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Abstract:
A review is presented here of research to date on the application of model parameter-
dependent constitutive laws for which capillarity systems admit underlying solitonic
structure with their characteristic key properties such as invariance under Bäcklund
transformations and admittance of Painlevé reduction. The classical Korteweg capillarity
system and its extensions are considered. Reductions to the canonical solitonic nonlinear
Schrödinger and its resonant nonlinear Schrodinger equation extension containing a de
Broglie-Bohm potential are exhibited in turn for certain model constitutive relations. A
capillarity analogue of the classical Kármán-Tsien model law of gasdynamics is shown
to have a key role in such canonical reductions. A novel geometric link between a
Korteweg capillarity system and the classical Da Rios system of hydrodynamics is
recorded. Invariance of capillarity systems under multi-parameter Bäcklund transformations
is detailed and applied. Gausson and q-gaussion phenomena in certain capillarity systems
is described with concomitant classes of exact solutions. A Lagrangian encapsulation of
a Korteweg capillarity system is presented whereby reduction is made to the canonical
Boussinesq equation.

1. Introduction
Here, a review is to be presented of model constitutive

relations in capillarity theory which allow reduction to certain
canonical equations of modern soliton theory. The character-
istic key properties of the latter such as being amenable to
the inverse scattering transform and admittance of invariance
under Bäcklund transformations whereby multi-soliton exact
solutions may iteratively generated are accordingly inherited
by the capillarity systems.

In nonlinear continuum mechanics the application of
model multi-parameter constitutive laws for which the govern-
ing equilibrium or dynamical equations become analytically
tractable is well-established. In gasdynamics, this approach
originated in work on gas jets (Chaplygin, 1904). Thus, model
(p,ρ) pressure-pressure density relations of the type:

p = A+
B
ρ
, (A, B ∈ R) (1)

as introduced therein have been subsequently applied to model
real gas response in both subsonic and supersonic gasdynamics

(Tsien, 1939; Von Kármán, 1941; Coburn, 1945). It will be
seen that analogous such Kármán-Tsien relations prove key in
the reduction of certain model capillarity systems to tractable
solitonic canonical form. Matrix Bäcklund transformations
were subsequently constructed in a systematic manner which
reduce the classical hodograph system of gasdynamics to
appropriate canonical forms in subsonic, transonic and su-
personic flow régimes (Loewner, 1950). This was established
for certain privileged multi-parameter gas laws which were
then applied to approximate real gas behaviour. This work
and its physical applications have been described in detail
in a monograph on Bäcklund transformations (Rogers and
Shadwick, 1982).

Model constitutive laws in subsonic gasdynamics were sub-
sequently constructed via the action on the hodograph system
of a novel class of infinitesimal Bäcklund transformations
(Loewner, 1952). It was later to be established that, remark-
ably, this class on appropriate re-interpretation and extension
has wide application in modern soliton theory (Rogers, 2022a).
Thus, a matrix linear representation was thereby constructed

∗Corresponding author.
E-mail address: c.rogers@unsw.edu.au (C. Rogers).

2709-2119 © The Author(s) 2024.
Received May 14, 2024; revised June 4, 2024; accepted June 21, 2024; available online June 25, 2024.

https://doi.org/10.46690/capi.2024.09.03


Rogers, C. Capillarity, 2024, 12(3): 80-88 81

which is associated with a novel master 2+1-dimensional
solitonic system (Konopelchenko, 1992, 1993). Reductions
of the latter include 2+1-dimensional integrable versions of
the principal chiral fields model, the Toda lattice scheme,
and, notably a new symmetric 2+1-dimensional solitonic sine-
Gordon system. The latter, like the previously established
canonical 2+1-dimensional solitonic extensions of the non-
linear Schrödinger and Korteweg-de Vries equations as em-
bodied in the Davey-Stewartson and Nizhnik-Veselov-Novikov
equations respectively, is symmetric in the spatial variables
contained therein. An auto-Bäcklund transformation for the
latter was subsequently derived (Konopelchenko et al., 1992)
and its admittance of the Painlevé properly established in a
systematic Lie group analysis (Clarkson et al., 1996).

In nonlinear elastostatics for certain model deformation
constitutive laws, Bäcklund transformations of Loewner-type
have been applied to a classical elastostatic system due to
Neuber (1958) descriptive of the stress distribution in shear-
strained isotropic elastic bodies (Clements and Rogers, 1975).
The stress and warping distributions were thereby obtained for
a class of boundary indentation problems, notably for Neuber-
Sokolovsky model stress-deformation constitutive relations. A
key connection between these results and a canonical soliton
system was subsequently established and applied to construct
an auto-Bäcklund transformation together with an associated
nonlinear superposition principle for the Neuber elastostatics
system (Rogers and Schief, 2010a).

In nonlinear elastodynamics, model stress-strain laws were
introduced by Cekirge and Varley (1973) in an extensive
analysis of the uniaxial transmission and reflexion of pulses
in bounded elastic regions. These laws may be embedded
in a multi-parameter class of stress-strain laws as generated
via Bäcklund transformations of Loewner-type applied in a
1+1-dimensional elastodynamic context (Konopelchenko and
Rogers, 1993). Infinitesimal Bäcklund transformations were
subsequently applied to this Lagrangian encapsulation of
the nonlinear elastodynamic system to derive model stress-
strain laws associated with reduction to the canonical sinh-
Gordon soliton equation (Rogers et al. , 2007b). Importantly,
these models characteristically exhibit an interior change of
concavity. This type of material response is encountered in
the compression of polycrystaline materials and in nickel-
titanium as used extensively in shape memory alloys. A
Bäcklund transformation admitted by the sinh-Gordon reduc-
tion at the level of the stress-strain laws was subsequently
derived (Rogers and Schief, 2010b). The single action on the
classical Hooke’s law generates the model stress-strain laws
of Cekirge and Varley (1973). Iterated action of the Bäcklund
transformation imbeds the latter in a wide multi-parameter
class of model constitutive laws associated with sinh-Gordon
solitonic canonical reduction. The nonlinear superposition
principle associated with the Bäcklund transformation acting
on the (T,e)-stress strain laws turns out to be nothing but
the classical permutability theorem for the solitonic potential
Korteweg-de Vries hierarchy (Rogers and Schief, 2002).

The preceding attests to the diverse physical applications of
model constitutive laws and their key role in the reduction to
tractable canonical form of certain classical governing systems

in gasdynamics, nonlinear elastostatics and elastodynamics.
Here, a review is to be presented of the research to date on
application of model constitutive relations for which capillarity
systems admit underlying solitonic structure with its charac-
teristic integrability properties.

2. An extended Korteweg capillarity system
The classical Korteweg capillarity system:

∂ρ

∂ t
+div(ρ q) = 0

∂q
∂ t

+q ·∇q−∇

[
κ(ρ)∇2ρ +

1
2

κ ′(ρ)|∇ρ|2 +Π(ρ)

]
= 0

(2)
has been the subject of an extensive literature since its intro-
duction (Nimmo, 1992). Importantly, in terms of solitonic con-
nections, it has been subsequently established that the system
(Eq. (2)) may be set in the context of a more general isother-
mal, inviscid capillarity system, namely (Antanovskii, 1996):

∂ρ

∂ t
+div(ρ q) = 0

∂q
∂ t

+q ·∇q+∇

[
δ (ρ E )

δρ
−Π

]
= 0

(3)

wherein ρ is the density of the capillarity liquid, q is the
velocity in its motion and E (ρ,α) with α = |∇ρ|2/2 is the
specific free energy. Here:

δΦ

δρ
:=

∂Φ

∂ρ
−∇

(
∂Φ

∂α
∇ρ

)
(4)

and Π is an external potential. If due to gravity, the latter is
determined by the relation Π =−ρ g. The quantity:

ζ =
δ

δρ
(ρE ) (5)

is termed the chemical potential of this capillarity system.
The classical Korteweg system (Eq. (2)) is retrieved as the
specialisation:

E (α,ρ) = κ(ρ)
α

ρ
+

λ

ρ
, (λ ∈ R) (6)

in the system (Eq. (3)).

3. Canonical nonlinear Schrödinger reduction
Nonlinear Schrödinger (NLS) reduction of the capillarity

system (Eq. (3)) in the irrotational case and with Π = 0 was
subsequently derived for a class of model energy relations
E (ρ,α) (Antanovskii et al., 1997). Thus, with q = ∇φ where
φ is the velocity potential, the capillarity system (Eq. (2)) then
consists of the continuity equation:

∂ρ

∂ t
+∇ · (ρ∇φ) = 0 (7)

together with the Bernoulli integral:

∂φ

∂ t
+

1
2
|∇φ |2 + δ (ρE )

δρ
= B(t) (8)

admitted by the momentum equation. Herein, the arbitrary
B(t) may be absorbed in the potential φ and is accordingly
set zero.
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On introduction of the classical Madelung representation:

Ψ = ρ
1/2eiφ/2 (9)

the capillarity system may be encapsulated in the generalised
NLS-type equation:

i
∂Ψ

∂ t
+∇

2
Ψ+

[
−∇2|Ψ|

|Ψ|
− 1

2
δ (ρE )

δρ
+

Π

2

]
Ψ = 0 (10)

incorporating a de Broglie-Bohm potential term ∇2|Ψ|/|Ψ|. In
Antanovskii et al. (1997) it was established that with model
energy laws of the type:

E (ρ,α) =
1
2
|∇ρ|2

ρ2 − µ

ρ
−νρ = α − µ

ρ
−νρ, (µ,ν ∈ R)

(11)
with Π = 0, reduction of Eq. (10) is made to the nonlinear
Schrödinger equation:

i
∂Ψ

∂ t
+∇

2
Ψ+ν |Ψ|2Ψ = 0 (12)

In 1+1-dimensions accordingly, the canonical solitonic
NLS equation:

i
∂Ψ

∂ t
+

∂ 2Ψ

∂x2 +ν |Ψ|2Ψ = 0 (13)

results. The corresponding encapsulated capillarity system
then inherits the characteristic key properties of Eq. (13) such
as admittance of the inverse scattering procedure (Ablowitz
and Clarkson, 1991) and invariance under a Bäcklund trans-
formation whereby multi-soliton solutions may be iteratively
generated via action of an associated nonlinear superposi-
tion principle (Rogers and Schief, 1998; and literature cited
therein).

Model parameter-dependent energy relations E (ρ,α) were
subsequently constructed which result in resonant NLS equa-
tions incorporating a de Broglie-Bohm potential (Rogers and
Schief, 1999). In this connection, with:

E (ρ,α) =
λ |∇ρ|2

2ρ2 − µ

ρ
−νρ, (λ , µ, ν ∈ R) (14)

reduction of Eq. (10) is made to what is termed the resonant
NLS equation:

i
∂Ψ

∂ t
+∇

2
Ψ+

[
(λ −1)

∇2|Ψ|
|Ψ|

+ν |Ψ|2
]

Ψ = 0 (15)

If λ < 0, the latter can admit novel solitonic fission or
fusion phenomena (Pashaev et al., 2008). This case anses
notably in cold plasma physics (Lee et al., 2007; Rogers and
Clarkson, 2018). If λ > 0 then, importantly, the de Broglie
Bohm term may be removed via an appropriate transformation
(Rogers, 2014c). Accordingly, in the 1+1-dimensional case,
the three-parameter class of model E (ρ,α) laws with:

E (ρ,α) =
λ

2

(
ρx

ρ

)2

− µ

ρ
−νρ, (λ > 0) (16)

result in encapsulation of the capillarity system in the canon-
ical solitonic nonlinear Schrödinger equation.

In terms of tractable symmetry reduction, such has been
obtained to a canonical Ermakov-Painlevé II equation for

Korteweg capillarity systems encapsulated in an extension of
the resonant NLS equation involving the addition of a triad
of terms in the amplitude |Ψ| (Rogers and Clarkson, 2017).
The Ermakov-Painlevé II equation is linked via the relation
|Ψ|= ρ1/2 to the classical PXXXIV equation. The latter arises
notably in the analysis of certain boundary value problems for
the Nernst-Planck electrolytic system where it determines ion
concentration distributions (Bass et al., 2010). In a capillarity
context, a resonant NLS encapsulation was applied in the
isolation of a Ermakov-Painlevé II symmetry reduction valid
for a multi-parameter class of free energy functions. Iterated
application of an admitted Bäcklund transformation was used
to generate novel classes of exact solutions of the nonlinear
capillarity system in terms of Yablonskii polynomials or
classical Airy functions. A PXXXIV equation derived for the
density in the capillarity system was shown to correspond to
the symmetry reduction of its Bernoulli integral of motion.

It is remarked that coupled Ermakov-Painlevé II systems
were originally derived as symmetry reductions of a multi-
component resonant system of Manakov-type (Rogers, 2014a).
In terms of physical applications, in nonlinear elastodynamics,
Ermakov-Painlevé II reduction was obtained in connection
with stress evolution in a class of generalised hyperelastic
Mooney-Rivlin type materials under a class of shearing mo-
tions.

4. A Kármán-Tsien type constitutive relation in
capillarity theory

Under the Madelung transformation (Eq. (9)), the classical
Korteweg capillarity system with specific energy relation (Eq.
(6)) becomes:

i
∂Ψ

∂ t
+∇

2
Ψ

+

[
−∇2|Ψ|

|Ψ|
+

1
2

κ(ρ)∇2
ρ +

1
2

κ
′(ρ)(∇ρ)2 +

Π

2

]
Ψ = 0

(17)

This NLS equation is not integrable in general. However, it
has been established (Rogers, 2014b) that, under a plane wave
packet ansatz, it admits an integrable Hamiltonian reduction
with a Kármán-Tsien type constitutive relation:

κ(ρ) = A+
B
ρ
, (A, B ∈ R) (18)

adopted in a capillarity context. An elliptic vortex ansatz intro-
duced therein leads to a reduction encapsulated in an integrable
Ermakov-Ray-Reid subsystem with underlying Hamiltonian
structure. Nonlinear coupled systems of this kind arise in
2+1-dimensional rotating shallow water theory (Rogers and
An, 2010). Ermakov-Ray-Reid systems likewise are likewise
important in nonlinear optics (Rogers et al., 2010, 2012;
and literature cited therein). In that setting, they can, in
particular, model the size and shape evolution of a light spot
and wave front in an elliptical Gaussian beam (Cornolti et
al., 1990; Goncharenko et al., 1991). In magneto-gasdynamics,
Ermakov-Ray-Reid systems occur in the description of spin-
ning gas cloud evolution (Rogers and An, 2012).
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4.1 A geometric integrable connection: The
classical da rios system

The geometric connection between important aspects of
modern soliton theory and certain motions of inextensible
curves has its genesis in the analysis by Scott (1975) of
the spatial motion of an isolated vortex filament in an un-
bounded inviscid liquid. Therein, what is now termed the Da
Rios system was derived, namely (Ricca, 1991; Rogers and
Schief, 2002):

κ∗
t =−2κ∗

s −κ∗τ∗s

τ∗t =

(
−τ∗2 +

κ∗
ss

κ∗ +
1
2

κ∗2
)

s

(19)

where κ∗,τ∗ denote, in turn, the curvature and torsion of the
vortex filament while s is a measure of arc length. It was
established in Rogers and Schief (2014b) that remarkably,
with:

κ
∗ = ρ

1/2, τ
∗ =

q
2

(20)

and s → x, a 1+1-dimensional Korteweg capillarity system
results, namely:

ρt +(ρq)x = 0

qt +qqx +

(
−ρxx

ρ
+

1
2

ρ2
x

ρ2 −ρ

)
x
= 0

(21)

This system is obtained for the class of model laws:

E (ρ,α) =
κ(ρ)α

ρ
+

r(ρ)
ρ

, α =
1
2

(
ρx

ρ

)2

(22)

wherein:

κ(ρ) = ρ
−1 (23)

corresponding to a Kármán-Tsien relation and:

r(ρ) = r0 + r1ρ − ρ2

2
, (r0, r1 ∈ R) (24)

Under the scaling:

(x, t)→ µ
−1(x, t), ρ → ν̄ρ, (ν̄ > 0, µ ∈ R) (25)

applied to Eq. (24), a 4-parameter class of model energy laws
is obtained with:

κ(ρ) = µ2ρ−1, r(ρ) = r̄0 + r̄1ρ − ν̄
ρ2

2
r̄0, r̄1 ∈ R

(26)

It may be established that the classical Da Rios system (Eq.
(19)) may be encapsulated in the 1+1-dimensional solitonic
nonlinear Schrödinger equation (Hasimoto, 1972). This inte-
grability property accordingly likewise holds for the equivalent
Korteweg-type capillarity system (Eq. (21)).

4.2 Invariance under multi-parameter
transformations. Application in capillarity
theory

Haar (1928) in connection with a variational problem

derived a class of transformations which leave invariant, up
to the gas law, the governing equations of plane, steady
irrotational gasdynamics. Bateman (1938) subsequently es-
tablished invariance of this system under a class of what
have come to be reciprocal transformations and which were
there related to lift and drag phenomena. It was later to be
established that these constitute particular Bäcklund transfor-
mations (Bateman, 1943). Invariant transformations in plane
rotational gasdynamics were derived in a systematic manner
in Rogers (1972).

Multi-parameter invariant transformations in 1+1-
dimensional gasdynamics and magnetogasdynamics were
constructed in Rogers (1968, 1969). Application of such a
transformation was made to the analysis of the motion of a
gas in the region between a pioton and a driven shock wave
(Castell and Rogers, 1974).

The preceding invariant transformations characteristically
involve non-trivial changes of the independent variables de-
pendent for their validity on conservation laws admitted by
the original physical system. In the present capillarity context,
it was established in Rogers and Schief (2014b) that the
1+1-dimensional Antanovskii capillarity system with Π = 0,
namely:

ρt +(ρq)x = 0

qt +qqx +

[
δ (ρE )

δρ

]
x
= 0

(27)

is invariant under the one parameter (χ) class of transforma-
tions:

ρ ′ =
ρ

1+χρ
, q′ = q, α ′ =

α

(1+χρ)6 ,

E ′(ρ ′,α ′) = E (ρ,α), M

dx′ = (1+χρ)dx−χρ dt, t ′ = t,

0 < |1+χρ|< ∞

(28)

This corresponds in the gasdynamic reduction to an invari-
ant transformation due to Movsesian (1967). This has physical
application in the analysis of 1+1-dimensional piston-driven
motions. In Rogers and Malomed (2018) a Madelung nonlinear
optics system was shown to be invariant under a novel class of
two-parameter Movsesian-type transformations. Model optical
laws of Kármán-Tsien type were thereby derived.

In the capillarity context, the Movsesian type transforma-
tion was applied in Rogers and Schief (2014b) to a seed
class of travelling wave packet representations in the 1+1-
dimensional version of the resonant NLS encapsulation (Eq.
(15)). This generated a novel class of exact solutions of
the associated capillarity system in terms of the classical
Weierstrass elliptic function.

A 1+1-dimensional resonant NLS encapsulation of a cap-
illarity system in which an external gravitational potential
Π=−ρ g is present was introduced in Rogers (2016), namely:

i Ψt +Ψxx+

[
−(1−C)

|Ψ|xx

|Ψ|
− g

2
|Ψ|2 − 1

2
r′(ρ)

]
Ψ= 0 (29)

with E (ρ,α) of the type (Eq. (22)) and Kármán-Tsien type
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relation:

κ(ρ) =
C
ρ
, (C> 0) (30)

together with:

r′(ρ) = αρ +βρ
2, (α, β ∈ R) (31)

A gauge transformation was applied to obtain reduction
of (Eq. (29)) to a resonant quintic derivative NLS equation.
A wave packet ansatz resulted in a reduction whose integrals
of motion allowed the construction of two classes of exact
solution generated via an algorithmic procedure in terms of
dn and cn Jacobi elliptic functions. These, in turn, produce
novel such solutions of the capillarity systems associated with
the NLS encapsulation (Eq. (29)).

A direct corallary of the invariance M embodied in the
relations of (Eq. (28)) is that the classical Korteweg capillarity
system:

ρt +(ρq)x = 0

qt +qqx +

[
−κ(ρ)ρxx −

1
2

κ ′(ρ)ρ2
x + r′(ρ)

]
x
= 0

(32)

is invariant under the class of transformations:

ρ∗ =
ρ

1+χρ
, q∗ = q,

κ∗ = (1+χ)5κ, r∗ =
r

1+χρ
, R∗

dx∗ = (1+χρ)dx−χρ q dt, t∗ = t,

0 < |1+χρ|< ∞

(33)

This result is readily extended to incorporate gravitational
potential Π =−ρg by appropriate adjustment of r(ρ).

5. Gausson and q-Gaussian phenomena in
capillarity theory

5.1 Gausson representations
In Da Martino et al. (2004) a capillarity system of the type:

ρt +div(ρq) = 0

qt +q ·∇q−∇

[
−µ

∇2ρ1/2

ρ1/2 +ν lnρ

]
= 0

(34)

was derived. This corresponds to a Kármán-Tsien κ(ρ) rela-
tion together with:

r(ρ) = νρ (− lnρ +1) (35)
in the model energy E (ρ,α) representation in (Eq. (27)). The
system (Eq. (34)) is not integrable as it stands. However, in
the irrotational case, it can be established via a Madelung-type
encapsulation that it can be embodied in a logarithmic NLS
equation:

∂ Ψ̄

∂ t̄
+∇

2
Ψ̄+ ν̄(lnΨ̄)Ψ̄ = 0 (36)

(Rogers, 2019). This turns out to admit novel exact solu-
tions termed gaussons (Bialynicki-Birula and Mycielski, 1978)

which in 1+1-dimensions admit the form:

Ψ̄ = N exp
[

i
−Et̄ + k(x̄− kt̄)

2
− ν̄(x̄− kt̄)2

4

]
(37)

The class of invariant transformations R∗ may be gen-
eralised and action on (Eq. (37)) applied to generate an
extensive class of novel multi-parameter exact solutions to
the 1+1-dimensional reduction of the capillarity system with
the irrotational constraint. It is remarked that 3+1-dimensional
gausson phenomena in a modulated version of (Eq. (36))
incorporating a de Broglie-Bohm potential has been recorded
in a plasma physics (Rogers, 2014a). A connection was made,
in particular, with experimental observations related to the
expansion of laser-pulsed plasma ellipsoids into a vacuum.

5.2 q-Gaussian representations
The concepts of q-logarithmic and its inverse q-exponential

function:

logq x =
x1−q −1

1−q
(38)

and:

expq x = [1+(1−q)x]1/(1−q), (x > 0) (39)

were originally introduced in a statistical mechanical con-
text but have subsequently proved to have a broad spec-
trum of applications (Gell-Mann and Tsallis, 2004) and lit-
erature cited therein). In anisentropic gasdynamics (Rogers
and Ruggeri, 2014) and magnetogasdynamics (Rogers and
Schief, 2014a), 2+1-dimensional elliptic vortex motions have
been isolated associated with q-Gaussian density distributions
of the type:

ρ = ω(t)expq[−xT E(t)x+ c]

x =

 x

y

 (40)

and with q-dependent model gas laws. In a capillarity context
(Rogers, 2019) q-Gaussian exact solutions were derived for
a Madelung encapsulation of a class of 1+1-dimensional Ko-
rteweg capillarity systems in a dual power law NLS equation:

i
∂Ψ

∂ t
+Ψxx−

[
(1−C)

|Ψ|xx

|Ψ|
+α +β |Ψ|q−1 + γ|Ψ|2(q−1)

]
Ψ= 0

(41)
incorporating a de-Broglie Bohm potential. This corresponds
to model energy E (ρ,α) laws with Kármán-Tsien type rela-
tion (Eq. (30)) together with:

r′(ρ)
2

= λ +βρ
(q−1)/2 + γρ

q−1 (42)

Reduction of (Eq. (41)) was made to a dual power NLS
equation:

i
∂ Ψ̄

∂ t̄
+ Ψ̄x̄x̄ +

[
ᾱ + β̄ |Ψ̄|q−1 + γ̄|Ψ̄|2(q−1)

]
Ψ̄ = 0 (43)

with de-Broglie Bohm term removed. The latter type of NLS
equation admits q-Gaussian wave packet solutions:
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Ψ̄ = N exp
[
−Et̄i+

k(x̄− kt̄)
2

i
]

expq[−a(x̄− kt̄)2] (44)

with appropriate constraints on the parameters therein. In the
limit q → 1, Eq. (44) is consistent with the gausson-type
class (Eq. (37)). Action of invariance under a class of re-
ciprocal transformations admitted by the Korteweg capillarity
system associated with the dual power NLS encapsulation (Eq.
(43)) generates a two-parameter class of its exact solutions
(Rogers, 2019).

6. Lagrangian representation of a korteweg
capillarity system. Boussinesq solitonic
reduction

Here, the Lagrangian version of the 1+1-dimensional Ko-
rteweg capillarity system (Eq. (32)) is recorded for the class of
model energy relations of the type (Eq. (23)). Invariance of the
system accordingly holds under the class of transformations
R∗ as set down in (Eq. (33)).

Thus, on introduction of Lagrangian variables X ,T accord-
ing to:

dX = ρdx−ρqdt, dT = dt (45)
so that:

dx =
1
ρ

dX +qdT

whence:

∂

∂T

(
1
ρ

)
− ∂q

∂X
= 0 (46)

The latter constitutes the usual Lagrangian representation
of the 1+1-dimensional continuity equation. The Eulerian
continuity and momentum equations in the capillarity system
may, in turn, be combined to produce the conservation law:

∂

∂ t
(ρq)+

∂

∂x

[
Σ+ρq2 −κ(ρ)

(
ρxxρ − ρ2

x

2

)
− ρ

2
κ
′(ρ)ρ2

x

]
= 0

(47)
wherein:

Σ(ρ) = ρr′(ρ)− r(ρ) (48)
In the present Lagrangian representation (Eq. (47)) be-

comes:

∂q
∂T

+
∂

∂X

[
Σ−κ(ρ)

(
ρxxρ − ρ2

x

2

)
− ρ

2
κ
′(ρ)ρ2

x

]
= 0 (49)

so that, on introduction of ρ ′ and K (ρ ′) according to
(Rogers, 2022b):

ρ
′ =

1
ρ

(50)

K (ρ ′) =
κ

ρ
′5 (51)

the Lagrangian conservation law:

∂q
∂T

+
∂

∂X

[
K

∂ 2ρ ′

∂X2 +
1
2

∂K /∂ρ
′
(

∂ρ ′

∂X

)2

+Σ

]
= 0 (52)

results. Elimination of q between Eqs. (46) and (52) now
produces a generalised Boussinesq-type equation, namely
(Rogers, 2022b):

∂ 2ρ ′

∂T 2 +
∂ 2

∂X2

[
K (ρ ′)

∂ 2ρ ′

∂X2 +
1
2

∂K

∂ρ ′

(
∂ρ ′

∂X

)2

+Σ
′(ρ ′)

]
= 0

(53)
wherein:

Σ
′(ρ ′) = Σ|

ρ=ρ
′−1 (54)

7. Solitonic reduction
With the specialisations:

K = λ , Σ
′(ρ ′) = µρ

′2 +νρ
′ (55)

corresponding to the 4-parameter model energy law E (ρ,α)
with:

κ =
λ

ρ5 , r(ρ) =−µ

3
1

ρ2 +ξ ρ −ν

(λ , µ, ν , ξ ∈ R)
(56)

in the Korteweg capillarity system (Eq. (32)), reduction is
made to the classical integrable solitonic Boussinesq equation:

ρ
′
T T +λρ

′
XXXX +µ(ρ ′2)XX +νρ

′
XX = 0 (57)

It was Boussinesq (1872) who originally introduced such a
nonlinear equation in a mathematical analysis of the evolution
of long waves in shallow water. It constitutes a seminal soli-
tonic equation and as such is amenable to the inverse scattering
transform. In addition, it admits an auto-Bäcklund transforma-
tion (Hirota and Satsuma, 1977; Rasin and Schiff, 2017). It has
a range of physical applications, notably in nonlinear lattice
theory (Toda, 1975). In Clarkson and Winternitz (1999), an
account of the classical and non-classical Lie group symmetry
reductions of the solitonic Boussinesq equation is presented.

8. A 2+1-dimensional capillarity model system
The resonant solitonic Davey-Stewartson system as intro-

duced in Rogers et al. (2009) in a 2+1-dimensional capillarity
context adopts the form:

i
∂Ψ

∂ t
+∇2Ψ+(δ −1)

∇2|Ψ|
|Ψ|

Ψ+ γ|Ψ|2Ψ+
ΠΨ

2
= 0

Πxx −Πyy +4γ(|Ψ|2)xx = 0

∇2 =
∂ 2

∂x2 +
∂ 2

∂y2

(58)

The decomposition Ψ = eR−iS together with the relations:

ρ = e2R, q =−2∇S (59)
leads to a Madelung-type system:

ρt +∇(ρq) = 0

∂q
∂ t

+q ·∇q−∇

[
2δ

∇2ρ1/2

ρ1/2 +2γρ +Π

]
= 0

(60)

where:
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Πxx −Πyy +4γρxx = 0 (61)
In Rogers et al. (2009), a 2+1-dimensional capillarity

system (Eq. (2)) was shown to be reducible to a resonant
Davey-Stewartson system for a 3-parameter class of model free
energy expressions E (ρ,α). Two-soliton interaction in this
nonlinear system was thereby analysed via a bilinear operator
representation of a type originally introduced by Hirota (1971)
in connection with solitonic collision phenomena admitted by
the canonical Korteweg-de Vries equation.

In Rogers and Pashaev (2011), the 2+1-dimensional res-
onant Davey-Stewartson system (Eq. (58)) was shown to be
equivalent to a novel 2+1-dimensional extension of the Kaup-
Broer hydrodynamic system. The latter was thereby seen via
a bilinear operator representation to exhibit resonant soliton
interaction. It is remarked that application of the ∂̄ -dressing
method (Konopelchenko, 1992) to 2+1-dimensional integrable
extension of the Kaup-Bauer system has been the subject of a
recent extensive work in Nabelek and Zakharov (2020).

In Rogers et al. (2007a), a 2+1-dimensional capillarity sys-
tem encapsulated in the canonical solitonic Davey-Stewartson
system was shown to admit novel double periodic type wave
patterns for a class of two-parameter model E (ρ,α) laws
together with an external driving mechanism embodied in Π.

9. Conclusion
It remains, in particular, to undertake the systematic in-

vestigation of capillarity systems under Lie group invariance
in order to isolate Painlevé symmetry reduction indicative of
underlying solitonic structure. Thus, such an investigation is
suggested for a novel generalised Boussinesq capillarity model
as recently derived via a Lagrangian representation.

In nonlinear continuum mechanics, model constitutive laws
have been extensively applied to approximate physical rela-
tions derived empirically. The practical application in capil-
larity theory of parameter-dependent model constitutive laws
as derived via Lie group and reciprocal invariance has yet to
be undertaken in general.
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cold plasma physics. Application of a Bäcklund trans-
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