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Abstract:
This study introduces MicroGraphNets, a deep learning framework for automating the
microscopic characterization of wettability in porous media using graph neural networks.
The framework predicts rock surface roughness, fluid/fluid interfacial curvatures, and
contact angles at 3-phase contact lines from segmented multiphase micro-computed
tomography images. This is achieved by converting these images into sets of surface
and interfacial points, with their intersection defining the 3-phase contact line points.
Specialized geometrical training graphs are constructed from these points to predict each
property, leveraging surface and interfacial normal vectors as input features for constructing
surface and interfacial graphs. To address the unique challenge that arises from the
coexistence of all phases around 3-phase contact lines, distinct node types assigned to
each phase were embedded as node features for constructing contact angle graphs. To
predict the properties, the framework employs a message-passing graph neural network
with three modules: an encoder for initial feature embeddings, a processor for aggregating
neighboring embeddings and propagating messages, and a decoder for final property
prediction. This approach effectively captures node and edge relationships, facilitating
accurate regression of surface and interfacial properties. Validation includes testing on
unseen samples and a synthetic droplet test against analytical solutions. Time-resolved
analysis was performed to demonstrate the scalability and efficiency of the framework on
large datasets. MicroGraphNets demonstrates superior accuracy and efficiency compared
to traditional deep learning methods, showcasing its potential for predicting microscopic
surface and interfacial properties of porous media.

1. Introduction
Wettability, which is the relative affinity of a surface for

multiple coexisting fluids, underpins numerous multiphase
processes related to water resource management and designing
various engineering solutions for contaminant remediation in
groundwater aquifers (Haines, 1930; Lourenço et al., 2018),
geological carbon storage and sequestration in subsurface
reservoirs (Iglauer et al., 2015), and hydrocarbon recovery
by implementing innovative chemical Enhanced Oil Recov-
ery techniques (Ding et al., 2019; Boampong et al., 2023;
Shapoval et al., 2023). Additionally, understanding wettability

is essential for unraveling the complex interactions between
fluids and the internal surfaces of porous media (Shapoval et
al., 2022).

Examination of the wettability of porous surfaces can
be performed across many scales, including nano, molecu-
lar, micro (pore), macro (core), and field (reservoir) scales
(Armstrong et al., 2021), providing insights into the complex
nature of wettability and its diverse implications. Comprehen-
sive characterization of wettability requires computations of
various multiphase estimates that indicate the state of wet-
tability of porous media, such as in-situ fluid/fluid interfacial
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curvatures and contact angles formed by the interface of fluids
on the studied surface. The relationship between the interfacial
curvature and the phase capillary pressure is described by the
following Young-Laplace equation:

Pc = Pnw −Pw = γ

(
1

R1
+

1
R2

)
(1)

where Pc, Pnw and Pw are the capillary, non-wetting phase,
and wetting phase pressures, respectively, γ is the interfacial
tension between fluid phases, and R1 and R2 are the principal
radii of the fluid/fluid interfacial curvature. Moreover, the
following Laplace equation governs the balance between the
surface and interfacial tensions at the contact points, and its
relationship with the formed contact angles:

γs/nw − γs/w = γw/nw cosθ (2)
where γs.nw, γs/w and γw/nw refer to the tensions between the
solid surface and non-wetting phase, solid surface and wetting
phase, and wetting phase and non-wetting phase, respectively,
and θ is the contact angle between the fluid phases measured
typically in the denser phase. Furthermore, the impact of
surface roughness on wettability has been acknowledged in
numerous studies because it can introduce contact angle hys-
teresis and non-wetting phase trapping (AlRatrout et al., 2018;
Zulfiqar et al., 2020; Geistlinger et al., 2024).

At the microscopic scale, also known as the pore scale,
which forms the focus of this study, micro-computed tomog-
raphy (micro-CT) imaging technology has emerged as a trans-
formative tool for visualizing immiscible fluid configurations
within porous media (Zou and Sun, 2020). This technology has
revolutionized the imaging of in-situ multiphase interactions,
enabling the precise quantification of essential multiphase
properties from reconstructed 3-dimensional (3D) images. The
emergence of micro-CT has paved the way for researchers
to develop state-of-the-art techniques for computing the mul-
tiphase properties with the highest possible accuracy. Early
computation methods relied on random manual sampling and
the computation of in-situ contact angles from images around
the 3-phase contact lines (CL). However, this method is time-
consuming, prone to user and selection biases, and results in a
limited number of computations that may not be representative
of the overall wettability. Later, an automated method for
measuring contact angles was developed by directly using
segmented images to obtain vectors normal to the fluid/fluid
interface and rock surface at voxels belonging to the CLs and
using their dot product to compute the contact angles (Klise
et al., 2016). To date, the most robust numerical computation
method published by AlRatrout et al. (2017) can be used to
compute the surface roughness, fluid/fluid interfacial curva-
tures, and in-situ contact angles. This approach provides addi-
tional accuracy because it uses smoothed meshes representing
all interfaces to compute the interfacial properties, thereby
reducing the effect of voxelization on computed normals.

Deep Learning (DL) models, a subset of Artificial Intel-
ligence, characterized by their ability to automatically learn
patterns from complex data, have gained prominence as effec-
tive tools in multiple applications such as facial recognition
(Balaban, 2015; Singh et al., 2019) and natural language

processing (Deng and Liu, 2018; Wang and Gang, 2018) tasks.
The majority of DL applications in microscopic porous media
use Convolutional Neural Networks (CNNs), which have been
employed to automate the processing of raw micro-CT images
(Ar Rushood et al., 2020; Cao et al., 2020; Wang et al., 2021;
Alqahtani et al., 2022), reconstruction of porous media (Wang
et al., 2018), and characterization of subsurface rock properties
(Alqahtani et al., 2020, 2021; Rabbani et al., 2020; Santos et
al., 2020). The application of such approaches in wettability
characterization can be exemplified by the work of Yun et
al. (2020), which utilized CNNs to classify wettability from
2-dimensional (2D) images of micromodels. Regardless of the
high accuracy achieved by this implementation, the developed
model does not allow comparative analysis because it produces
binary outputs, where 0 = water-wet and 1 = oil-wet. In
addition, they cannot characterize mixed-wet (intermediate-
wet) conditions, which have been shown to affect spontaneous
imbibition in heterogeneous porous media (Diao et al., 2021).
More recently, Rabbani et al. (2023) proposed DeepAngle, an
Artificial Neural Network (ANN)-based model for estimating
in-situ contact angles. In this approach, the sparsity of the
contact angle measurements within the 3D images is handled
by sampling spheres of varying sizes from different locations
on the 3-phase CL. The sampled spheres were then flattened
and fed into a feedforward ANN to predict contact angles
through regression. These approaches, which are powerful for
learning local features within predefined receptive fields from
structured datasets, possess inherent limitations, such as their
ability to operate exclusively on uniform (structured) grids,
fixed input size, and the demand for substantial memory and
computational resources.

In contrast to the aforementioned techniques, some DL
models can learn from unstructured data such as point clouds,
meshes, and graphs, and have emerged as promising alter-
natives for pore-scale modelling. Examples of these methods
include PointNet (Charles et al., 2017) and Graph Neural Net-
works (GNNs). Such methods have the potential to overcome
the constraints of structured approaches and offer versatility
in handling complex porous media modelling tasks. Most
published works related to the application of these methods
aim to develop and train models to predict pore-scale flow
properties such as permeability. For instance, point clouds
have been used to model rock surfaces and train PointNet
architectures to predict the absolute permeability of porous
media (Kashefi and Mukerji, 2021). On the other hand, Cai et
al. (2023) extracted Morse graph representations of porous
media and trained equivariant GNNs, while Alzahrani et
al. (2023) utilized pre-trained CNN-based features to construct
graphs for training GNNs to predict the permeability. More-
over, GNNs have recently been employed to predict elastic
moduli from digital rock images (Chung et al., 2024). To
the best of our knowledge, there are no published methods
that use unstructured data as inputs for training DL models to
characterize the pore-scale wettability of porous media.

In this paper, we present MicroGraphNets, a DL framework
that automates microscopic characterization of porous media
using GNNs. This study contributes to the expanding number
of techniques available for analyzing the in-situ wettability
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Table 1. Summary of porous media properties used for training and testing.

Rock name Type Wetting state ϕ (%) Sw (%) θmean (Degrees) kmean (1/µm) Rmean (µm) Dataset

Bentheimer (BH) Sandstone Water-wet 22.8 92.9 58.1 0.0333 1.152 Training

Indiana limestone (IL) Carbonate Oil-wet 13.4 69.1 124.9 -0.0117 1.007 Training

Luxembourg (LUX) Sandstone
Water-wet 7.9 81.2 66.8 -0.0088 0.963 Testing

Mixed-wet 8.7 35.2 96.8 0.0131 0.379 Testing

Ketton limestone (KL) Carbonate Water-wet 11.0 59.7 61.6 0.0035 1.340 Testing

(a) (b) (c) (d)

Fig. 1. Visualizations of 2D slices of porous media. (a) BH, (b) IL, (c) LUX-WW and (d) LUX-MW.

of porous media and its related properties. The remainder of
this paper is organized as follows: In the Methods section, we
describe the datasets used for training, validation, and testing;
numerical methods used for computing the actual, also referred
to as ground truth (GT); surface and interfacial properties;
graph construction approaches; MicroGraphNets architecture;
and training and testing procedures. The results are then
discussed, including the training, validation, and testing per-
formance; comparison with analytical synthetic droplet test
solutions; and testing on unseen samples. Moreover, a time-
resolved analysis of the dynamic contact angles throughout the
waterflooding experiment is included, along with a discussion
of the memory and computational requirements. Finally, we
conclude and recommend directions for future research.

2. Methods

2.1 Training and testing datasets
The training dataset used in this study comprised two

micro-CT images of rock samples with varying structures and
wetting characteristics: Water-wet Bentheimer (BH) sandstone
(Sun et al., 2020) and oil-wet Indiana limestone (IL) (Shapoval
et al., 2022; Alzahrani et al., 2023). Micro-CT images were
acquired for both samples at residual oil saturations of 94%
and 87% for the BH and IL, respectively. These samples
satisfied the main requirement for building the dataset, which
was to build a dataset that included all possible values within
the ranges of estimates of the surface and interfacial properties.
The grayscale (raw) micro-CT images were segmented using
the watershed algorithm (Meyer and Beucher, 1990) into 0 =
water (dense phase), 1 = matrix (solid phase), and 2 = oil (light
phase). Visualizations of 2D slices of porous media is shown

in Fig. 1 Accurate image processing and phase segmentation
are vital for the accuracy of the numerical computation of
multiphase properties (Garfi et al., 2020).

In addition, to assess the robustness of the developed
models when encountering samples that were not included dur-
ing training, that is, unseen samples, two additional samples,
namely Luxembourg (LUX) sandstone samples, were used to
test the trained models. These sandstone samples represent
distinct wetting conditions, one being water-wet (LUX-WW)
and the other exhibiting mixed wetting characteristics (LUX-
MW), to align with the diversity in wetting characteristics
covered by the training dataset. Finally, published images of
time-resolved flooding experiments performed on a Ketton
limestone (KL) sample were used to test the performance
of the trained model on large volumes of data (Rücker et
al., 2019). The relevant rock and interfacial properties of the
samples used in this study are summarized in Table 1.

2.2 Numerical pore-scale wettability
characterization methods

In this study, we used the automatic mesh-based method
proposed by AlRatrout et al. (2017) to compute the GT values
of the surface and interfacial properties. In this approach, a
multi-zonal mesh is extracted from the segmented multiphase
images, where the first zone (z1) represents the interface
between the lighter phase and the solid surface (oil/rock), the
second zone (z2) represents the fluid/fluid (oil/water) interface,
and the third zone (z3) represents the interface between the
denser phase and the solid surface (water/rock). These meshes
were smoothed using volume- and curvature-preserving Gaus-
sian smoothing to minimize the effect of voxelization on the
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Fig. 2. Probability distributions of the GT (a) surface roughness, (b) interfacial curvatures and (c) contact angles of different
rocks computed using the automated method proposed by AlRatrout et al. (2017).

measurements. Subsequently, normal vectors were computed
at every location on the meshes. The curvature at every vertex
on the extracted mesh can be computed as the sum of the
dot product of the vertex normal and a vector normal to the
contact line and tangent to the fluid/fluid interface, measured
in 1/µm. The computed curvatures of the rock surface can be
used to compute the surface roughness at each vertex using the
following relationship proposed by (AlRatrout et al., 2018):

Rai =
1

Nad j

Nad j

∑
j∈ad j(i)

∣∣k ja j
∣∣ (3)

where Rai is the surface roughness at vertex i, measured in
µm, k j and a j are the computed surface curvatures and areas,
respectively, of vertices j which are adjacent to node i, denoted
j ∈ ad j(i), and Nad j is the number of adjacent vertices. In this
method, the modulus of curvature is used; hence, the Rai values
are always positive, and indicate how rough the rock surface
is at vertex i.

Finally, the contact angles were computed at every vertex
belonging to the 3-phase CL. This was accomplished by
calculating the dot product of the vectors normal to the
oil/water and water/rock interfaces, enabling the measurement
of the contact angles that enclose the denser phase (water). The
following equation was used to compute the contact angle for
each vertex belonging to the 3-phase CL:

θi = π − cos−1 (ni|z2 ·ni|z3

)
(4)

where θi is the contact angle calculated at every vertex i on the
3-phase CL and ni|z2 and ni|z3 are the normals at i belonging
to z2 and z3, respectively. This approach resulted in three sets
of data, each including 3D spatial coordinates, along with
the corresponding surface roughness, interfacial curvatures,
and in-situ contact angles. The probability distributions of the
surface and interfacial properties computed using this method
are shown in Fig. 2. Visualizations of the spatial distributions
of these properties throughout the samples are shown in Fig.
3.

After performing the numerical computations of the multi-
phase estimates, three sets of points were obtained: (1) Surface
points, (2) interfacial points and (3) 3-phase contact line

points, which contain the spatial coordinates in 3D space along
with the computed surface roughness at set (1), interfacial
curvatures at set (2), and contact angles at set (3). These sets
of points are ready for use as inputs for the graph construction
module, as explained in the next section.

2.3 Graph construction module
Generally, a graph is represented by G = {V,E} where G

is the graph, V is the set of nodes, and E is the set of edges
connecting the nodes. Computationally, graphs are represented
by a set of matrices, defined by G= {A,X,E} where A is the
adjacency matrix, which is a binary matrix of shape [n× n],
where n is number of nodes, that captures the connectivity
between nodes, while X is node features matrix, of shape
[n× n f ], where n f is the number of node features, and E is
the edge attributes (features) matrix, of shape [nE ×nattr] where
nE and nattr represent the number of edges and edge attributes,
respectively. To refer to a single feature vector of node i and
an edge feature vector between nodes i and j, xi and ei j
notations are used, respectively. Graph edges can be directed or
undirected, however, in this study, all graphs were constructed
with undirected edges, which means that if ei j exists, e ji must
exist as well. The label matrix used for training the GNNs
is represented by Y . The shape of Y depends on the level at
which the training task is performed, such as the node, edge,
or graph level. All graphs in the present study are used for
node-level prediction tasks, meaning that, given the node and
edge input features, the models are trained to predict the final
node embeddings that represent the desired output property.
Specifically, a single output value (roughness, curvature, or
contact angle) for each node is predicted, i.e., Y is a vector
of size [n× ny], where ny is the size of a single prediction
vector, which is set to 1 throughout this study, and each
label for node i is indicated by ŷi. In the following sections,
we describe the details of converting sets of surface points,
interfacial points, and 3-phase CL neighborhood extracted
from segmented multiphase images into graph representations
based on the aforementioned graph definition.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 3. 3D visualizations of the spatial distributions of (a)-(d) surface roughness, (e)-(h) interfacial curvatures and (i)-(l) contact
angles. From left to right: BH, IL, LUX-WW, and LUX-MW.

2.3.1 Surface roughness and interfacial curvature graphs

To construct graphs for training MicroGraphNets to predict
the surface roughness and interfacial curvatures, we started by
using the sets (1) for surface points and (2) for interfacial
points resulting from the selected numerical method, along
with the computed GT values of the roughness and interfacial
curvature, respectively, as the graph nodes. These sets are
visualized in the top and middle rows Fig. 3, respectively.
Then, for every node k, the number of neighbors is searched
and edges are constructed using the K-Nearest Neighbor
(KNN) algorithm (Goldberger et al., 2004). For these graphs,
k was selected as 10 through trial and error to achieve the

best possible balance between the accuracy and efficiency.
Moreover, because the aim was to build geometrical graphs
that represent surfaces and interfaces in a geometric space,
the geometrical information was embedded as edge attributes
instead of node features, computed from the relative displace-
ment vectors between all pairs of connected nodes concate-
nated with their norms, yielding nattr = 4. Normals computed
from KNN nodes using efficient techniques to construct local
surfaces and compute the surface normal (Yu et al., 2019) were
used as node input features, resulting in X of shape [n×3].
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(a) (b) (c) (d)

Fig. 4. Illustration of (a) 2D slice of a trapped oil blob, (b) 3D volume showing the blob where red is oil, gray is rock, and
water is transparent, (c) identified 3-phase contact line neighborhood drawn in black and (d) identified sets of points in the
neighborhood of 3-phase CL, where red represents oil points, gray represents rock points, blue represents water points, and
black represents the identified 3-phase CL points.

Table 2. The network and training hyper-parameters.

Type Parameter Value

Network
hyper-parameters

Hidden layer size 16

L 10

Aggregation function Sum

Training
hyper-parameters

Learning rate 0.001

Batch size 32

Optimizer Adam

2.3.2 Contact angle graphs

In this scenario, graph construction is not as straightfor-
ward for the following reasons:

1) Contact angle computation requires spatial information
(coordinates and normals) from both interfaces, namely,
the rock surface and fluid/fluid interfacial nodes around
the 3-phase CLs,

2) the measurements are not performed at every node;
instead, contact angles are measured only on the 3-phase
CL,

3) normals cannot be computed on the 3-phase CLs, and
hence, different node embedding strategies are needed.

To overcome these challenges, specialized graphs were
built to represent the neighborhood points of the 3-phase CLs
by performing numerous morphological dilations on the binary
maps of the points of the 3-phase CLs. Node features were
then set to represent different node types with values of 0, 1,
2, and 3, representing water, rock, oil, and 3-phase CL nodes,
respectively. The identification of the 3-phase CLs as well as
the points belonging to their neighborhood are illustrated in
Fig. 4. To computationally represent the node types as inputs,
one-hot encoded vectors of size four were used for each type,
resulting in n f = 3. Edges and edge attributes were constructed
using the method described in the previous subsection. To
overcome challenges (2) and (3), an arbitrary negative value,
e.g., -999, was used as a label for neighboring nodes that do
not belong to the 3-phase CL.

2.4 MicroGraphNets architecture
In this section, details of the MicroGraphNets architecture

are explained. Our model comprises three main modules: (1)
Encoder, (2) processor and (3) decoder modules. First, the
encoder takes the initial node features and edge attributes,
along with the edge index matrices, and generates node and
edge embeddings, as described by the following equation:

ENC = ReLU [MLP(A,X,E)] (5)
where ENC is the output of the encoder (learned embeddings),
MLP represents the multilayer perceptron, an ANN with
multiple neurons in the hidden layers, and ReLU is Rectified
Linear Unit used as the activation layer. For simplicity, the size
of the hidden layers was chosen to be constant across all the
tasks. An optional normalization layer can be applied to the
final encoder output. Second, the processor module comprises
L duplicate message-passing layers, which are considered
the fundamental operations for building GNNs. The size of
the hidden layer and the number of processor layers are
hyperparameters that influence the model performance and
training efficiency. A summary of the selected network hy-
perparameters is presented in Table 2. These hyperparameters
were selected after trial and error to achieve the best balance
between accuracy and computational efficiency. The processor
comprises three functions: (a) A message construction function
that collects neighboring node embeddings and generates a
message as follows:

mi→ j = msg(hi,h j,ei j) (6)
where mi→ j is the calculated message between nodes i and j;
using the general form “msg” function, and hi and h j are the
features of the source and target nodes, respectively. Secondly,
in the (b) aggregation function:

mi = ∑
j∈N(i)

m j→i (7)

where mi is the aggregated message from neighbors j of node
i, where the neighbors are denoted N(i), and m j→i is the
message from node j relating to node i. After aggregating the
messages of all nodes, the update function (c) is applied. In
this function, the embeddings are updated using the following
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Fig. 5. Schematic diagram illustrating the architecture of the MicroGraphNets. The Figure shows (1) a segmented micro-CT
subsample from which (2) the rock surface, fluid/fluid interface, and 3-phase CL points are extracted, and (3) the sets of
points are converted into KNN graphs based on the methods explained in Section 3.3.3. Then, the graphs are used to train
MicroGraphNets by passing them through (4) an encoder that uses MLPs to process the initial node and edge features to
learn node embeddings, and (5) a set of L processors that perform message passing, aggregation of messages, and updating
the embeddings, and the final embedding is processed using the (6) processor’s MLP into (7) the final output. Finally, (8) the
trained models are validated and tested by constructing graphs for a test sample and passing them through the models.

equation:

h′i = update(mi,hi) (8)
where “update” is the general form function that takes in
mi and hi and outputs h′i, which is the updated embeddings
of node i. In this implementation, the “msg” and “update”
functions use ANN transformations, that is, MLPs.

Finally, the decoder decodes the final node embeddings
by passing h′i through two MLPs separated by a ReLU. The
shape of the output of the last layer in the decoder must be
1, such that every trained network accurately predicts a single
value per node. A schematic of the overall architecture of the
MicroGraphNets is shown in Fig. 5.

2.5 Training, validation and testing
To computationally perform GNN operations, both Py-

Torch (Paszke et al., 2019) and PyTorch Geometric (PyG)
(Fey and Lenssen, 2019) open-source Python packages were
utilized. These libraries provide functionalities for performing
and optimizing resource-intensive DL operations. To facilitate
training using PyTorch and PyG, edge information is saved
in a COO matrix, called the edge index, of shape [2× nE ],
which is an efficient way to save edge information, namely, as
source and target nodes. For surface roughness and interfacial
curvatures, batch training was implemented by subsampling
graphs from the roughness and interfacial curvature sets. This
is optional for building graphs for contact angle prediction
because measurements of angles are computed only at the
3-phase CL, making the graph sizes significantly smaller.

However, for consistency, a constant subsample size of 100
cubic voxels was selected for all tasks. Selecting this size
ensures that the graph construction time does not increase
exponentially because of the significantly large graphs. The
total number of training graphs resulting from the selection
of this subsample size was 4,456. It is noteworthy that one
of the advantages of GNNs is that they do not have to obey
a fixed input size, such as CNNs, which makes them more
versatile when testing on larger graphs while maintaining their
generalizability.

In both cases, data were split into 70/20/10 for training,
validation, and testing. The training set was used to train
the model by running the MicroGraphNets model and then
calculating the Mean Absolute Error (MAE) as the objective
loss function, as shown by the following equation:

MAE =
1
N

N

∑
i=1

|yi − ŷi| (9)

where N denotes the number of samples in the dataset, yi
denotes the GT values, and ŷi denotes model predictions.
The MAE loss was minimized during backward propagation
using the Gradient Descent approach (Amari, 1993) with the
Adam optimizer (Kingma and Ba, 2017). A learning rate of
0.001 was used for all tasks, and the models were trained
for 100 epochs for surface roughness and interfacial curvature
predictions and 1,000 epochs for contact angle prediction. A
summary of the training hyperparameters is provided in Table
2.

The model was validated during training by running the



64 Alzahrani, M. K., et al. Capillarity, 2024, 12(3): 57-71

(a) (b) (c)

Fig. 6. Training and validation MAE losses of MicroGraphNets for predicting (a) surface roughness, (b) interfacial curvatures
and (c) contact angles.

model on the validation dataset after each epoch and recording
the validation loss. An early stopping strategy was imple-
mented to avoid overfitting by terminating the training process
if the validation loss failed to improve for the previous 10% of
the total number of designated epochs and only the models that
achieved the lowest validation loss were saved. In addition,
after the training was completed, the performance of the
trained models was tested on the test dataset, which comprised
of samples that were not included in the training process.
Moreover, the synthetic droplet test was utilized in the case of
contact angles, which are commonly used to benchmark in-situ
contact angle computation approaches. Finally, the efficiency
of the model was tested by performing a time-resolved analysis
of the contact angle on the KL sample obtained from a
synchrotron micro-CT device (Rücker et al., 2019), which
enabled the imaging of microscopic fluid flow at various time
steps.

3. Results and discussion
In this section, the training, validation, and testing per-

formance of the proposed architectures are presented. Subse-
quently, the synthetic droplet test results are discussed. Next,
the results of testing the trained models on unseen samples,
namely LUX-WW and LUX-MW sandstones, are discussed.
Moreover, we show the interpretation of the time-resolved
synchrotron images of the multiphase fluid flow experiments
performed on the KL sample using MicroGraphNets. Finally,
a discussion of the memory and computational requirements
is provided.

3.1 Training, validation and testing performance
The performances of the trained models were evaluated

based on the MAE of predicting surface roughness, interfacial
curvature, and contact angles separately after each training
epoch. The MAE losses resulting from running the model
on the training and validation datasets are recorded and
illustrated in Fig. 6. These results indicate that the proposed
architectures reduced the MAE losses to less than 0.21 µm,
0.057 1/µm, and 6◦ for the surface roughness, interfacial
curvature, and contact angle predictions, respectively, for the
validation samples. Visual comparisons between the ground

truth and model predictions for the surface roughness and
interfacial curvatures are shown in Fig. 7. The samples in
this figure were obtained from the testing dataset, which was
not encountered during training; however, they belong to the
same rock types in the training dataset, namely BH and IL. In
addition, the figure illustrates the absolute differences between
the GT and predicted values, where lighter colors represent
higher prediction errors. As shown in the figure, most of
the high-error predictions are located near the edges of the
selected samples, which is expected because these regions
lose some neighbor information owing to random subsampling
(cropping). In addition, the resulting probability distributions
from the GT and predictions were compared, showing that a
high match can be observed even on unseen samples. The most
important values obtained from the probability distributions
are the mean interfacial curvatures and surface roughness
values, which also show a high match between the GT and
predictions.

On the other hand, the performance of MicroGraphNets for
predicting the in-situ contact angles of the testing samples is
summarized in Figs. 8(a) and 8(b). These figures show the GT
values of the contact angles plotted in a scatter plot against
the predicted values. As illustrated in the figure, the model
achieved coefficients of determination (R2) of 0.968 and 0.923
for predicting the contact angles of the BH and IL testing
samples, respectively. Similar to the prediction of the other
properties, it can be observed that some model predictions
were not accurate in both cases. Two reasons contributed to
these inaccuracies: (1) Random cropping and (2) extremely
low or high angles, because these measurements are less
common in both datasets than moderate values, as shown in
the GT probability distributions, Fig. 2.

3.2 Synthetic droplet test
A common approach for evaluating contact angle mea-

surement methods is the synthetic droplet test. This test was
accomplished by generating a voxelized 3D image of a slanted
surface and a spherical droplet placed on top of the surface to
compare the contact angles from the proposed method with the
analytical contact angles. Images with different angles were
obtained by adjusting several parameters, such as droplet size,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 7. Visualizations of the prediction results of the trained model on the testing samples showing (a)-(d) the surface roughness
of the BH sample, (e)-(h) surface roughness of the IL sample, (i)-(l) interfacial curvature of the BH sample, and (m)-(p)
interfacial curvature of the IL sample. From left to right, the figure shows the GT and predicted probability distributions, 3D
spatial distributions of GT values, model predictions, and absolute differences.
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(a) (b)

(c) (d)

Fig. 8. Scatter plots illustrating GT vs predicted values of contact angles for testing samples, namely, (a) BH and (b) IL and
samples of unseen rock types which are (c) LUX-WW and (d) LUX-MW.

center height, and resolution, as well as the tilt angle of the
surface. The analytical contact angles were then calculated
geometrically from these synthetic images. An example of the
synthetic droplet test is shown in Fig. 9(a). In the present study,
various combinations of the parameters, such that the entire
range of contact angles was covered, from 0◦ to 180◦. The re-
sults of this test are illustrated in Fig. 9(b) using the maximum,
minimum, and mean of the predicted angles plotted against
the analytical (actual) contact angles computed geometrically.
As shown in the figure, the mean of the predicted contact
angles closely matched the analytical solution represented by
the dashed line.

3.3 Testing on unseen samples
In addition to the previous test, samples of unseen struc-

tures and interfacial properties were used to test the robust-
ness of the proposed models, namely, LUX-WW and LUX-
MW. With respect to the surface roughness and interfacial
curvatures, Fig. 10 illustrates that the proposed model closely
matches the GT values, even when tested on unseen samples.
It is noteworthy that only one LUX sample, namely, the
water-wet sample in this case, is illustrated for roughness
prediction, as the surface roughness of the porous media will

not be altered by changing the wetting characteristics. By
contrast, in Figs. 8(c) and 8(d), the predicted contact angles
are plotted against the GT angles for LUX-WW (left) and
LUX-MW (right). As can be observed in the figure, the model
achieved slightly lower accuracy than the samples of rock
types that were included in the training process, that is, BH
and IL. The resulting R2 values were 0.900 and 0.894 for
the water-wet and mixed-wet LUX samples, respectively. In
addition, to inspect the effect of these inaccuracies on the
overall characterization of the mean contact angles, the GT
and predicted probability distributions of the contact angles
of both LUX samples are illustrated in Fig. 11. The figures
show that for these samples, the mean contact angles closely
match regardless of the discrepancies caused by the extreme
measurements.

3.4 Time-resolved analysis
In addition to the static contact angles captured at the end

of the flooding experiments, the contact angle measurements
can be performed dynamically using synchrotron micro-CT
imaging, which allows the acquisition of tomographic data at
different time steps during the experiment. To showcase one
of the applications of the proposed model, we performed pre-
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(a) (b)

Fig. 9. Visualization of an example of (a) the synthetic droplet test with a surface slanted by 45◦ and (b) the results of predicting
contact angles using MicroGraphNets plotted against the analytical solution of contact angles.

Table 3. Time and memory requirements of MicroGraphNets
compared with numerical methods.

Type Inference time (s) Memory (GB)

Numerical methods 1,560 47

MicroGraphNets 967 28

dictions using synchrotron micro-CT images published by
Rücker et al. (2019). In this specific case, a water-wet KL
sample, initially at 26.6% water saturation, was flooded and
images were obtained every 38 s until a water saturation
of 59.7% was reached. The results of running the contact
angle model on the images of the KL sample are summarized
in Fig. 12. The figure shows (a) the resulting probability
distributions of the contact angles at different time steps,
distinguished by different colors. Moreover, (b) the mean
contact angles predicted by the trained model were compared
with the GT contact angles computed using the automated
numerical computation method.

Two conclusions can be drawn from the results illustrated
in Fig. 12. First, in a water-wet system, during the waterflood-
ing experiment, the number of points of fluid/fluid contact at
the rock surface was reduced with water injection time. This
occurs because the injected water sweeps oil from large pores
owing to the significantly larger number of water-filling events
compared to oil-filling events, which occur in small pores
where water is unable to overcome the entry pressure, enter the
pore, and replace the oil. Second, this decrease in the number
of points of contact, generally observed in large pores of water-
wet systems where water-filling events dominate, causes the
mean contact angle of the entire system to increase over time,
as the oil ganglia present in small pores remain in contact with
the pore surface.

3.5 Memory and computational requirements
One of the main challenges facing deep learning frame-

works is the memory and computational resources required

for training and inference. In the present study, even with
the availability of these resources, some restrictions were
encountered because large graphs are generally more memory-
consuming than 3D structured grids (volumes). For instance,
it was not possible to train the models on a single graph
that includes all surface and interfacial points for training the
model to predict surface roughness and interfacial curvatures,
respectively, as such a graph cannot fit into the available 24
GB Graphical Processing Unit memory; therefore, a mini-
batching technique was employed. Additionally, the number of
nearest neighbors used to construct the graphs was carefully
selected after trial and error to achieve the best possible
balance between accuracy and reduction of required resources.
Moreover, for graphs representing regions around the 3-phase
contact line, the number of morphological dilations performed
to capture the neighborhood is a hyperparameter that can
influence the accuracy of the models. Selecting a small number
of dilations, specifically less than four, causes the model to fail
to generalize. However, selecting a high number of dilations,
typically above eight, causes the graphs to be unnecessarily
large and includes some regions that are not essential for
predicting the contact angles.

With the selected hyperparameters discussed in the Meth-
ods section, and by applying the mini-batching technique,
the models can be trained relatively efficiently for all tasks.
Specifically, MicroGraphNets takes 2.3 and 1.7 minutes/epoch
to be trained on predicting surface roughness and interfacial
curvatures, respectively. However, because the number of
dilated points surrounding the 3-phase CL is significantly
smaller than the surface and interfacial points, training the
model to predict the contact angles is much faster, requiring an
average of 14 s/epochs and enabling longer training than other
properties. After the training is completed, the inference of the
contact angles on the testing samples by the trained models
can be achieved efficiently using a single Graphical Processing
Unit. Table 3 summarizes the time and memory required
to obtain a full characterization of the surface roughness,
interfacial curvatures, and contact angle measurements of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 10. Visualizations of the prediction results of the trained model on unseen testing samples showing the (a)-(d) surface
roughness of the LUX sample, (e)-(h) interfacial curvature of the LUX-WW sample and (i)-(l) interfacial curvature of the
LUX-MW sample. From left to right, the figure shows the GT and predicted probability distributions, 3D spatial distributions
of GT values, model predictions, and absolute differences.

KL sample using the proposed model as well as a comparison
with the numerical computation methods. As shown in the
table, a reduction of approximately 60% in both inference time
and memory requirements can be achieved by the proposed
architecture in comparison with traditional methods.

4. Conclusions
This paper presents MicroGraphNets, a GNN-based

method for the comprehensive characterization of the pore-
scale wettability of porous media. In the present approach,
various geometric graph representations were constructed to
represent the rock surface, fluid-fluid interface, and regions
around the 3-phase CL. Two main rocks with varying prop-

erties, water-wet BH and oil-wet IL, were considered in the
training datasets and their wettability-related properties were
computed using published numerical computation methods. In
addition, tests were performed on two unseen samples, LUX-
WW and LUX-MW, to assess the accuracy of the model
on samples that were not included in the training datasets.
Graph construction and training for the first two tasks, namely
surface roughness and interfacial curvature prediction, are
straightforward because (1) it is possible to compute normals
and use them as input features, and (2) labels are computed
at all nodes. However, estimating the contact angle requires
additional data manipulation to include nodes of different
types around the 3-phase CLs.
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(a) (b)

Fig. 11. Illustrations of GT and predicted probability distributions of unseen (a) LUX-WW and (b) LUX-MW samples.

(a) (b)

Fig. 12. Results of time-resolved analysis of the water flooding experiment performed on the KL sample. The figure illustrates
(a) the probability distributions of the contact angles predicted by the proposed model and (b) the GT and predicted evolutions
of the mean contact angle at different time steps during the experiment.

The results of this study demonstrate the ability of GNNs
to predict surface and interfacial properties accurately and
efficiently, with R2 above 0.9 for training datasets and 0.85 for
testing datasets. Moreover, the synthetic droplet test validated
the accuracy of MicroGraphNets against analytical contact-
angle solutions. Finally, a time-resolved analysis was per-
formed to predict the dynamic contact angles at different time
steps during the flooding experiment. The findings of this
study suggest that GNNs can serve as a suitable substitute for
traditional approaches for rapid computation of various surface
and interfacial properties. A comprehensive characterization
of wettability can aid researchers by enhancing their under-
standing of multiphase flow behaviors under different wetting
conditions as well as helping them build more descriptive
numerical multiphase flow simulators. It is recommended that
future studies approach more complex and resource-extensive
modelling tasks with GNNs, such as multiphase fluid flow

simulations, reactive transport, particle tracking, and upscaling
from the pore to the core scale.
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