MJF and a2,MJF are the fitting parameters of the
model, and Se is the normalized wetting phase saturation,
which could be expressed as follows:

Se =
Sw −Swr

1−Snwr −Swr
(5)

where Swr and Snwr are wetting and non-wetting residual
saturation, respectively. In the case of drainage, Snwr is equal
to 0. The key difference between Eqs. (3) and (4) is that Eq. (4)
relates to normalized wetting phase saturation (Se), accounting
for residual saturations as defined in Eq. (5), while Eq. (3)
uses only wetting phase saturation (Sw) meaning their fitting
parameters will not yield the same values.

Thomeer (1960) developed an empirical model to estimate
capillary pressure as a function of mercury saturation. The
pore geometry factor (Fg) is included in the model to comprise
the distribution of heterogeneity in the porous medium (Shi et
al., 2018):

Pc = Pe exp
(

−Fg

lnSHg − lnSHg∞

)
(6)

where Pe is the entry capillary pressure of the rock sample
(KPa), SHg is the mercury saturation and SHg∞

is the mer-
cury saturation at an infinite capillary pressure. The original
Thomeer equation, or model, was initially developed to char-
acterize mercury injection capillary pressure data. To describe
the capillary pressure behavior in a CO2-brine system or to
make it applicable to any two-phase flow system, the equation
has been adapted into a generalized form that utilizes Se, as
defined in Eq. (7), as shown below:

Se = 1− exp
(

Fg

logPe − logPc

)
(7)

The Thomeer capillary pressure model (T ) is approximated
by a hyperbola (Goda and Behrenbruch, 2011) and is widely
used in the petroleum industry, especially for describing the
behavior of drainage curves (Ma and Morrow, 1996).

Corey (1954) proposed a straight-line relationship to
characterize the gas-oil capillary pressure. Brooks and
Corey (1966) modified this into a well-known model similar to
the Thomeer model. The definition of normalized saturation
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and the use of different fluid pairs are the main differences
between the two models (Behrenbruch et al., 2016). The model
is comprised of two fitting parameters including λ and Pe:

Pc = PeSe
−1/λ (8)

The Brooks-Corey model (BC) is also frequently used
in petroleum and other applications (Li, 2004). Nevertheless,
recent studies have shown that this model cannot predict well
the capillary pressure curve in heterogeneous and fractured
porous media (Li, 2004, 2010; Safari et al., 2022), and the
model is limited to water-wet reservoirs (Shi et al., 2018).
The BC model is mainly applicable to the drainage process
(Li, 2010), whereas Li and Horne (2001) (LH) provided the
following equation for the imbibition process:

Pc = Pmax(1−Se)
−1/λ (9)

where Pmax is the capillary pressure at the residual non-wetting
phase saturation. Li (2004) attempted to theoretically develop
a more general model of a porous medium based on fractal
modeling. When the fractal dimension of a porous medium
reaches a limiting value, it can be converted into BC or
LH imbibition model (Li, 2010). This demonstrated that the
empirically developed BC and LHmodels have a theoretical
basis as well (Li, 2010). The more general version of the
capillary pressure model is expressed as follows:

Pc = Pmax(1−bLHSe)
−1/λd (10)

where bLH is a constant that defines as follows:

bLH = 1−
(

Pe

Pmax

)−λd

(11)

where λd = 3−D f and D f is the fractal dimension, which
quantifies the complexity and heterogeneity of the pore struc-
ture in the rock sample. The fractal dimension D f is derived
from the relationship between the number of pores and the
radius of the pore throats, as described in Li and Horne (2003).
A higher D f value suggests increased heterogeneity in pore
size distribution and pore space tortuosity. For example, a D f
nearer to 3 indicates a more complicated and heterogeneous
pore structure, whereas a lower D f indicates a simpler, more
homogeneous network. When D f < 3 and Pmax tend to infinity,
the value of b tends to zero, and then, the equation is reduced
to the BC model (Eq. (8)). In the case in which bLH = 1,
Eq. (10) can be reduced to LH-imbibition. In this comparative
study, LH was selected to be considered as Li-Horne (LH)
model.

Mualem (1976) developed a model to predict the hydraulic
conductivity for unsaturated soil-water retention curves and
conductivity saturation. Later, based on Mualem’s formula,
Van Genuchten, 1980 proposed a rather simpler equation for
the hydraulic conductivity of unsaturated soils and it is one
of the most frequently used equations (Ren et al., 2016) to
predict the relationship between Pc −Sw:

Se = [1+(aV GPc)
nV G ]−mV G (12)

The Van Genuchten (VG) model included three indepen-
dent parameters that could be acquired by fitting experimental

data. “aV G” as in physical terms, is inversely proportional to
entry pressure (KPa−1) (Ioannidis and Chatzis, 1993; Hop-
mans et al., 1998). “nV G” denotes the width of pore-size
distribution and “mV G” was assumed to equal to 1− 1/nV G
(Van Genuchten, 1980; Hopmans et al., 1998). The capillary-
pressure curve is often either S-shaped (e.g., the VG model) or
convex (e.g., the BC model). The VG model employs a steep
slope connecting the endpoint (typically zero) to the plateau
region, whereas the BC model includes an entry pressure (Li
et al., 2013; Gershenzon et al., 2016).

Several authors have tried to expand the models mentioned
above or develop additional capillary pressure models (Ren et
al., 2016), such as Kosugi (1996) who derived the following
equation based on logarithmic pore size distribution:

Se =
1
2

erfc
(

lnPc − lnPm√
2wK

)
(13)

where Pm is capillary pressure (KPa) related to the median pore
radius and wK is the standard deviation of log-transformed
pore size in the Kosugi (K) model.

Jing and Van Wunnik (1998) developed a model that was
found to be applicable for various pore structures and rock-
fluid systems:

Pc = P0
c

[(
dJV

Sw −Swr

)nJV

+aJV

]
(14)

where P0
c is a fitting parameter describing the capillary

pressure scaling factor, and the other fitting parameters are
aJV , dJV , and nJV . Jing and Van Wunnik (JV) model was
developed to estimate drainage capillary pressure (Goda and
Behrenbruch, 2011).

There are several techniques for calculating saturation
height, employing capillary pressure data from numerous
core samples at varying depths to derive saturation variation
versus height above the free water level. Lambda (Wiltgen
et al., 2003) is a saturation height function used in the oil
and gas industry, and it is usually utilized in association with
petrophysical logs (Nasr, 2015). The lambda function (L)
considers that the key predictor for water saturation is the
area variance of effective porosity. The model has three fitting
parameters, aL, bL, and λ which are found by fitting capillary
pressure curves:

Sw = aLP−λ
c +bL (15)

According to Al-Bulushi et al. (2009), L model is more
flexible and complex than the other methods. The Lambda
function typically generates excellent saturation height models
and closely matches experimental data (Al Waili, 2009).

Another function of saturation height is proposed by John-
son (1987), which is a collective fit in which petrophysical fea-
tures take precedence over the Pc (Lalanne and Rebelle, 2014).
The Johnson (J) model describes water saturation as a function
of capillary pressure and permeability:

logSw = AJ logk+bJPcJ
c (16)

where AJ , bJ , and cJ are the fitting parameters of the model.
it should be mentioned that AJ is a constant slope that is
independent of Pc.
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Table 1. Summary of the capillary pressure models used in this study, along with their parameter definitions.

Model Formula Declaration Category

J-function (LJF)
(Leverett and Lewis, 1941)

J(Sw) = cLJF
Pc
σ

√
k
φ

;

J(Sw) = ALJF SBLJF
w

k, φ , σ : Physically based input parameters;
cLJF , ALJF , BLJF : Fitting parameters

First category
(power-law
behavior,
homogeneous
rocks)

Modified J function (MJF)
(Gdanski et al., 2009) Se =

(
σ

a2,MJF Pc

√
φ

k

)1/a1,MJF
a1,MJF , a2,MJF : Fitting parameters;
Se: Its wetting and non-wetting residual
saturations can be physically-based fitting
parameters

First
category

Thomeer (T)
(Thomeer, 1960) Se = 1− exp

(
Fg

logPe − logPc

)
Pe, Fg: Physically based fitting parameters First

category

Brooks and Corey (BC)
(Brooks and Corey, 1966) Pc = PeSe

−1/λ Pe, λ : Physically based fitting parameters First
category

Li and Horne (LH)
(Li and Horne, 2001) Pc = Pmax(1−Se)

−1/λ Pmax, λ : Physically based fitting parameters First
category

Lambda (L)
(Wiltgen et al., 2003) Sw = aLP−λ

c +bL
λ : Physically based fitting parameter;
bL, aL: Fitting parameters

First
category

Van Genuchten (VG)
(Van Genuchten, 1980) Se = [1+(aV GPc)

nV G ]−mV G aV G, nV G: Physically based fitting parameters;
mV G = 1−1/nV G (fitting parameter)

Second
category
(Flexible,
heterogeneous
rocks)

Kosugi (K)
(Kosugi, 1996) Se =

1
2

erfc
(

lnPc − lnPm√
2wK

)
Pm, wK : Physically based fitting parameters Second

category

Jing and Van Wunnik (JV)
(Jing and Van Wunnik, 1998) Pc = P0

c

[(
dJV

Sw −Swr

)nJV

+aJV

]
P0

c , dJV , nJV , aJV : Fitting parameters;
Swr: Physically based fitting parameter

Second
category

Johnson (J)
(Johnson, 1987) log(Sw) = AJ logk+bJPcJ

c
AJ , bJ , cJ : Fitting parameters;
k: Pphysically based input parameter

Second
category

Skelt and Harrison (SH)
(Skelt and Harrison, 1995) Sw = 1−ASH exp

[
−
(

BSH

h+DSH

)CSH
]

ASH , BSH , CSH , DSH : Fitting parameters;
h: Physically based input parameter

Second
category

Skelt and Harrison (1995) presented an empirical model
to elucidate the link between water saturation and elevation
above the free water level. The use of a logarithm in its
correlation to represent this relationship is the model’s strength
since it provides a fitted curve shape that is similar to a
capillary pressure curve (Behrenbruch et al., 2016). According
to Lalanne and Rebelle, 2014, there are numerous analogies
between the Skelt-Harris and Thomeer fit. A primary distinc-
tion between these two models is that the Skelt-Harrison (SH)
model is suitable for experiments with low capillary pressures
(centrifuges and porous plates), whereas T model has been
developed to fit MICP experiments with capillary pressures
above 10,000 psi. As a result, T model is a more general

solution to Pc fitting than the SH one. The model is described
by the following equation:

Sw = 1−ASH exp
[
−(

BSH

h+DSH
)CSH

]
(17)

where ASH , BSH , CSH , and DSH are fitting parameters and h
is the height above free water level (m) which can be written
in the term of pressure according to below:

h =
Pc

1000(ρwater −ρgas)g
(18)

where ρ is the fluid density (kg/m3).
Table 1 summarizes the capillary pressure models used in
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this study, along with their parameter definitions.

2.2 Relative permeability models
Several empirical formulations are available for character-

izing CO2-brine relative permeability curves. These models
are based on experimental observations, theoretical principles,
and heuristic approaches. Each model comprises a set of
parameters that are typically estimated by fitting experimen-
tal data (Honarpour et al., 1982; Moghadasi et al., 2015).
Purcell (1949) introduced a method for determining relative
permeability by deriving pore size distribution from mercury-
injection capillary pressure curves. This method allows for
the calculation of relative permeabilities in multiphase systems
(Gates and Lietz, 1950; Li and Horne, 2006). The following
equations can be used to determine relative permeability based
on the effective saturation for both wetting and non-wetting
phases:

krw = S1+2/λ
e

krnw = 1−S1+2/λ
e

(19)

The Corey model (Corey, 1954) is the most widely used
since it is simple, requires few data points, and is simple
to estimate due to the small number of parameters. This
model is based on capillary pressure concepts and is generally
considered to be accurate for consolidated porous media
(Honarpour et al., 1982; Moghadasi et al., 2015). Consolidated
media typically have well-defined pore structures and stable
grain arrangements, which align well with the hypotheses of
the Corey model. However, through appropriate tuning of its
parameters, the model can also be applied to unconsolidated
sands (Moghadasi et al., 2015). Unconsolidated sands, de-
scribed by loose grain packing and higher porosity, require
adjustments to λ and endpoint relative permeabilities to ac-
count for their unique flow behavior. Moreover, clay or other
fine particles in unconsolidated media can further influence
the relative permeability curves, as these materials can change
pore connectivity and fluid flow paths. By including these
factors in the parameter-tuning process, the Corey model can
effectively capture the relative permeability behavior in both
consolidated and unconsolidated porous media:

krw = knw
rw SNw

e

krnw = kw
rnw(1−Se)

Nnw
(20)

where krw and krnw are wetting and non-wetting phase relative
permeabilities. knw

rw and kw
rnw are the endpoints of relative

permeability curves for the wetting and non-wetting phases,
respectively. Nw and Nnw are fitting parameters that must be
estimated since they determine the curvature of the relative
permeability curves (Moghadasi et al., 2015).

Another model for representing the relationship between
relative permeability and effective saturation is the Brooks
Corey-Mualem (BCM) model (Brooks and Corey, 1966;
Mualem, 1976):

krw =
√

Se
[
1− (1−Sw)

ABCM
]2

krnw =
√

1−Se(1−SABCM
w )2

(21)

where ABCM = (1+λ )/λ .
The Van Genuchten-Mualem (VGM) model

(Mualem, 1976; Van Genuchten, 1980) describes the wetting
phase relative permeability as follows:

krw = SaV GM
e

[
1− (1−S1/mV GM

e )mV GM
]2

(22)

where mV GM and aV GM are fitting parameters. They also
presented the following equation for the relative permeability
of the non-wetting phase:

krnw = SbV GM
n,e

[
1− (1−Sn,e)

1/ma,V GM
]2ma,V GM

(23)

where bV GM and ma,V GM are fitting parameters and Sn,e is
considered as effective non-wetting phase saturation, which is
defined as follows:

Sn,e = 1−Se (24)
The following exponential relationship was proposed by

Chierici (1984) to determine the relative permeability of the
wetting and non-wetting phases:

krw = knw
rw exp

(
−BCS−MC

e
)

krnw = kw
rnw exp

(
−ACSLC

e
) (25)

where BC, AC, MC, and LC are the fitting parameters of the
model that are estimated via the curve fit process. These
parameters are not entirely unconstrained; they are subject to
physical interpretations and constraints based on the underly-
ing fluid flow behavior in porous media. In fact, parameters BC
and AC control the curvature of the relative permeability curves
near the endpoints (i.e., near residual saturations). They are
related to the pore size distribution and the connectivity of the
pore network, with higher values indicating more pronounced
curvature due to heterogeneous pore structures. MC and LC in-
fluence the slope and shape of the relative permeability curves
in the intermediate saturation range. They are associated with
tortuosity and flow resistance within the porous medium,
with larger values reflecting more complex flow paths. These
parameters are also constrained during the fitting process to
ensure that the resulting curves remain physically realistic. For
example, the relative permeability values must lie between
0 and 1, and the curves must exhibit monotonic behavior
(i.e., no oscillations or unrealistic inflections). Moreover, the
parameters are often initialized based on prior knowledge of
the rock and fluid properties, such as pore size distribution
and wettability, to guide the optimization process.

According to these formulations (Eq. (25), experimen-
tal relative permeability curves are reasonably well-matched
(Moghadasi et al., 2015). Compared to the Corey model and
other polynomial approximations, the Chierici model provides
better predictions at and near the initial and endpoints of the
curves (Feigl, 2011). This improved performance is attributed
to the model’s ability to capture the nonlinear behavior of
relative permeability in heterogeneous porous media. Due to
its flexibility in representing both concave and convex relative
permeability curves, the Chierici model is widely regarded as
one of the best models for complex systems (Moghadasi et
al., 2015). However, it is important to note that the model’s



Faramarzi, M., et al. Capillarity, 2025, 14(2): 35-52 41

Table 2. Summary of relative permeability models used in this study, along with their parameter definitions.

Model Formula Declaration

Purcell
(Purcell, 1949)

krw = S1+2/λ
e

Se: Its wetting and non-wetting residual saturations
can be physically based fitting parameters;
λ : Physically based fitting parameterkrnw = 1−S1+2/λ

e

(Corey, 1954)
krw = knw

rw SNw
e knw

rw and kw
rnw: Physically based input parameters;

Nw, Nnw: Partially physically based fitting parameterkrnw = kw
rnw(1−Se)

Nnw

Brooks Corey
Mualem (BCM)
(Mualem, 1976)

krw =
√

Se
[
1− (1−Sw)

ABCM
]2

ABCM = 1+1/λ : Partially physically based fitting
parameterkrnw =

√
1−Se(1−SABCM

w )2

Van Genuchten-
Mualem (VGM)
(Mualem, 1976)

krw = (Se)
aV GM

[
1− (1−S1/mV GM

e )mV GM

]2 aV GM , bV GM : Fitting parameters;
mV GM , ma,V GM : Physically based fitting parameter;
Sn,e: Its wetting and non-wetting residual saturations
can be physically based fitting parameters

krnw = (Sn,e)
bV GM

[
1− (1−Sn,e)

1/ma,V GM

]2ma,V GM

Chierici
(Chierici, 1984)

krw = knw
rw exp

(
−BCS−MC

e

)
BC, AC, MC, LC: Partially physically based fitting
parameterskrnw = kw

rnw exp
(
−ACSLC

e

)
L.E.T
(Lomeland et al., 2005)

krw = knw
rw

SLw
e

SLw
e +Ew(1−Se)Tw Lw, Lnw, Ew, Enw, Tw, Tnw: Fitting parameters

krnw = kw
rnw

(1−Se)
Lnw

(1−Se)Lnw +EnwSTnw
e

accuracy depends on the quality of the experimental data and
the careful application of physical constraints during the fitting
process.

Another model that expresses the relationship between
relative permeability and effective saturation is the L.E.T
model (Lomeland et al., 2005):

krw = knw
rw

SLw
e

SLw
e +Ew(1−Se)Tw

krnw = kw
rnw

(1−Se)
Lnw

(1−Se)Lnw +EnwSTnw
e

(26)

where Lw, Tw, Ew, Lnw, Enw, and Tnw are the fitting parameters.
T (Tw, Tnw) and L (Lw, Lnw) drive the lower and upper portions
of the relative permeability curve, respectively, while E repre-
sents the slope and elevation of the central part. Therefore, this
model accurately reflects the variable behavior across a wide
range of water saturation by including various segments of the
relative permeability curve (Lomeland et al., 2005; Lomeland
and Ebeltoft, 2013).

This section introduced some of the most widely used
models, summarized in Table 2 along with their parameter
definitions. Each model has a specific hypothesis but also has
some limitations. Therefore, it is essential to select the most
efficient model based on the properties and conditions.

2.3 Experimental data
Several methods exist for measuring capillary pressure, in-

cluding MICP, porous plate, centrifuge, and dynamic capillary
pressure techniques (Brown, 1951; Al-Bulushi et al., 2019).
The literature indicates that experimental data for the CO2-

brine system is limited due to the high costs and time required
(Bachu and Bennion, 2008; Bennion and Bachu, 2010). As a
result, converting MICP data for use in CO2-brine systems has
become a common practice. However, while the conversion
of MICP data using the Young-Laplace relation is widely
employed to estimate capillary pressure, its accuracy has yet to
be fully validated. Consequently, MICP results cannot reliably
represent reservoir conditions (Pini et al., 2012). Therefore,
this study focused on direct CO2-brine data for capillary pres-
sure and relative permeability experiments, excluding MICP
data at this stage.

There are two common laboratory procedures for measur-
ing relative permeability: Steady-state (SS) and unsteady-state
(USS) methods. Relative permeability measurements made
in laboratories using both SS and USS approaches are also
microprocesses since only one measurement cannot accurately
represent the entire reservoir (Ibrahim and , 2001). The steady-
state method stands out as the most reliable technique among
the developed methods for measuring relative permeability
(Shen, 1988; Maini et al., 1990; Nazari Moghaddam and
Jamiolahmady, 2019). However, they are intrinsically time-
consuming since reaching equilibrium at each saturation level
may take several hours or days. Their benefits encompass
enhanced reliability and the ability to evaluate relative per-
meability across a broader spectrum of saturation levels. The
Hassler approach, stationary phase, single-sample dynamic,
Penn State, and modified Penn State are a few of the steady-
state methods (Honarpour and Mahmood, 1988). Unsteady
state approaches are the quickest ways to measure relative
permeability in a laboratory setting. A typical implementation
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Table 3. The statistical review of fluid and rock properties
for samples used in capillary pressure experiments.

Property Sandstone Carbonate

φ

(%)

min 3.50 19.03

max 38.10 38.00

avg 23.20 26.85

k
(mD)

min 0.0007 13.600

max 202,650 39,517

avg 35,917 15,907

σ

(mN/m)

min 22.30 28.10

max 71.00 46.00

avg 39.88 34.06

ρbrine
(gr/cm3)

min 0.989 1.024

max 1.123 1.050

avg 1.031 1.033

ρCO2

(gr/cm3)

min 0.002 0.001

max 0.820 0.658

avg 0.401 0.263

Notes: Such high values in the permeability and porosity of
sandstone and carbonate formations are due to experiments
carried out by Plug and Bruining (2007) on unconsolidated
quartz sand and Wang and Tokunaga (2015) on limestone sand.

involves injecting a driving fluid at a constant rate (or constant
pressure) while continuously monitoring the effluent volume
to move fluids in situ (Jones and Roszelle, 1978). All the avail-
able data for both capillary pressure and relative permeability
are shown in the supplementary material file, and a statistical
overview of them is presented in Tables 3 to 5.

The majority of experiments in literature have been con-
ducted on sandstone samples. Additionally, there is signifi-
cantly more data available on drainage than on imbibition
with respect to relative permeability and capillary pressure.
However, data on secondary drainage and imbibition remains
insufficient. In sandstone formations, 78 capillary pressure
experiments and 40 relative permeability experiments have
been performed. In contrast, for carbonate formations, the
number of experiments is much lower, with only 13 capillary
pressure tests and 12 relative permeability tests.

2.4 Data processing
In data analysis, pre-processing is a crucial step. Thus, the

collected data typically requires a series of processes before
they can be analyzed and used. Failure to follow this procedure
will result in erroneous analysis and outcomes. Several stages
of pre-processing were applied to the collected data, including:

2.4.1 Data filtration

When working with lab data, filtration is often necessary
due to factors such as human error, incorrect device calibra-

Table 4. The statistic review of fluid and rock properties for
samples used in relative permeability experiments.

Property Sandstone Carbonate Shale

φ

(%)

min 0.26 7.90 3.90

max 33.10 19.03 4.40

avg 18.41 12.83 4.15

k
(mD)

min 0.01 0.02 2.94E-06

max 3,812 371.90 3.54E-04

avg 332.03 87.79 1.45E-04

σ

(mN/m)

min 19.80 28.10 19.80

max 57.00 45.30 39.50

avg 34.55 33.50 28.97

ρbrine
(gr/cm3)

min 0.989 1.0501 /

max 1.123 1.050 /

avg 1.025 1.050 /

ρCO2

(gr/cm3)

min 0.041 0.609 0.497

max 0.856 0.811 0.824

avg 0.577 0.695 0.671

Notes: 1In the database, there was only one record.

tion, and other inconsistencies. In a typical drainage exper-
iment, an increase in capillary pressure should correspond
to a decrease in saturation, while in a standard imbibition
experiment, an increase in the saturation of the wetting phase
should lead to a reduction in pressure. Any deviation from
these expected trends is considered noise in this study, and
efforts were made to minimize its impact. The remaining data
points were treated as representative of a standard experiment.
Data that showed significant deviation from the expected
drainage or imbibition behavior were identified and excluded
from the curve-fitting process. (Fig. 1). In fact, data points that
did not follow these physical trends were excluded. Moreover,
outlier detection calculations were applied to exclude data
points falling outside the 95% confidence interval of the
expected trend.

2.4.2 Closure correction

During the injection of the non-wetting phase, fluid may
first enter larger pores (e.g., vugs) before reaching the main
pore network of the sample (Abdollahian et al., 2019; Al-
Bulushi et al., 2019). In other words, at the initial stage of
drainage, the non-wetting phase may occupy pore spaces that
are not part of the actual pore network. This phenomenon is
referred to as the closure effect. Closure pressure is the pres-
sure at which carbon dioxide enters the primary pore system
of the sample. In industry, closure correction is commonly
applied to MICP data due to the experimental setup. However,
the data analyzed in this study pertains exclusively to the
direct CO2-brine system. Interestingly, some data exhibited
behavior resembling the closure effect. To investigate these
further, different models were fitted to the data both with and
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Table 5. Number of experiments for capillary pressure and
relative permeability in each process.

Saturation
function Process Sandstone Carbonate Shale Total

Capillary
pressure

PD1 52 6 0 58

PI2 18 6 0 24

SD3 4 1 0 5

SI4 4 0 0 4

Relative
permeability

PD 24 9 3 36

PI 16 3 3 22

Notes: 1Primary drainage; 2Primary imbibition; 3Secondary
drainage; 4Secondary imbibition
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Fig. 1. Primary drainage capillary pressure on Indian limestone
(El-Maghraby and Blunt, 2013). The blue symbols represent
a reliable experiment, while the red symbols indicate an
experiment that was excluded from analysis due to its irregular
trend.

without applying closure correction. Fig. 2 shows the effect of
the closure correction, representing a significant improvement
in the accuracy of capillary pressure models, especially for
those placed in the first category (Table 1). In experiments
where closure effects are observed, it is crucial to extend
laboratory data up to the inflection point (either the initial
turning point or the first curvature). We determined the closure
entry pressure by tracking it until its intersection with the
pressure axis or until the water saturation reached 100%
(Abdollahian et al., 2019).

2.4.3 X-axis reflection

Four of the experiments in the collected data are related to
the forced imbibition process. Since the introduced models are
incompatible with negative pressure, the data were transferred
from negative pressure to positive using Eq. (27). During the
transformation of data, we attempted to maintain the main
trend of the chart:

ynew = (tmax − tmin)
y− rmin

rmax − rmin
+ tmin (27)

where rmin and rmax denote the minimum and maximum
of measured data, respectively. tmin and tmax indicate the
minimum and maximum of desired target scaling, respectively.
The last two parameters were selected so that the data were
symmetric with respect to the x-axis.

2.5 Optimization algorithm
Curve fitting, an essential component of this study, revolves

around solving an optimization problem to determine the best-
fitting line for a given set of observations. In this research,
we employ the curve fit module within the SciPy library,
specifically designed for nonlinear least squares curve fitting.
The curve fit function requires several arguments, including
input and output data, along with the designation of the
mapping function. The objective is to utilize nonlinear least
squares to optimize the coefficients of the mapping function,
ensuring an optimal fit to the available input and output data.

The mapping function operates on input data examples and
a set of arguments, which represent the coefficients or weight
constants to be optimized through a nonlinear least squares op-
timization process. Also, the curve fit module has an optional
initial guess for coefficients and a boundary condition, defining
the range within which the optimal values will be determined.
This module incorporates three optimization methods:

1) Trust Region Reflective Algorithm: Especially beneficial
for tackling extensive sparse issues with established con-
straints.

2) Dogleg Algorithm with Rectangular Trust Regions:
Suited for small scale problems with bounds.

3) Levenberg-Marquardt Algorithm: A robust algorithm for
general purpose optimization. Does not accommodate
bounds and sparse Jacobians. The most effective approach
for minor unconstrained issues.

Given that constrained problems are prevalent in our sce-
narios, the Trust Region Reflective algorithm is selected as the
preferred optimization method in most cases.

2.5.1 Assumptions

Curve fitting is the process of estimating model parameters
by fitting them to valid experimental data. This process aimed
to achieve the following goals:

1) Maximizing R2 and minimizing RMSE.
2) Consideration of physical concepts.
3) The constants are always determined by the program

unless the second rule is violated.

Boundary constraints are applied throughout the curve
fitting process to ensure that irrational values are not obtained
based on the physical concepts underlying each constant.
Occasionally, it was necessary to force a fit if the physical
concepts were violated or irrational values were specified for
the parameters. During the curve force process, the following
steps were considered:

1) Choosing an initial guess based on experimental data.
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Fig. 2. The effect of closure correction on quartz sand pack (Tokunaga et al., 2013), as an example: (a) Before closure correction
and (b) after closure correction.

2) Setting the constraints (step by step) on the values of
physical parameters such as Swr, Pe, etc.

If a model fails to fit through these two steps, then it
has been ruled out of the analysis. The following two factors
led to models being excluded from the analysis: (1) Negative
R2, which indicates that it is not a suitable model for this
condition, (2) the model is out of trend data.

Several models are dependent on the rock and fluid prop-
erties of the sample (such as LJF, MJF, and SH models).
As mentioned in Section 2.3, properties were calculated by
correlation if they were not found in the literature.

3. Result and discussion
In this section, we compare the accuracy of the models

discussed on both CO2-brine capillary pressure and relative
permeability data using the procedure mentioned in Section 2.

3.1 Capillary pressure models
Fig. 3 compares the accuracy of eleven capillary pressure

models across different capillary pressure processes. In detail,
Fig. 3(a) demonstrates the performance of the models intro-
duced in Section 2.1 for PD process on Berea sandstone as
an experiment representative of the general behavior of the
data. The results indicate that all models effectively capture the
experimental PD CO2-brine capillary pressure, with the main
difference being their accuracy in identifying the threshold
pressure. Fig. 3(b) also compares the accuracy of the models
for PI process. Based on the results from all experiments, we
found that the BC, LH, and MJF models are less accurate
than the others in this process. In contrast, the VG and K
models accurately capture the experimental data. Finally, Figs.
3(c) and 3(d) represent the models’ accuracy in two different
experiments, respectively, from SD and SI processes. As with
the PI, there is a significant discrepancy between the BC, LH,
and MJF models and the experimental data. Therefore, let’s
focus on the physics behind these models and the reasons for
their lower accuracy. Mathematically, these models (i.e., BC,
LH, and MJF) exhibit power-law behavior and are physically
capable of capturing the capillary pressure of samples with
unimodal pore size distributions. Indeed, they are less suitable

for cases with bi- or multimodal pore size distributions, which
typically occur in the following scenarios:

1) when clays or other microporous minerals are present,
2) in vuggy carbonates,
3) in fractured rocks,
4) when two types of rocks are present for reservoir char-

acterization.

For such complex cases, we found that flexible models, such
as VG and K, better capture the CO2-brine capillary pressure
data.

Fig. 4 presents the models’ performance based on the av-
erage RMSE and R2 values for sandstone cases and carbonate
rocks in different capillary pressure scenarios. For sandstone
cases, the VG, SH, K, J, and JV models demonstrated the best
performance, with R2 values ranging from 0.967 to 0.98. In PI
process, the VG and K models show superior results, with R2

values between 0.996 and 0.997. Regarding SD, the VG and
K models show the best accuracy, with average R2 values of
0.989 for VG and 0.984 for K. Also, in SI, same as the PI and
SD, titles for the most accurate models belong to the VG and
K models, with VG slightly outperforming K. In carbonates,
we observed similar results. Briefly, the VG, SH, K, J, and JV
models more accurately captured the PD process. However,
the VG and K models achieved the highest accuracy in the PI
process, with R2 values of 0.988 and 0.984, respectively.

We found that the studied capillary pressure models can
be categorized into two groups:

1) First Category: BC, LH, LJF, MJF, L, and T models.
These models exhibit power-law behavior and are suitable
for more homogeneous rocks, particularly those with
unimodal pore size distributions.

2) Second Category: VG, SH, K, J, and JV models. These
models are mathematically flexible and can capture the
capillary pressures of rocks with a broader range of
heterogeneity.

Although the models are classified into two groups, their
performance varies. For example, T model in the first group is
relatively weak, as we found, due to its hyperbolic character.
In the second category, some models (e.g., JV and J) also



Faramarzi, M., et al. Capillarity, 2025, 14(2): 35-52 45

Water saturation, Sw (fraction)

C
ap

il
la

ry
 p

re
ss

u
re

, 
P

c 
(K

P
a)

0
0.2 0.6 0.8 10

20

40

0.4

(a)

Experimental points

60

80

100 Model R2 RMSE

SH 0.9901 0.0087

JV 0.9901 0.0087

T 0.9895 0.0090

BC 0.9848 0.0108

LH 0.9848 0.0108

L 0.9848 0.0108

LJF 0.9848 0.0108

MJF 0.9848 0.0108

VG 0.9848 0.0108

K 0.9723 0.0146

J 0.9676 0.0158

Water saturation, Sw (fraction)

C
ap

il
la

ry
 p

re
ss

u
re

, 
P

c 
(K

P
a)

0
0.2 0.6 0.8 10

0.5

0.4

(b)

1

1.5

Experimental points

Model R2 RMSE

VG 0.9947 0.0231

K 0.9881 0.0348

LH 0.7724 0.1520

BC 0.7131 0.1706

MJF 0.7131 0.1706

Water saturation, Sw (fraction)

C
ap

il
la

ry
 p

re
ss

u
re

, 
P

c 
(K

P
a)

0
0.2 0.6 0.8 10

1

2

0.4

(c)

Experimental points

3

4

6

5

7 Model R2 RMSE

VG 0.9999 0.0013

K 0.9997 0.0023

LH 0.9379 0.0319

BC 0.9063 0.0392

MJF 0.9063 0.0392

Water saturation, Sw (fraction)

C
ap

ill
ar

y 
pr

es
su

re
, P

c (
K

Pa
)

0
0.2 0.6 0.8 10

1

0.4

(d)

Experimental points

2
Model R2 RMSE

VG 0.9952 0.0152
K 0.9935 0.0183
LH 0.7879 0.1045
BC 0.7338 0.1171
MJF 0.7338 0.1171

Fig. 3. The accuracy of the studied capillary pressure models across different capillary pressure processes. In all panels, data
points represent experiments, and curves correspond to different models: (a) PDprocess-experiment 4 (Al-Menhali et al., 2015),
(b) PI process. Supercritical CO2 at 8.5 MPa-first cycle (Tokunaga et al., 2013), (c) SD process conducted on Bentheimer 3
rock sample (Abdoulghafour et al., 2020), and (d) SI process-experiment 13 (Plug and Bruining, 2007).

show lower accuracy than others. Within the first category,
the LJF, MJF, and Lambda models exhibit similar accuracy to
the BC model in all experiments. The BC model also shows
results close to the LH models, particularly for the pore size
distribution parameter, λ . According to Fig. 4, the capillary
pressure models in the first category are highly dependent on
closure correction, whereas the second category models are
less dependent. The reason for this, as mentioned previously,
is that models in the first category are limited to fitting a single
curvature (power-law behavior), while models in the second
category can handle multiple curvatures. Interestingly, it can
be deduced that this feature in the second category improves
the accuracy of detecting and adjusting the closure effect.

There are two other factors that improve the comparison
and ranking of capillary pressure models: 1) the number of
fitting parameters, and 2) the nature of the fitting parameters
(whether they are physically based or empirical). Table 1
summarizes the capillary pressure models used in this study,
along with their parameter definitions, highlighting which
parameters are physically based and which are empirical
fitting parameters, as well as the assigned categories for each
model. Considering both the number of fitting parameters in
Table 1 and Fig. 4, we can find that the K model shows
superior results, among the capillary pressure models with high
accuracy indices (Fig. 4). With only two fitting parameters
(Pm and wK), it achieves high accuracy while minimizing
the risk of overfitting. In contrast, models like JV and SH

models, which have four fitting parameters, may offer more
flexibility but are more prone to overfitting, especially in
cases with limited experimental data. Moreover, although more
fitting parameters may capture data well, their uncertainty and
practical application for new data are often questionable.

When considering the number of fitting parameters, along
with the physical interpretation of the models, we find that
the K model’s superiority is further reinforced by its physical
basis. The K model assumes a lognormal distribution of
pore sizes, which is physically meaningful for many natural
porous media. The parameters Pm (median pore radius) and wK
(standard deviation of log-transformed pore size) have physical
interpretations, making the model more robust for practical
applications.

3.2 Relative permeability models
Figs. 5 and 6 compare the performance of relative perme-

ability models for both brine and CO2 phases during drainage
and imbibition processes. Fig. 5 indicates that, except for
the BCM model, most models yield acceptable results for
Tuscaloosa sandstone in primary drainage. The Chierici, LET,
VGM, and Corey models, in particular, show high R2 values
and accurately capture the relative permeability data for both
phases. Fig. 6 also presents the imbibition process on Chaunoy
sandstone, where the models’ accuracy is comparable to that
observed in the drainage process.
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Fig. 4. Comparison of the accuracy of studied capillary pressure models applied to CO2-brine data from various formations
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Fig. 5. Comparison of the studied models in primary drainage CO2-brine relative permeability: (a) PD process for brine phase-
Tuscaloosa sandstone (Bakhshian and Hosseini, 2019) and (b) PD process for CO2 phase-Tuscaloosa sandstone (Bakhshian
and Hosseini, 2019).

Figs. 7 and 8 present the accuracy of the models based
on the collected CO2-brine relative permeability data for
sandstone, carbonate, and shale cases, considering both PD
and PI processes. According to Fig. 7, the VGM, Chierici,
and L.E.T models showed the best performance for the PD
process in brine phase across sandstone, carbonate, and shale
formations. In detail, for sandstone, the L.E.T, VGM, and
Chierici models had the highest average R2 values of 0.9929,
0.9892, and 0.9855, respectively. BCM, Purcell, and Corey
were less accurate, with average R2 values of 0.8949, 0.9567,

and 0.9594. In carbonate formations, all six models achieved
average R2 values above 0.995. In shale formations, all models
performed well except BCM, which had a low average R2

of 0.5256 (note that only two experiments were available for
shale in the PD process). For CO2 phase in the PD process
(Fig. 8), the L.E.T, Chierici, and Corey models performed best
in sandstone, with average R2 values of 0.9907, 0.9734, and
0.9690, respectively. VGM, Purcell, and BCM had lower R2

values of 0.8969, 0.7909, and 0.7634. In carbonate formations,
L.E.T, Corey, and Chierici had superior results, with average
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Fig. 7. Comparison of the accuracy of studied relative permeability models applied to all available data for the brine phase
in both drainage and imbibition processes. (a) and (b) present the accuracy of the models based on R2 and RMSE values in
carbonate formations, respectively. (c) and (d) show the same metrics in sandstone formations, and (e) and (f) indicate the
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R2 values of 0.9991, 0.9986, and 0.9980, respectively, while
VGM, Purcell, and BCM performed less well. In shale forma-
tions, L.E.T, Chierici, and Corey also showed the best results.

In the PI process, for brine phase, the VGM, Chierici, and
L.E.T models showed the best results in sandstone cases, with
average R2 values of 0.9944, 0.9972, and 0.9965, respectively.
Corey’s model, with an average R2 of 0.9813, performed
well but was less accurate than the top three models. The
Purcell and BCM models, with mean R2 values of 0.8398 and
0.925, were less accurate. In carbonate formations, all models
performed well, with average R2 values above 0.99, except

for Purcell, which had a R2 of 0.9772. In shale formations,
all six models showed high accuracy. For CO2 phase in
the PI process, the L.E.T, Corey, and Chierici models again
performed best, with average R2 values of 0.9938, 0.9890,
and 0.9933, respectively. VGM also performed well with an
average R2 of 0.9759, while Purcell and BCM showed less
accurate results. In shale formations, all models had also
average R2 values above 0.99.

Considering the fitting results based on R2 and RMSE
metrics across various scenarios, we can find that for the
brine phase, the most suitable models are L.E.T., Chierici,
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VGM, and Corey, in that order. For the CO2 phase, the
L.E.T., Chierici, Corey, and VGM models were found to be
the most reliable. In drainage cases, the L.E.T., Chierici, and
Corey models exhibited superior performance. Similarly, for
the PI process, the L.E.T., Chierici, Corey, and VGM models
provided a more accurate representation of relative perme-
ability data. When examining performance across different
formations, the L.E.T., Chierici, Corey, and VGM models
consistently delivered better results for sandstone formations.
For carbonate formations, the L.E.T., Chierici, VGM, and
Corey models also outperformed others. In the case of shale
formations, all models performed comparably well. In this
context, it is important to note that the success of the mod-
els also depended on the pore distribution and mean pore
size of the formations. Thus, the sandstone formations, with
a rather homogeneous pore structure, are more adapted to
simpler models such as Corey and VGM, which need fewer
fitting parameters and are therefore more robust for practical
applications. In contrast, the carbonate and shale formations
generally have more complicated pore structures, like vugs,
fractures, or microporosity, which demand more flexible mod-
els such as L.E.T. and Chierici for a better description of their
heterogeneity.

Building on these findings, we can further assess the
accuracy of models in capturing CO2-brine relative perme-
ability data. The L.E.T., Chierici, Corey, and VGM models
demonstrated strong and nearly identical performance. How-

ever, as observed in the results for capillary pressure models,
further comparison of relative permeability models can be
enhanced by considering two key factors: the number of fitting
parameters and the nature of those parameters (i.e., whether
they are physically based or empirical). In this context, the
L.E.T. model requires more fitting parameters than the other
models. Specifically, the L.E.T. model includes six parameters
(Lw, Ew, Tw, Lnw, Enw, Tnw), while the Chierici model uses
four (BC, AC, MC, and LC). More fitting parameters provide
additional flexibility, enabling a model to capture complex
relative permeability curves with high accuracy, but they
also increase susceptibility to overfitting, particularly when
experimental data are limited. In contrast, simpler models like
Corey, with fewer fitting parameters, offer greater robustness
and practicality, especially in formations with more uniform
pore structures. For heterogeneous cases or complex relative
permeability data points, between the Chierici and VGM
models, the VGM model, derived from its capillary pressure
model, presents more physically based fitting parameters,
which can be regarded as the better model. In conclusion,
among the studied models, the Corey model, with the fewest
fitting parameters, offers simplicity and practicality, while the
VGM model, with more physically based parameters, provides
greater adaptability for complex formations and data sets.
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4. Conclusions
We evaluated the accuracy of eleven capillary pressure

models and six relative permeability models for the CO2-brine
system, considering various rock types (such as carbonate and
sandstone) and processes (such as drainage and imbibition).
The findings of this study, separately for capillary pressure
and relative permeability data, are as follows:

4.1 Capillary pressure
1) The capillary pressure models studied can be categorized

into two classes. The first class includes the BC, LJF,
MJF, LH, L, and T models. These models exhibit power-
law behavior and are more suitable for homogeneous
rock samples with unimodal pore size distribution. The
second class comprises VG, SH, JV, K, and J models.
These models are mathematically flexible and can capture
more heterogeneous cases, such as rocks with bi- or tri-
modal pore size distributions. However, despite the cate-
gorization, models within each class sometimes exhibited
varying accuracy.

2) Using models from the second category improves the
detection and correction of closure effects in capillary
pressure data.

3) This study suggests that the VG and K models better
capture capillary pressure curves across all cycles and
rock types in the CO2-brine system. However, since the
K model includes meaningful physical parameters, it is
recommended for use in studies and simulations.

4.2 Relative permeabilitytle
1) The L.E.T., Chierici, VGM, and Corey models demon-

strate strong, nearly identical performance for both PD
and PI processes across all formation types and phases
(brine and CO2). Among these, the Corey model, with the
fewest fitting parameters, offers simplicity and practical-
ity, while the VGM model, with more physically based
parameters, provides greater adaptability for complex
formations.

2) Among the studied relative permeability models, the
VGM model outperformed the others in the brine phase,
while the Corey model performed best in the CO2 phase.
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