Strengthening and weakening of methane hydrate by water vacancies

Yanwen Lin, Yisi Liu, Ke Xu, Tong Li, Zhisen Zhang, Jianyang Wu

Abstract view|263|times       PDF download|131|times

Abstract


Gas clathrate hydrates show promising applications in sustainable technologies such as future energy resources, gas capture and storage. The stability of clathrate hydrates under external load is of great crucial to those important applications, but remains unknown. Water vacancy is a common structural defect in clathrate hydrates. Herein, the mechanical characteristics of sI methane hydrates containing three types of water vacancy are investigated by molecular dynamics simulations with four different water forcefields. Mechanical properties of methane hydrates such as tensile strength are dictated not only by the density but also the type of water vacancy. Surprisingly, the tensile strength of methane hydrates can be weakened or strengthened, depending on the adopted water model and water vacancy density. Strength enhancement mainly results from the formation of new water cages. This work provides critical insights into the mechanics and microstructural properties of methane clathrate hydrates under external load, which is of primary importance in the recovery of natural gas from methane hydrate reservoirs.

Cited as: Lin, Y., Liu, Y., Xu, K., Li, T., Zhang, Z., Wu, J. Strengthening and weakening of methane hydrate by water vacancies. Advances in Geo-Energy Research, 2022, 6(1): 23-37. https://doi.org/10.46690/ager.2022.01.03


Keywords


Methane hydrates, water vacancy, structural properties, mechanical properties, molecular dynamics simulations

Full Text:

PDF

References


Abascal, J. L. F., Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. Journal of Chemical Physics, 2005, 123(23): 234505.

Atig, D., Broseta, D., Pereira, J. M., et al. Contactless probing of polycrystalline methane hydrate at pore scale suggests weaker tensile properties than thought. Nature Communications, 2020, 11(1): 3379.

Cai, S., Tang, Q., Tian, S., et al. Molecular simulation study on the microscopic structure and mechanical property of defect-containing sI methane hydrate. International Journal of Molecular Sciences, 2019, 20(9): 2305.

Cao, P., Ning, F., Wu, J., et al. Mechanical response of nanocrystalline ice-contained methane hydrates: Key role of water ice. ACS Applied Materials & Interfaces, 2020, 12(12): 14016-14028.

Cao, P., Sheng, J., Wu, J., et al. Mechanical creep instability of nanocrystalline methane hydrates. Physical Chemistry Chemical Physics, 2021, 23(5): 3615-3626.

Cao, P., Wu, J., Zhang, Z., et al. Mechanical properties of methane hydrate: Intrinsic differences from ice. Journal of Physical Chemistry C, 2018, 122(51): 29081-29093.

Casco, M. E., Silvestre-Albero, J., Ramirez-Cuesta, A. J., et al. Methane hydrate formation in confined nanospace can surpass nature. Nature Communications, 2015, 6(1): 6432.

Chen, J., Wang, Y. H., Lang, X. M., et al. Energy-efficient methods for production methane from natural gas hydrates. Journal of Energy Chemistry, 2015, 24(5): 552-558.

Chong, Z. R., Yang, S. H. B., Babu, P., et al. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 2016, 162: 1633-1652.

Costandy, J., Michalis, V. K., Tsimpanogiannis I. N., et al. Molecular dynamics simulations of pure methane and carbon dioxide hydrates: Lattice constants and derivative properties. Molecular Physics, 2016, 114(18): 2672-2687.

de Koning, M., Antonelli, A., da Silva, A. J. R., et al. Structure and energetics of molecular point defects in ice Ih . Physical Review Letters, 2006, 97(15): 155501.

Everett, S. M., Rawn, C. J., Chakoumakos, B. C., et al. Insights into the structure of mixed CO2 /CH4 in gas hydrates. American Mineralogist, 2015, 100(5-6): 1203-1208.

Everett, S. M., Rawn, C. J., Keffer, D. J., et al. Kinetics of methane hydrate decomposition studied via in situ low temperature X-ray powder diffraction. Journal of Physical Chemistry A, 2013, 117(17): 3593-3598.

Fan, S., Wang, X., Wang, Y., et al. Recovering methane from quartz sand-bearing hydrate with gaseous CO2 . Journal of Energy Chemistry, 2017, 26(4): 655-659.

Graves, C. A., James, R. H., Sapart, C. J., et al. Methane in shallow subsurface sediments at the landward limit of the gas hydrate stability zone offshore western Svalbard. Geochimica et Cosmochimica Acta, 2017, 198: 419-438.

Hansen, T. C., Falenty, A., Kuhs, W. F. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit. Journal of Chemical Physics, 2016, 144(5): 054301.

Jacobson, L. C., Molinero, V. A methane-water model for coarse-grained simulations of solutions and clathrate hydrates. Journal of Physical Chemistry B, 2010, 114(21): 7302-7311.

Jendi, Z. M., Servio, P., Rey, A. D. Ideal strength of methane hydrate and ice Ih from first-principles. Crystal Growth & Design, 2015, 15(11): 5301-5309.

Jorgensen, W. L., Maxwell, D. S., TiradoRives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.

Kalashnikova, O. V., Sokolik, I. N. Modeling the radiative properties of nonspherical soil-derived mineral aerosols. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(2): 137-166.

Kaminski, G., Duffy, E. M., Matsui, T., et al. Free-energies of hydration and pure liquid properties of hydrocarbons from the OPLS all-atom model. Journal of Physical Chemistry, 1994, 98(49): 13077-13082.

Koh, C. A., Sloan, E. D. Natural gas hydrates: Recent advances and challenges in energy and environmental applications. AIChE Journal, 2007, 53(7): 1636-1643.

Lee, Y.-L., Kleis, J., Rossmeisl, J., et al. Ab initioenergetics of LaBO3 (001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Physical Review B, 2009, 80(22): 224101.

Liang, S., Liang, D., Wu, N., et al. Molecular mechanisms of gas diffusion in CO2 hydrates. The Journal of Physical Chemistry C, 2016, 120(30): 16298-16304.

Liang, S., Liang, D., Wu, N., et al. Transient translational and rotational water defects in gas hydrates. Journal of Physical Chemistry C, 2017, 121(33): 17595-17602.

Liu, W., Zhao, J., Luo, Y., et al. Experimental measurements of mechanical properties of carbon dioxide hydrate-bearing sediments. Marine and Petroleum Geology, 2013, 46: 201-209.

Lo, H., Lee, M. T., Lin, S. T. Water vacancy driven diffusion in clathrate hydrates: Molecular dynamics simulation study. Journal of Physical Chemistry C, 2017, 121(15): 8280-8289.

Luff, R., Wallmann, K. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at hydrate ridge, cascadia margin: Numerical modeling and mass balances. Geochimica et Cosmochimica Acta, 2003, 67(18): 3403-3421.

Mayeshiba, T., Morgan, D. Strain effects on oxygen vacancy formation energy in perovskites. Solid State Ionics, 2017, 311: 105-117.

McMullan, R. K., Jeffrey, G. A. Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate. The Journal of Chemical Physics, 1965, 42(8): 2725-2732.

Moore, E. B., Molinero, V. Growing correlation length in supercooled water. The Journal of Chemical Physics, 2009, 130(24): 244505.

Ning, F. L., Yu, Y. B., Kjelstrup, S., et al. Mechanical properties of clathrate hydrates: Status and perspectives. Energy & Environmental Science, 2012, 5(5): 6779-6795.

Ogienko, A. G., Kurnosov, A. V., Manakov, A. Y., et al. Gas hydrates of argon and methane synthesized at high pressures: Composition, thermal expansion, and self-preservation. Journal of Physical Chemistry B, 2006, 110(6): 2840-2846.

Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995, 117(1): 1-19.

Reinhardt, A., Doye, J. P. K. Free energy landscapes for homo-geneous nucleation of ice for a monatomic water model. Journal of Chemical Physics, 2012, 136(5): 054501.

Rempel, A. W., Buffett, B. A. Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10151-10164.

Román-Peréz, G., Moaied, M., Soler, J. M., et al. Stability, adsorption, and diffusion of CH4 , CO2 , and H2 in clathrate hydrates. Physical Review Letters, 2010, 105(14): 145901.

Shaibu, R., Sambo, C., Guo, B., et al. An assessment of methane gas production from natural gas hydrates: Challenges, technology and market outlook. Advances in Geo-Energy Research, 2021, 5(3): 318-332.

Shi, Q., Cao, P. Q., Han, Z., et al. Role of guest molecules in the mechanical properties of clathrate hydrates. Crystal Growth & Design 2018, 18(11): 6729-6741.

Shpakov, V. P., Tse, J. S., Tulk, C. A., et al. Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 1998, 282(2): 107-114.

Sloan, E. D. Fundamental principles and applications of natural gas hydrates. Nature, 2003, 426(6964): 353-359.

Sveinsson, H. A., Ning, F., Cao, P., et al. Grain-size-governed shear failure mechanism of polycrystalline methane hydrates. Journal of Physical Chemistry C, 2021, 125(18): 10034-10042.

Uchida, T., Takeya, S., Chuvilin, E. M., et al. Decomposition of methane hydrates in sand, sandstone, clays, and glass beads. Journal of Geophysical Research: Solid Earth, 2004, 109(B5): B05206.

Udachin, K. A., Ratcliffe, C. I., Ripmeester, J. A. A dense and efficient clathrate hydrate structure with unusual cages. Angewandte Chemie-International Edition, 2001, 40(7): 1303-1305.

Vidal-Vidal, Á., Pérez-Rodríguez, M., Piñeiro, M. M. Direct transition mechanism for molecular diffusion in gas hydrates. RSC Advances, 2016, 6(3): 1966-1972.

Vidal-Vidal, Á., Pérez-Rodríguez, M., Torré, J. P., et al. DFT calculation of the potential energy landscape topology and Raman spectra of type I CH4 and CO2 hydrates. Physical Chemistry Chemical Physics, 2015, 17(10): 6963-6975.

Waite, W. F., Santamarina, J. C., Cortes, D. D., et al. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 2009, 47(4): RG4003. Walsh, M. R., Hancock, S. H., Wilson, S. J., et al. Preliminary report on the commercial viability of gas production from natural gas hydrates. Energy Economics, 2009, 31(5): 815-823.

Watkins, M., Pan, D., Wang, E. G., et al. Large variation of vacancy formation energies in the surface of crystalline ice. Nature Materials, 2011, 10(10): 794-798.

Wu, J., Ning, F., Trinh, T. T., et al. Mechanical instability of monocrystalline and polycrystalline methane hydrates. Nature Communications, 2015, 6(1): 8743.

Wu, J., Skallerud, B., He, J., et al. Grain-size induced strengthening and weakening of dislocation-free polycrystalline gas hydrates. Procedia IUTAM, 2017, 21: 11-16.

Xin, Y., Shi, Q., Xu, K., et al. Tensile properties of structural I clathrate hydrates: Role of guest-host hydrogen bonding ability. Frontiers of Physics, 2021, 16(3): 33504.

Xu, K., Yang, L., Liu, J., et al. Mechanical properties of CH4 -CO2 heteroclathrate hydrates. Energy & Fuels, 2020, 34(11): 14368-14378.




DOI: https://doi.org/10.46690/ager.2022.01.03

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright ©2018. All Rights Reserved