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Abstract:
The Richards equation has been widely used to describe unsaturated flow in porous
media, but its thermodynamical consistency has been scarcely investigated. In this paper,
a thermodynamically consistent formulation of Richards equation is established on the
basis of the free energy concept and the second law of thermodynamics. The capillary
effect is described by an interfacial free energy and its corresponding chemical potential.
The formulation takes the water saturation as the primary variable as well as chemical
potential gradient as the primary driving force. An appealing feature is that the formulation
follows an energy dissipation law, which implies the consistency to the second law of
thermodynamics. Furthermore, a linearized and energy stable time discretized method is
proposed for the model. Numerical results confirms the thermodynamical consistency of
the formulation.

1. Introduction
Modeling of unsaturated flow in porous media has impor-

tant applications in many fields including groundwater and oil
recovery (DiCarlo, 2013; Cai et al., 2021; Vodák et al., 2022).
A unsaturated porous medium usually stores multiple fluids
in the pores, such as oil, water and gas (air). The interfa-
cial tension between multiphase fluids and small pore scales
generally result in capillarity effect, which is a particularly
important fluid mechanics of unsaturated flow in porous media.
Richards (1931) proposed the so-called Richards equation
(RE), which has become a famous and simple mathematical
model used to describe the unsaturated flow in porous media.
Due to excellent insight into the imbibition processes, RE has
been widely acknowledged and enormously applied to describe
water flow in soils and oil reservoirs (Zha et al., 2013; Vodák
et al., 2022; Stokke et al., 2023). The standard RE consists
of a mass balance equation for water and Darcy’s law for the

water volumetric flux, which can be viewed as a simplification
of the conventional model of immiscible and incompressible
two-phase flow in porous media (Farthing and Ogden, 2017;
Zha et al., 2019).

Despite the relative ease of its conventional derivation, the
second law of thermodynamics has been scarcely taken into
consideration. As a general and fundamental law obeyed by
various physical processes, the second law of thermodynamics
has been well recognized as a useful guideline for establishing
reliable and complete mathematical models for a wide range
of physical problems. In the isothermal context, it implies an
energy dissipation law (Kou and Sun, 2018); that is, total
free energy could decrease over time. Although this key
law is particularly important, it has not received sufficient
attention in the field of multiphase flow in porous media in
the past. In recent works (Kou et al., 2022, 2023a, 2023b),
thermodynamically consistent numerical modeling has been
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successfully established for incompressible, immiscible two-
phase flow in porous media through introducing the novel con-
cepts of free energies and chemical potentials to account for
the conventional capillary effect. The development of energy
stable numerical methods is also essential to various physical
processes and has received great attention in many fields
including flow in porous media (Qiao and Sun, 2014; Kou et
al., 2022, 2023a; Feng et al., 2023). To our best knowledge,
thermodynamically consistent RE and energy stable numerical
methods have been scarcely explored in the past.

In this paper, a thermodynamically consistent formulation
of RE is derived on the basis of free energy concept and
the second law of thermodynamics. The new formulation
takes the water saturation as the primary variable as well as
chemical potential gradients as the primary driving force. An
appealing feature of the new formulation is to follow an energy
dissipation law, which yields the consistency to the second law
of thermodynamics. To resolve the strong nonlinearity of RE in
numerical simulation, a linearized and energy stable time dis-
cretized method is proposed for the model. Numerical results
confirms the thermodynamical consistency of the formulation.

2. Model formulation
For the flow of water in partially saturated porous media,

actually there exist two fluid phases, water and gas (air).
The water phase is deemed to be active under the effects
of capillarity and gravity, whereas the gas phase is passive
in instantaneous response to the action of water, thereby
approximately being neglected. The porosity and permeability
of the porous material are independent of the fluid flow.
The water saturation is denoted by s, which is the ratio of
the volume occupied by water to the pore volume. Assume
that 0 < s < 1 for the unsaturated flow. The capillarity effect
resulting from the interfacial tension between water and gas
in the pores plays an important role in the migration of water.
The logarithmic interfacial free energy f that characterizes
the capillarity effect is expressed as (Kou et al., 2022, 2023a,
2023b):

f (s) =αs[ln(s)−1]+β (1− s)[ln(1− s)−1]+ γs(1− s)+ εs
(1)

where α , β , γ and ε are the energy parameters. The first two
terms result from the ideal contributions and ensure s ∈ (0,1),
while the last two terms account for the water-gas and water-
solid interactions. The chemical potential µ(s) is defined as
the variation rate of the free energy f with respect to s, i.e.,
the derivative of f :

µ(s) = α ln(s)−β ln(1− s)+ γ(1−2s)+ ε (2)
The traditional capillary pressure, denoted by pc, can be

related to the chemical potential as (Kou et al., 2023b):

pc =−µ(s) (3)
The qualitative and quantitative study in (Kou et al., 2023b)

demonstrates that Eq. (3) is in agreement with the capillary
pressure experimental data, and consequently, the free energy
and its corresponding chemical potential can characterize the

capillarity effect.
The mass conservation equation of water is formulated as:

∂ (φs)
∂ t

+∇ ·u= q (4)

where φ is the porosity, u is the volumetric flux, and q stands
for a water mass source (positive) or sink (negative).

Let Ω be a connected and smooth space domain. For
the sake of simplicity, a no-flow boundary condition is taken
as u ·n = 0 on the boundary ∂Ω, where n is the normal
unit outward vector to ∂Ω. The cases with other boundary
conditions can be similarly deduced. Total free energy (E )
within the fluid system consists of the interfacial free energy
and the gravitational energy:

E (t) = F (t)+G (t) (5)

F (t) =
∫

Ω

φ f (s)dx, G (t) =
∫

Ω

φsρgℓdx (6)

where ρ represents the water (constant) density, g is the
gravitational acceleration and ℓ is the elevation.

The total free energy generally varies with time. The
variation equation of F with time is deduced using Eq. (4) as:

∂F (t)
∂ t

=
∫

Ω

φ
∂ f (s)

∂ t
dx

=
∫

Ω

φ µ
∂ s
∂ t

dx

=
∫

Ω

µ
∂ (φs)

∂ t
dx

=
∫

Ω

µ(q−∇ ·u)dx

=
∫

Ω

µqdx+
∫

Ω

u ·∇µdx

The gravitational energy change with time is deduced as:

∂G (t)
∂ t

=
∫

Ω

∂gℓφsρ

∂ t
dx

=
∫

Ω

ρgℓ
∂ (φs)

∂ t
dx

=
∫

Ω

ρgℓ(q−∇ ·u)dx

=
∫

Ω

ρgℓqdx+
∫

Ω

u ·ρg∇ℓdx

(7)

According to the second law of thermodynamics, total free
energy within the isothermal closed system should decrease
with time. The closed system implies that q = 0 and u ·n= 0,
and in this context, the variation equation of total free energy
is obtained using Eqs. (7) and (7):

∂E (t)
∂ t

=
∫

Ω

u · (∇µ +ρg∇ℓ)dx (8)

Darcy’s law relates the volumetric flux u to the driving
forces linearly. Furthermore, the second law of thermodynam-
ics requires ∂E (t)/∂ t ≤ 0, and as a result, u should take the
form:

u=−L(s)(∇µ +ρg∇ℓ) (9)
where L(s)≥ 0. The usual choice in unsaturated flow gives:
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L(s) = λ (s)K (10)
where λ (s) is the water mobility depending on the water
saturation and viscosity and K is the absolute permeability.
Based on the above derivations, the chemical potential-based
model of unsaturated flow in porous media is derived as:

∂ (φs)
∂ t

+∇ ·u= q (11a)

u=−λ (s)K (∇µ +ρg∇ℓ) (11b)
Substituting Eq. (11b) into Eq. (8) yields an energy dissi-

pation law:

∂E (t)
∂ t

=−
∫

Ω

λ (s)K|∇µ +ρg∇ℓ|2dx≤ 0 (12)

which shows that for the closed system, total free energy
would decrease over time. Using Eq. (7) and Eq. (7), the
general energy dissipation law at the presence of mass transfer
between the system and outsides is deduced as:

∂E (t)
∂ t

=
∫

Ω

q(µ +ρgℓ)dx−
∫

Ω

λ (s)K|∇µ +ρg∇ℓ|2dx
(13)

The above derivations show that the model Eq. (11) and
the associated energy dissipation law actually hold for various
feasible free energy functions besides the free energy given in
Eq. (1).

3. Numerical method
Due to the nonlinearity of chemical potential and mobility,

the model yields a nonlinear equation. Despite a great deal
of effort to resolve the strong nonlinearity of RE in numerical
simulation, the development of efficient stable numerical meth-
ods remains challenging so far (Farthing and Ogden, 2017;
Zha et al., 2019; Stokke et al., 2023). The thermodynamical
consistency explored herein sheds light on the construction of
such methods. In this section, an efficient, linearized, energy
stable numerical scheme is proposed for solving the model.
Divide the total time interval (0,T ) into M time steps as
0 = t0 < t1 < · · · < tM = T and denote the time step size
by τk = tk+1 − tk. The superscript k is used to denote the
approximation of any variable at the time tk.

Applying approaches proposed by Wang et al. (2020) to
treat the free energy yields the following linearized discrete
chemical potential:

µ
k+1 =

(
α

sk +
β

1− sk

)
sk+1 −α −β

sk

1− sk

+α ln
(

sk
)
−β ln

(
1− sk

)
+ γ

(
1−2sk

)
+ ε

(14)

which satisfies the following energy inequality:

f (sk+1)− f (sk)≤ µ
k+1(sk+1 − sk) (15)

A semi-implicit time discretized scheme is proposed as
follows:

φ
sk+1 − sk

τk
+∇ ·uk+1 = qk+1 (16a)

uk+1 =−λ (sk)K
(

∇µ
k+1 +ρg∇ℓ

)
(16b)

where µk+1 is given by Eq. (14). Substituting Eq. (16b) into
Eq. (16a) yields a single equation:

φ
sk+1 − sk

τk
−∇ ·λ (sk)K

(
∇µ

k+1 +ρg∇ℓ
)
= qk+1 (17)

Since µk+1 given in Eq. (14) is linear with respect to sk+1,
Eq. (17) is a linearized equation of sk+1 and thus easy to
implement in practical simulation. Additionally, the scheme
preserves the local mass conservation law.

A pronounced feature of the proposed scheme is to inherit
the energy dissipation law at the discrete level. In fact, the
discrete total free energy is defined as:

E k = F k +G k (18)
where:

F k =
∫

Ω

φ f (sk)dx, G k =
∫

Ω

φsk
ρgℓdx (19)

The variations of F and G between two time steps are
deduced using Eqs. (15) and (16a) as:

F k+1 −F k

τk
=
∫

Ω

φ
f (sk+1)− f (sk)

τk
dx

≤
∫

Ω

φ µ
k+1 sk+1 − sk

τk
dx

=
∫

Ω

µ
k+1(qk+1 −∇ ·uk+1)dx

=
∫

Ω

µ
k+1qk+1dx+

∫
Ω

uk+1 ·∇µ
k+1dx

(20)

G k+1 −G k

τk
=
∫

Ω

ρgℓφ
sk+1 − sk

τk
dx

=
∫

Ω

ρgℓ(qk+1 −∇ ·uk+1)dx

=
∫

Ω

ρgℓqk+1dx+
∫

Ω

uk+1 ·ρg∇ℓdx

(21)

The discrete energy dissipation law is obtained from Eqs.
(20), (21) and (16b):

E k+1 −E k

τk

≤
∫

Ω

(µk+1 +ρgℓ)qk+1dx+
∫

Ω

uk+1 ·
(

∇µ
k+1 +ρg∇ℓ

)
dx

=
∫

Ω

(µk+1 +ρgℓ)qk+1dx−
∫

Ω

λ (sk)K|∇µ
k+1 +ρg∇ℓ|2dx

(22)
which means that the scheme Eq. (16) is energy stable. As a
consequence, this method possesses the merit of using large
time steps in the long time simulation.

4. Numerical results
In this section, numerical experiments are conducted to

validate the features of the model and numerical scheme. The
water relative permeability is expressed as:

λ (s) =
s3

ηw
(23)

where ηw is the water viscosity. Here, we take ηw = 1 cP.
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(a) Initial (b) t = 6 days

(c) t = 18 days (d) t = 60 days

Fig. 1. Saturation distributions at different times in Example 1.

(a) t = 3 days (b) t = 6 days

(c) t = 18 days (d) t = 60 days

Fig. 2. Chemical potential distributions at different times in Example 1.
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Fig. 3. Energy dissipation profile (the energy unit is Pa) in
Example 1.
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Fig. 4. Total mass conservation in Example 1.

4.1 Example 1
This example showcases a redistribution process taking

place in a closed porous medium. The spatial domain is
Ω = [0, 10 m]2. The porosity and absolute permeability are
taken as φ = 0.2 and K = 100 md. The energy parameters are
taken as α = 1.86 bar, β = 0.16 bar, γ = 1.15 bar and ε = 0.
The medium is homogeneous at the initial time. The initial
distribution of the water saturation is illustrated in Fig. 1(a).
The water density is ρ = 1000 kg/m3 and the gravitational
acceleration is g = 10 m/s2. The elevation is taken as ℓ = 0
on the bottom boundary. We take q = 0 and the boundary
conditions u ·n = 0 on the entire boundary, where n is the
normal unit outward vector to the boundary. The total time
length is 60 hours and a large time step size is taken as τk = 3
hours.

Fig. 1 illustrates the changes of the water saturation with
time. Fig. 2 shows the variation of the chemical potential
(representing the capillarity effect) with time. Due to the
actions of capillarity and gravity, the water saturation varies

from the initial heterogeneous state to an equilibrium state.
At the equilibrium state, the balance between capillarity and
gravity would be achieved. As a result, a grading distribution
of water appears at the finial time.

Fig. 3 depicts the energy dissipation profile, which clearly
shows that the total free energy is rapidly diminishing at the
very early stage of the dynamical process, but after which it
is still dissipated with time even at the later time. Therefore,
the energy dissipation law is validated.

To examine the accuracy as well as verify the mass con-
servation of the scheme, it is necessary to define the relative
error of total water content as:

∆sk =

∫
Ω

φskdx−
∫

Ω
φs0dx∫

Ω
φs0dx

(24)

Fig. 4 depicts the values of ∆sk with time, which demon-
strates that the discrete errors are very small and vary tinily
with time. Consequently, the scheme can not only conserve
total mass but also perform well in the simulation of long-
term dynamics.

4.2 Example 2
An imbibition process in a random porous medium is sim-

ulated in this example. The spatial domain is Ω= [0, 10]2 with
the length unit meter. The porosity and absolute permeability
are shown in Fig. 5. The energy parameters are taken as
α = 1.86/

√
K bar, β = 0.16/

√
K bar, γ = 1.15/

√
K bar and

ε = 0, where the unit of K is md. The boundary conditions
are imposed as:

s(0,y, t) = 0.99, 0 ≤ y ≤ 10, t > 0 (25)

s(10,y, t) = 0.01, 0 ≤ y ≤ 10, t > 0 (26)
There are no additional sources of water, i.e., q = 0. The

gravity is ignored in this example. The time length is 1 year
and the time step size is taken as τk = 3.65 days.

During the imbibition process, water continuously migrates
from the left boundary to the medium driven by the cap-
illary force. Fig. 6 showcases this process through plotting
the contours of the water saturation at different times. The
water flow exhibits substantial randomness due to the random
heterogeneity of the medium and the resulting differences of
capillary forces in different regions.

5. Conclusions
A thermodynamically consistent formulation of the

Richards equation that describes unsaturated flow in porous
media has been established through introducing the free energy
concept. The capillarity resulting from the interfacial tension
at the pore scales and significantly affecting unsaturated flow
is characterized by an interfacial free energy and its corre-
sponding chemical potential. The formulation is proved to
follow an energy dissipation law, which implies the consis-
tency to the second law of thermodynamics. Incorporating the
free energy concept and the second law of thermodynamics
into the modeling framework of unsaturated flow in porous
media can not only establish a theoretical foundation for the
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(a) Porosity (b) Permeability (log10(K))

Fig. 5. Porosity and permeability (log10(K), the md of K is md) in Example 2.

(a) t = 0.3 year (b) t = 0.6 year

(c) t = 1 year

Fig. 6. Saturation distributions at different times in Example 2.

mathematical modeling but also provide an essential criterion
for the development of effective numerical methods; that is,
the energy dissipation law (standing for the second law of ther-
modynamics in the isothermal context) should be preserved at
the discrete level so as to guarantee the long-time stability and
accuracy in numerical simulation.

To overcome the strong nonlinearity of the model, a
linearized and energy stable time discretized method is pro-
posed based on the semi-implicit discrete chemical potential.
Numerical examples are conducted to validate the thermo-
dynamical consistency of the model and numerical scheme.
Compared to the existing numerical methods, the proposed

numerical scheme inherits energy stability by a linearized
way and therefore does not require any nonlinear iterative
solvers and computational cost. Certainly, it has the first-order
time approximate accuracy only, so it could be interesting
future work to design energy stable high-order time discretized
schemes.
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