Empirical correlations for density, viscosity, and thermal conductivity of pure gaseous hydrogen

Ehsan Heidaryan, Saman A. Aryana

Abstract view|426|times       PDF download|73|times Supplements download|43|times

Abstract


This study addresses the critical need for reliable tools to calculate the thermophysical properties of pure gaseous hydrogen across a wide range of temperatures and pressures. This work proposes accurate and user-friendly functions of temperature and pressure based on a meticulous analysis of an extensive dataset sourced from the open literature.These functions are designed to predict volumetric, transport, and derived properties.The dataset comprises 3,396 data points for density, 940 data points for viscosity, and 2,287 data points for thermal conductivity, covering an extensive temperature and pressure spectrum. For density, the data covers a temperature range from 97 to 873 K and pressures ranging from atmospheric to 1.983 GPa. Viscosity data span temperatures from 100 to 1,100 K and pressures from atmospheric to 217 MPa, while thermal conductivity data extend from 98 to 873 K, with pressures ranging from atmospheric to 99 MPa. The data have been meticulously curated to ensure reliability and representativeness. The proposed correlations exhibit exceptional accuracy, as evidenced by the Absolute Average Deviation results: 0.66% for density, 1.21% for viscosity, and 1.65% for thermal conductivity. To ensure the reliability, the correlations were validated against data from REFPROP 10. In addition to the absolute average deviations, maximum absolute deviations, Coefficients of Determination, and the Percentage of Accuracy-Precision are also included. The proposed correlations have been formulated and validated for a range of key parameters, including isothermal compressibility, volume expansion, fugacity coefficient, enthalpy, entropy, Helmholtz energy, Gibbs energy, adiabatic bulk modulus, speed of sound, as well as kinematic viscosity and thermal diffusivity.

Document Type: Original article

Cited as: Heidaryan, E., Aryana, S. A. Empirical correlations for density, viscosity, and thermal conductivity of pure gaseous hydrogen. Advances in Geo-Energy Research, 2024, 11(1): 54-73. https://doi.org/10.46690/ager.2024.01.06


Keywords


Pure hydrogen, thermodynamic properties, transport properties

Full Text:

PDF Supplements

References


Aly, F. A., Lee, L. L. Self-consistent equations for calculating the ideal gas heat capacity, enthalpy, and entropy. Fluid Phase Equilibria, 1981, 6(3-4): 169-179

Al-Yaseri, A., Wolff-Boenisch, D., Fauziah, C. A., et al. Hydrogen wettability of clays: Implications for underground hydrogen storage. International Journal of Hydrogen Energy, 2021, 46(69): 34356-34361

Amagat, E. H. Mémoires sur l’ élasticit é et la dilatation des fluides jusqu’aux trés hautes pressions. Annales de Chimie et de Physique, 1893, 29: 505-574.

Aryana, S. A., Kovscek, A. R. Experiments and analysis of drainage displacement processes relevant to carbon dioxide injection. Physical Review E, 2012, 86(6): 066310.

Assael, M. J., Assael, J. -A. M., Huber, M. L., et al. Correlation of the thermal conductivity of normal and parahydrogen from the triple point to 1000 K and up to 100 MPa. Journal of Physical and Chemical Reference Data, 2011, 40(3): 033101.

Assael, M. J., Mixafendi, S., Wakeham, W. A. The viscosity and thermal conductivity of normal hydrogen in the limit of zero density. Journal of Physical and Chemical Reference Data, 1986, 15(4): 1315-1322.

Assael, M. J., Wakeham, W. A. Thermal conductivity of four polyatomic gases. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981, 77(3): 697-707.

Bartlett, E. P. The compressibility isotherms of hydrogen, nitrogen and mixtures of these gases at 0 and pressures to 1000 atmospheres. Journal of the American Chemical Society, 1927, 49(3): 687-701.

Bartlett, E. P., Cupples, H. L., Tremearne, T. H. The compressibility isotherms of hydrogen, nitrogen and a 3:1 mixture of these gases at temperatures between 0 and 400 and at pressures to 1000 atmospheres. Journal of the American Chemical Society, 1928, 50(5): 1275-1288.

Bartlett, E. P., Hetherington, H. C., Kvalnes, H. M., et al. The compressibility isotherms of hydrogen, nitrogen and a 3: 1 mixture of these gases at temperatures of -70, -50, -25 and 20 and at pressures to 1000 atmospheres. Journal of the American Chemical Society, 1930, 52(4): 1363-1373.

Bartolomeu, R. A., Franco, L. F. Thermophysical properties of supercritical H2 from Molecular Dynamics simulations. International Journal of Hydrogen Energy, 2020, 45(33): 16372-16380.

Barua, A. K., Afzal, M., Flynn, G. P., et al. Viscosity of hydrogen, deuterium, methane, and carbon monoxide from -50°° to 150 °C below 200 atmospheres. The Journal of Chemical Physics, 1964, 41(2): 374-378.

Batzle, M., Wang, Z. Seismic properties of pore fluids. Geophysics, 1992, 57(11): 1396-1408

Boyd Jr, J. H. The viscosity of compressed gases. Physical Review, 1930, 35(10): 1284-1297.

Bridgman, P. W. The Compressibility of Five Gases to High Pressures. Cambridge, USA, Harvard University Press, 1924.

Carey, C., Carnevale, E. H., Uva, S., et al. Experimental Determination of Gas Properties at High Temperatures and/or Pressures. Alexandria, USA, National Technical Information Service, 1974.

Chase, M. W., Davies, C. A., Downey, J. R., et al. JANAF thermochemical tables, Third Edition. Journal of Physical and Chemical Reference Data, 1985, 14: 927-1856.

Chen, H., Zheng, J., Xu, P., et al. Study on real-gas equations of high pressure hydrogen. International Journal of Hydrogen Energy, 2010, 35(7): 3100-3104.

Chen, M., Al-Subhi, K., Al-Rajhi, A., et al. Numerical evaluation of hydrogen production by steam reforming of natural gas. Advances in Geo-Energy Research, 2023, 7(3): 141-151.

Cheng, S., Li, F., Shang, F., et al. A review of experimental researches on the thermophysical properties of hydrogencontaining mixtures at high temperatures and high pressures. Journal of Chemical & Engineering Data, 2021, 66(9): 3361-3385.

Cheng, S., Shang, F., Ma, W., et al. PVT Measurements of the H2-CO2-CH4-CO-H2O system at 740-939 K and 18.1- 34.7 MPa with an isochoric apparatus and the development of a virial equation of state. Journal of Chemical & Engineering Data, 2020, 65(10): 4881-4891.

Chu, H., Ma, T., Zhu, W., et al. A novel semi-analytical monitoring model for multi-horizontal well system in largescale underground natural gas storage: Methodology and case study. Fuel, 2023, 334, 126807.

Chuang, S. Y., Chappelear, P. S., Kobayashi, R. Viscosity of methane, hydrogen, and four mixtures of methane and hydrogen from -100.degree.C to 0.degree.C at high pressures. Journal of Chemical & Engineering Data, 1976, 21(4): 403-411.

Clerc, H., Tufeu, R., Neindre, B. Le, Proceedings of the 7th Symposium on Thermophysical Properties, Gaithersburg, MD, USA, 1977.

Clifford, A. A., Colling, L., Dickinson, E., et al. Testing intermolecular potential functions using transport property data. Part 2.-Thermal conductivities of mixtures of helium with the hydrogen isotopes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1975, 71: 1962-1977.

Clifford, A. A., Kestin, J., Wakeham, W. A. The viscosity of mixtures of hydrogen with three noble gases. Berichte Der Bunsengesellschaft Fur Physikalische Chemie, 1981, 85(5): 385-388.

Clifford, A. A., Platts, N. Calculation of the thermal conductivities of hydrogen, nitrogen, oxygen and carbon dioxide at high temperatures. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1981, 77(11): 2669-2678.

Davarnejad, R., Rahimi, B., Baghban, S. N., et al. Development of a thermodynamic model for hydrogen and hydrogen containing mixtures. Fluid Phase Equilibria, 2014, 382: 1-9.

De Lucia, M., Pilz, P., Liebscher, A., et al. Measurements of H2 solubility in saline solutions under reservoir conditions: Preliminary results from project H2STORE. Energy Procedia, 2015, 76: 487-494.

Diller, D. E. Measurements of the viscosity of parahydrogen. The Journal of Chemical Physics, 1965, 42(6): 2089- 2100.

Elliott, J. R., Vladimir, D., Knotts, I. V., et al. Properties of Gases and Liquids. New York, USA, McGraw Hill, 2023.

Golubev, I. F.; Shepeleva, R. I. Viscosity of hydrogen at low temperatures and high pressures. Gazovaya Promyshlennost 1966, 11(4), 54-58. (in Russian)

Golubev, I. F., Shepeleva, R. I. Gazovaya Promyshlennost, 1966, 11(4): 54-58.

Goria, K., Singh, H. M., Singh, A., et al. Insights into biohydrogen production from algal biomass: Challenges, recent advancements and future directions. International Journal of Hydrogen Energy, 2024, 52: 127-151.

Gracki, J. A., Flynn, G. P., Ross, J. Viscosity of nitrogen, helium, hydrogen, and argon from -100 to 25°C up to 150-250 atm. The Journal of Chemical Physics, 1969, 51(9): 3856-3863.

Green hydrogen: An alternative that reduces emissions and cares for our planet, 2023.

Guo, F., Aryana, S. A. An experimental investigation of flow regimes in imbibition and drainage using a microfluidic platform. Energies, 2019, 12(7): 1390.

Haas, W. D., Onnes, H. K. Isotherms of diatomic substances and of their binary mixtures. XII. The compressibility of hydrogen vapour at, and below the boiling point. KNAW, Proceedings, 1912, 15: 405-417.

Han, Y., Fan, C., Yin, Y., et al. Cooperative hydrogen and halogen-bonding interaction promoted deep eutectic solvent-functionalized magnetic metal-organic framework for perfluoroalkyl iodides detection in edible oils. Food Control, 2023, 148: 109625.

Hanley, H. J. M., McCarty, R. D., Intemann, H. The viscosity and thermal conductivity of dilute gaseous hydrogen from 15 to 5000 K. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1970, 74(3): 331-353.

Heidaryan, E. A note on model selection based on the percentage of accuracy-precision. Journal of Energy Resources Technology, 2019, 141(4): 045501.

Hematpur, H., Abdollahi, R., Rostami, S., et al. Review of underground hydrogen storage: Concepts and challenges. Advances in Geo-Energy Research, 2023, 7(2): 111-131.

Hemmes, H., Driessen, A., Griessen, R. Thermodynamic properties of hydrogen at pressures up to 1 Mbar and temperatures between 100 and 1000K. Journal of Physics C: Solid State Physics, 1986, 19(19): 3571.

Hemminger, W. The thermal conductivity of gases: Incorrect results due to desorbed air. International Journal of Thermophysics, 1987, 8: 317-333.

Holborn, L., Otto, J. Über die Isothermen einiger Gase zwischen +400° und -183°. Zeitschrift für Physik, 1925, 33: 1-11. (in Chinese)

Huppmann, D., Smith, C. Mitigation pathways compatible with 1.5 °C in the context of sustainable development, in Global Warming of 1.5 °C, Intergovernmental Panel on Climate Change, edited by J. Rogelj, D. Shindell, K. Jiang, et al., Cambridge University Press, Cambridge, pp. 93-174, 2018.

Intergovernmental Panel on Climate Change (IPCC). Mitigation pathways compatible with 1.5 °C in the context of sustainable development, in Global Warming of 1.5 °C, 2018, pp. 93-174.

IRENA, Hydrogen, 2023.

Jaeschke, M., Humphreys, A. E. The GERG Databank of High Accuracy Compressibility Factor Measurements. Dusseldorf, Germany, VDI Verl., 1991.

Jarrahian, A., Karami, H. R., Heidaryan, E. On the isobaric specific heat capacity of natural gas. Fluid Phase Equilibria, 2014, 384: 16-24.

Johnston, H. L., McCloskey, K. E. Viscosities of several common gases between 90 °K and room temperature. The Journal of Physical Chemistry, 1940, 44(9): 1038-1058.

Johnston, H. L., White, D., Wirth, H., et al. Cryogenic Laboratory, Ohio State University Report No. 264-25, 1953.

Jossi, J. A., Stiel, L. I., Thodos, G. The viscosity of pure substances in the dense gaseous and liquid phases. AIChE Journal, 1962, 8(1): 59-63.

Joubert, J. M. A Calphad-type equation of state for hydrogen gas and its application to the assessment of Rh-H system. International Journal of Hydrogen Energy, 2010, 35(5): 2104-2111.

Katalenich, S. M., Jacobson, M. Z. Toward battery electric and hydrogen fuel cell military vehicles for land, air, and sea. Energy, 2022, 254: 124355.

Kestin, J., Nagashima, A. The viscosity of the isotopes of hydrogen and their intermolecular force potentials. Physics of Fluids, 1964, 7 (5): 730-734.

Kestin, J., Ro, S. T., Wakeham, W. A. Reference values of the viscosity of twelve gases at 25 °C. Transactions of the Faraday Society, 1971, 67: 2308-2313.

Kestin, J., Wang, H. The viscosity of five gases: A reevaluation. Transactions of the American Society of Mechanical Engineers, 1958, 80(1): 11-17.

Kestin, J., Yata, J. Viscosity and diffusion coefficient of six binary mixtures. The Journal of Chemical Physics, 1968, 49(11): 4780-4791.

Knapp, H., Schmölling, K., Neumann, A. Measurement of the molal heat capacity of H2-N2 mixtures. Cryogenics, 1976, 16(4): 231-237.

Kuss, E. High pressure research II: The viscosity of compressed gases. Zeitschrift Fur Angewandte Mathematik Und Physik, 1952, 4(6): 203-207.

Leachman, J. W., Jacobsen, R. T., Penoncello, S. G., et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. Journal of Physical and Chemical Reference Data, 2009, 38(3): 721-748.

Lemmon, E. W., Bell, I. H., Huber, M. L., et al. NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 10.0, 2018.

Lemmon, E. W., Huber, M. L., Friend, D. G., et al. Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications 1. SAE International, USA, 2006.

Lemmon, E. W., Huber, M. L., Leachman, J. W. Revised standardized equation for hydrogen gas densities for fuel consumption applications. Journal of Research of the National Institute of Standards and Technology, 2008, 113(6): 341-350.

Leneindr. B. Experimental study of thermal-conductivity of some fluids at high-temperature and pressure. International Journal of Heat and Mass Transfer, 1972, 15(1): 1-24.

Li, J., Chen, Y., Ma, Y., et al. A study on the Joule-Thomson effect of during filling hydrogen in high pressure tank. Case Studies in Thermal Engineering, 2023a, 41: 102678.

Li, F., Ma, W., Zhang, X. Database of thermophysical properties of H2/CO2/CO/CH4/H2O mixtures. International Journal of Hydrogen Energy, 2023b, 48(44): 16923-16935.

Liebenberg, D. H., Mills, R. L., Bronson, J. C. Thermodynamic properties of fluid nH2 in the range 75 to 307 K and 2 to 20 kbar. Los Alamos National Lab (LANL), Los Alamos, NM, United States, 1977.

Liebenberg, D. H., Mills, R. L., Bronson, J. C. Measurement of P,V,T, and sound velocity across the melting curve of n-H2 and n-D2 to 19 kbar. Physical Review B, 1978, 18(8): 4526-4532.

Liu, L., Nieto-Draghi, C., Lachet, V., et al. Bridging confined phase behavior of CH4-CO2 binary systems across scales. The Journal of Supercritical Fluids, 2022, 189: 105713.

Liu, Y., Li, Y., Ma, H., et al. Detection and evaluation technologies for using existing salt caverns to build energy storage. Energies, 2022a, 15(23): 9144.

Lukin, V. I., Ivakin, B. A., Suetin, P. E. Temperature dependence of the viscosity coefficients of some gases. Soviet Physics-Technical Physics, 1983, 28(5): 597. (in Russian)

Mal’tsev, V. A., Nerushev, O. A., Novopashin, S. A., et al. Viscosity of H2-CO2 mixtures at (500, 800, and 1100) K. Journal of Chemical & Engineering Data, 2004, 49(3): 684-687.

May, E. F., Berg, R. F., Moldover, M. R. Reference viscosities of H2, CH4, Ar, and Xe at low densities. International Journal of Thermophysics, 2007, 28(4): 1085-1110.

McCarty, R. D. Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10,000 psia. Washington, D. C., USA, US Department of Commerce, 1972.

Mehl, J. B., Huber, M. L., Harvey, A. H. Ab initio transport coefficients of gaseous hydrogen. International Journal of Thermophysics, 2010, 31(4-5): 740-755.

Menabde, N. E. Viscosity coefficient of hydrogen (H2, D2), neon (Ne20, Ne22) and helium (He3 ) isotopes in the temperature range -195 to +25 °C. Soviet Atomic Energy, 1965, 19(5): 1421-1422.

Michels, A., De Graaff, W., Wassenaar, T., et al. Compressibility isotherms of hydrogen and deuterium at temperatures between -175 °C and +150 °C (at densities up to 960 amagat). Physica, 1959, 25(1-6): 25-42.

Michels, A., Goudeket, M. Compressibilities of deuterium between 0 °C and 150 °C, up to 3000 atmospheres. Physica, 1941, 8(3): 353-360.

Michels, A., Schipper, A. C. J., Rintoul, W. H. The viscosity of hydrogen and deuterium at pressures up to 2000 atmospheres. Physica, 1953, 19: 1011-1028.

Millat, J., Dymond, J. H., de Castro, C. N., et al. Transport Properties of Fluids. Cambridge, United Kingdom, Cambridge University Press, 1996.

Mills, R. L., Liebenberg, D. H., Bronson, J. C., et al. Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 kbar. The Journal of Chemical Physics, 1977, 66(7): 3076-3084.

Mizutani, T., Ohta, H., Ueda, T., et al. Mechanochemically tailored silicon particles for efficient H2 production: Entropy and enthalpy engineering. ACS Sustainable Chemistry & Engineering, 2023, 11(32): 11769-11780

Moroe, S., Woodfield, P. L., Kimura, K., et al. Measurements of hydrogen thermal conductivity at high pressure and high temperature. International Journal of Thermophysics, 2011, 32: 1887-1917.

Mustafa, M., Ross, M., Trengove, R. D., et al. Absolute measurement of the thermal conductivity of helium and hydrogen. Physica A: Statistical Mechanics and its Applications, 1987, 141(1): 233-248.

Muzny, C. D., Huber, M. L., Kazakov, A. F. Correlation for the viscosity of normal hydrogen obtained from symbolic regression. Journal of Chemical & Engineering Data, 2013, 58(4): 969-979.

Nabizadeh, H., Mayinger, F. Viscosity of binary mixtures of hydrogen and natural gas (hythane) in the gaseous phase. High Temperatures-High Pressures, 1999, 31(6): 601-612.

Negro, V., Noussan, M., Chiaramonti, D. The potential role of ammonia for hydrogen storage and transport: A critical review of challenges and opportunities. Energies, 2023, 16(17): 6192.

Nguyen, T. B., Sherpa, K., Chen, C. W., et al. Breakthroughs and prospects in ruthenium-based electrocatalyst for hydrogen evolution reaction. Journal of Alloys and Compounds, 2023, 968: 172020.

Park, B. H., Chae, C. K. Development of correlation equations on hydrogen properties for hydrogen refueling process by machine learning approach. International Journal of Hydrogen Energy, 2022, 47(6): 4185-4195.

Presnall, D. C. Pressure-volume-temperature measurements on hydrogen from 200 to 600 °C and up to 1800 atmospheres. Journal of Geophysical Research, 1969, 74(25): 6026-6033.

Qiu, Z., Yue, Q., Yan, T., et al. Gas utilization optimization and exergy analysis of hydrogen metallurgical shaft furnace. Energy, 2023, 263: 125847.

Reed, T. M., Gubbins, K. E. Applied Statistical Mechanics: Thermodynamic and Transport Properties of Fluids. New York, USA, McGraw Hill, 1973.

Roder, H. M. Thermal conductivity of hydrogen for temperatures between 78 and 310 K with pressures to 70 MPa. International Journal of Thermophysics, 1984, 5: 323-350.

Roder, H. M., Diller, D. E. Thermal conductivity of gaseous and liquid hydrogen. The Journal of Chemical Physics, 1970, 52(11): 5928-5949.

Rudenko, N. S., Sliusar, V. Viscosity of hydrogen at constant density over the temperature range 16.6-300 deg K. Ukrainian Physics Journal, 1968, 13: 656-659.

Sakoda, N., Hisatsugu, T., Furusato, K., et al. Viscosity measurements of hydrogen at high temperatures up to 573 K by a curved vibrating wire method. The Journal of Chemical Thermodynamics, 2015, 89: 22-26.

Sakoda, N., Shindo, K., Motomura, K., et al. Burnett PVT measurements of hydrogen and the development of a virial equation of state at pressures up to 100 MPa. International Journal of Thermophysics, 2012, 33: 381-395.

Scott, G. A. The isotherms of hydrogen, carbon monoxide and their mixtures. Proceedings of the Royal Society of London, Series A, Containing Papers of a Mathematical and Physical Character, 1929, 125(797): 330-344.

Sezgin, J. G., Bosch, C., Montouchet, A., et al. Modelling of hydrogen induced pressurization of internal cavities. International Journal of Hydrogen Energy, 2017, 42(22): 15403-15414.

Shoghl, S. N., Naderifar, A., Farhadi, F., et al. Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling. Journal of Natural Gas Science and Engineering, 2020, 83: 103570.

Smith, J. M., Van Ness, H. C., Abbott, M. M., et al. Introduction to Chemical Engineering Thermodynamics, 9th Edition. New York, USA, McGraw-Hill, 2022.

Song, B., Wang, X., Liu, Z. Gaseous transport properties of hydrogen, deuterium and their binary mixtures from ab initio potential. Molecular Physics, 2013, 111(1): 49-59.

Spycher, N. F., Reed, M. H. Fugacity coefficients of H2, CO2, CH4, H2O and of H2O-CO2-CH4 mixtures: A virial equation treatment for moderate pressures and temperatures applicable to calculations of hydrothermal boiling. Geochimica et Cosmochimica Acta, 1988, 52(3): 739-749.

Stiel, L. I., Thodos, G. The thermal conductivity of nonpolar substances in the dense gaseous and liquid regions. AIChE Journal, 1964, 10(1): 26-30

Striednig, M., Brandstatter, S., Sartory, M., et al. Thermodynamic real gas analysis of a tank filling process. International Journal of Hydrogen Energy, 2014, 39(16): 8495-8509.

Sun, E., Sun, Y., Feng, S., et al. Thermodynamic study of organic Rankine cycle based on extraction steam compression regeneration in the supercritical state. Energy Conversion and Management, 2023, 293: 117546.

Tkacz, M., Litwiniuk, A. Useful equations of state of hydrogen and deuterium. Journal of Alloys and Compounds, 2002, 330: 89-92.

Tosun, I. The Thermodynamics of Phase and Reaction Equilibria. Alpharetta, USA, Elsevier, 2021.

Townend, D. T. A., Bhatt, L. A. Isotherms of hydrogen, carbon monoxide and their mixtures. Royal Society, 1931, 134(824): 502-512.

Thermodynamics Research Center (TRC). Thermodynamic Tables-Hydrocarbons. The Texas A&M University System, College Station, TX, 1986.

Tsederberg, N.V., Popov, V.N., Andreev, I.I. Experimental investigation of the viscosity of hydrogen, Teploenergetika, 1965, 12(4): 84-85. (in Russian)

United Nations Industrial Development Organization (UNIDO). On the sidelines of the 24th Session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC)-COP24. 2018, p. 12.

Verschoyle, T. T. H. Isotherms of hydrogen, of nitrogen, and of hydrogen-nitrogen mixtures, at 0° and 20 °C, up to a pressure of 200 atmospheres. Royal Society, 1926, 111(759): 552-576.

Wang, H., Xin, Y., Kou, Z., et al. Numerical study of the efficiency of underground hydrogen storage in deep saline aquifers, rock springs uplift, Wyoming. Journal of Cleaner Production, 2023, 421: 138484.

Wang, Y., Aryana, S. A. Coupled confined phase behavior and transport of methane in slit nanopores. Chemical Engineering Journal, 2021, 404: 126502.

Wei, C., Raad, S. M. J., Leonenko, Y., et al. Correlations for prediction of hydrogen gas viscosity and density for production, transportation, storage, and utilization applications. International Journal of Hydrogen Energy, 2023, 48(89): 34930-34944.

Wiebe, R., Gaddy, V. L. The compressibilities of hydrogen and of four mixtures of hydrogen and nitrogen at 0, 25, 50, 100, 200 and 300 and to 1000 atmospheres. Journal of the American Chemical Society, 1938, 60(10): 2300-2303.

Xue, Y., Zhang, L., Zhang, S., et al. Analysis of low emission characteristics of NH3/H2/air mixtures under low temperature combustion conditions. Fuel, 2023, 337: 126879.

Yang, Z., Liu, Z., Zhou, J., et al. A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks. Energy, 2023, 278: 127875.

Yusibani, E., Nagahama, Y., Kohno, M., et al. A capillary tube viscometer designed for measurements of hydrogen gas viscosity at high pressure and high temperature. International Journal of Thermophysics, 2011, 32: 1111-1124.

Zhang, T., Liu, J., Sun, S. Technology transition from traditional oil and gas reservoir simulation to the next generation energy development. Advances in Geo-Energy Research, 2023, 7(1): 69-70.

Zheng, J., Zhang, X., Xu, P., et al. Standardized equation for hydrogen gas compressibility factor for fuel consumption applications. International Journal of Hydrogen Energy, 2016, 41(15): 6610-6617




DOI: https://doi.org/10.46690/ager.2024.01.06

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 The Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright ©2018. All Rights Reserved