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Abstract:
Three-phase fluid flow in reservoirs is present in the entire process of oil field development,
and three-phase relative permeability data are crucial for reservoir engineering and
numerical simulation. At the same time, carbon dioxide flooding and storage have garnered
significant attention recently. The calculation of dynamic storage volumes and an in-depth
understanding of three-phase flow within formations are inextricably linked to three-
phase relative permeability. This review is centered around the available experimental
measurements, theoretical models that predict three-phase relative permeability using two-
phase data, and four Lattice Boltzmann method models. By analyzing the strengths,
weaknesses and limitations of each method and assessing the impact of factors like
saturation history, interfacial tension, rock properties, and fluid characteristics on three-
phase relative permeability, this paper seeks to offer a comprehensive understanding of
the topic. In summary, we provide a concise overview of the prospects and challenges in
advancing three-phase relative permeability, serving as a valuable reference for the field
of carbon dioxide flooding and storage.

1. Introduction
With the development of the petroleum industry, scholars

have paid increasing attention to three-phase relative perme-
ability (Alhosani et al., 2021c). Three-phase relative perme-
ability theory was used to describe the flow characteristics of
oil, gas and water. It is also useful for reservoir performance
calculations in many situations, such as CO2 flooding, steam
flooding, micelle flooding, and nitrogen flooding (Blunt, 2017;
Adibifard et al., 2020; Alhosani et al., 2023).

Regrettably, the subject of three-phase relative permeability
has garnered significantly less interest than two-phase relative
permeability since relevant experimental data was presented
in 1941. As such, experimental data on three-phase systems
has been limited. The presence of a third phase in the system
increases its complexity, which also exponentially raises the
time and technology costs (Ahmadloo et al., 2009; Alizadeh

and Piri, 2014a; Gupta, 2022; Zankoor et al., 2022). To
simplify the calculation process, it is assumed that the relative
permeability of the wetting and non-wetting phases is only a
single function of their saturation, while the relative perme-
ability of the intermediate phase is a result of the combined
effect of the three saturations. Accordingly, a large number
of theoretical models for predicting the three-phase data from
the two-phase relative permeability data have been derived
(Table 1), but none of the model results could be matched
exactly with the experimental results (Ahmadloo et al., 2009;
Alizadeh and Piri, 2014a). The issue is that these models
are unable to reproduce the hysteresis effects and ignore the
relationship between saturation paths and saturation histo-
ries. Subsequently, many researchers developed new hysteresis
models (Land, 1968; Carlson, 1981; Larsen and Skauge, 1998;
Kjosavik et al., 2002), but there is still a large gap between
their predictions and the laboratory data (Spiteri et al., 2005,
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Table 1. Three-phase relative permeability prediction models.

Reference Model Theory
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Balbinski et al. (1999) kro =
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) f (α)
(KrowSon)
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Shahverdi and Sohrabi (2013) kro(Sw,Sg) =
S∗o
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(krowkrwg + krogkrgw) Multi-flow

Kianinejad et al. (2015) kri(z,t) =
−µi(z,t)µi

k
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) Darcy-Buckingham law

Shahverdi and Sohrabi (2017) kro =
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krogSog Multi-flow

Churchwell and DiCarlo (2018) kri =−µi

(
k
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dϕi
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)−1
Darcy’s law

Note: DL represents the linear fractal dimension of the porous medium; k0
ri represents the endpoint relative permeability of phase i;

kri j represents the phase i relative permeability measured in the i- j system; Swc and Sgr represent irreducible water saturation and
residual gas saturation, respectively; Si represents the saturation of phase i (water, oil and gas); S∗i represents normalized saturation;
βi = kroi/(1− S∗i ); k̂ri j represents the representative relative permeability of phase i in the i- j system; ai represents the degree of
“oil-ness” of the phase i, bi represents the degree of “gas-ness” of the phase i; ϕi represents the fluid potential.

2006).
The injection of carbon dioxide into geological formations,

which can enhance both oil recovery and storage within
reservoirs, has been proved to be an effective means of
reducing carbon emissions and mitigating the effects of climate
change (Wilberforce et al., 2021; Ji et al., 2023). However,
complex three-phase flow is a major challenge that arises
with this method (Kong et al., 2021). In the context of
geological storage where the transportation and distribution of
multiphase fluids occur within the pore medium, the accurate
determination of relative permeability of CO2, water and oil
becomes significant. It holds great value in assessing the
feasibility of storage projects, evaluating the storage potential
of reservoirs, predicting CO2 flow patterns, understanding
CO2 retention capacity, solubility and migration processes in
subsurface reservoirs, as well as assessing the effectiveness

of storage operations (Zuo et al., 2014; Zhu et al., 2021).
To optimize the storage of CO2 and maximize oil recovery
in reservoirs, it is essential to enhance the understanding of
pore-scale physics that govern three-phase flow (Blunt, 2017).

This paper provides a comprehensive review of the existing
experimental and numerical methods for determining three-
phase relative permeability. It offers a detailed introduction
to the theoretical models used to predict three-phase relative
permeability based on two-phase data, and conducts a thor-
ough analysis and comparison of the individual strengths and
limitations of such models. The influence factors of three-
phase relative permeability are systematically analyzed and
several suggestions are made for the development of three-
phase relative permeability, hoping that three-phase relative
permeability can be positively developed.
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Fig. 2. Steady-state three-phase relative permeability experiment.

Receiving pump

Water pump

Oil pump

Gas pump

Confining pump

Fig. 1. Steady-state three-phase relative permeability experiment.

2. Experimental methods

2.1 Steady-state methods
The application of different experimental methods under

varying flow conditions during the flooding process leads to
significant discrepancies in the measured relative permeability
curves (Singh et al., 2001), Thus, it is important to recognize
that relying on a single approach is insufficient for accurately
representing the diverse range of flow regimes encountered
in reservoirs, and it is essential to comprehend the various
measurement methods available. The steady-state method (Fig.
1) is grounded in Darcy’s seepage theory and was initially
introduced by Leverett and Lewis (1941):

vi =−kkri

µi

∂Pi

∂ s
(1)

where v represents the flow rate per unit cross-sectional area
of the porous medium perpendicular to the flow direction;
k represents the absolute permeability of rock; kri represents
the relative permeability of phase i; µi represents the kinetic
viscosity of phase i; ∂Pi/∂ s is the pressure gradient.

Due to its reliance on Darcy’s law, the steady-state method
yields results that are typically less contentious, provided that
end effects can be successfully mitigated (Maini et al., 1989).
The advent of computed tomography (CT) scanning technol-
ogy in recent years has enabled researchers to visualize pore
structures and fluid distribution within porous media while
conducting steady-state experiments (Yang et al., 2021). This
technique has yielded valuable insights into the intricate phe-
nomena of three-phase flow (Alhosani et al., 2021c; Zankoor et
al., 2022). The application of three-dimensional X-ray imaging
has facilitated the visualization and quantification of fluid
flow within micron-sized pore spaces, enabling the analysis
of various pore-scale flow properties (Alhosani et al., 2021b;
Blunt, 2021a, 2021b).

Numerous scholars have provided comprehensive descrip-
tions of the steady-state experimental procedure (Oak, 1990;
Akhlaghinia et al., 2014; Moghadasi et al., 2016). However,

the limitations of this method have become increasingly ap-
parent: the experimental process is elaborate, with extensive
duration that often exceeds six months to complete a single
steady-state experiment. Consequently, many scholars opt to
refrain from this approach.

2.2 Unsteady-state methods
While the steady-state method yields results that are gen-

erally less disputable (Caudle et al., 1951; Maini et al., 1989),
its extended experimental duration has proved challenging for
numerous scholars. Thus, a substantial portion of researchers
favors the unsteady-state approach due to its cost-effectiveness,
simplicity and reduced time requirements (Sarma et al., 1994;
Akin and Demiral, 2001; Perez-Carrillo et al., 2008). The
unsteady-state method, rooted in the Buckley-Leverett theory,
operates under the same underlying assumptions as the steady-
state method. In contrast, the unsteady-state approach typically
employs single-phase fluid injection in each flooding process,
which involves recording the yield of each fluid at the sample
outlet and monitoring the pressure difference across the sample
over time. The calculation of these parameters relies on
the Johnson-Bossler-Naumann (J.B.N.) method (Welge, 1952;
Johnson et al., 1959), which assumes that each phase of the
fluid is a function of its saturation. On the other hand, the
traditional J.B.N. method does not consider the fluid spreading
characteristics.

While the Buckley-Leverett (B-L) theory was subsequently
extended to encompass three-phase unsteady-state experiments
(Sarem, 1966; Grader and O’Meara, 1988), its validation
remained elusive due to the absence of in situ saturation
detection techniques (Siddiqui et al., 1996). The experimental
validation of this theory with highly favorable outcomes was
only possible when the CT scanning technique was success-
fully employed in flooding experiments. Saturation distribution
in porous media varies both spatially and temporally, giving
rise to an unsteady-state process. During unsteady-state exper-
iments, high-rate tests are frequently conducted to mitigate the
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Fig. 2. Comparison of predicted and experimental data of Corey et al. (1956) using (a) SSL and (b) SSE (Delshad and
Pope, 1989).

end effects. Nonetheless, even at elevated replacement rates,
the estimated three-phase relative permeability proved to be
inaccurate due to inconsistencies with the experimental results,
stemming from the linear flow and monotonous saturation
variation assumed in the three-phase expansion method in
the J.B.N. theory (Akin and Demiral, 2005). Consequently,
it is customary to employ more robust methods for data
interpretation (Andersen, 2022). The formula for calculating
relative permeability was provided by Siddiqui et al. (1998):

kri =−qt µil
kA

fi

∆p−Q d(∆p)
dQ

(2)

where qt represents the production rate phase i; l represents
the core length; A represents the core area; fi represents the
fractional flow of the i-three phase; ∆p represents the pressure
difference; Q represents flow rate.

3. Theoretical models and empirical
correlations

The technique for forecasting three-phase relative perme-
ability was initially introduced by Corey et al. (1956). Initially,
it was assumed that water permeability depends solely on
water saturation, with the relative permeability of water in
a water-wet system equating to that of oil in an oil-wet sys-
tem. However, this assumption was progressively invalidated.
Subsequently, the Corey model was extensively employed for
forecasting the relative permeability of the oil phase in three-
phase flow, which notably excelled in the prediction of high
oil saturation and low oil saturation isoperms. Later, additional
scholars introduced their own predictive models (Naar and
Wygal, 1961; Land, 1968). The Naar model, for instance,
allows for estimating the volume of natural gas confined by
water intrusion in gas-oil formations, offering insights into
dynamic CO2 residual trapping. Nevertheless, the applicability
of this model is constrained by a scarcity of experimental data.
Stone introduced two models, Stone I and Stone II, based on
channel flow theory (Stone, 1970, 1973). These models exhibit

enhanced predictive capabilities, particularly for water-wet
and oil-wet systems, and excel in intermediate oil saturation
regions. The prediction of three-phase relative permeability
from two-phase data has undergone substantial advancements,
resulting in the emergence of various corrective models (Aziz
and Settari, 1979; Delshad and Pope, 1989) that achieve
strong performance across all regions. Nevertheless, the Stone
model has encountered some skepticism as it heavily relies
on empirical formulas (Alemán and Slattery, 1988; Moulu et
al., 1997; Balbinski et al., 1999) and is predominantly effective
in more strongly water-wet cores. In this context, the sum
of squares (SSE) and the sum of squared logarithms (SSL)
were employed to evaluate the relationships among relative
permeability models (Fig. 2) (Delshad and Pope, 1989):

SSE = ∑
n
[(kro)e − (kro)c]

2 (3)

SSL = ∑
n
[log(kro)e − log(kro)c]

2 (4)

where the subscripts e and c represent experimental and
predicted values, respectively; n denotes the number of ex-
perimental data points for any specific oil isoperm.

Numerous theoretical models for three-phase relative per-
meability are available (Table 1). Many of these are derived
from limited experimental data, leading to challenges regard-
ing their accuracy and applicability. In general, no single
theoretical model can precisely predict the relative perme-
ability for all types of media; therefore, it is of paramount
importance to develop a reliable and practical three-phase
relative permeability model.

4. Numerical methods
Historically, research on three-phase flow has often de-

pended on solving the Navier-Stokes equations to ascertain the
flow parameters, with commonly employed models including
the volume-of-fluid, phase-field method, and level-set model.
Yet, these models frequently necessitate complex algorithms
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to accurately capture the fluid interfaces (Zhu et al., 2022b).
Furthermore, generating high-quality meshes poses challenges
and leads to significant computational resource demands,
making them less suitable for simulating porous media such
as rocks. As a result, few researchers have employed these
methods for simulating three-phase flow processes in rock
formations.

The lattice Boltzmann method (LBM), established on
microscopic models and mesoscopic dynamics, has gained
significant prominence. It offers several distinct advantages
over traditional Navier-Stokes equation solution methods, in-
cluding the capability to address complex boundaries and
employ more efficient algorithms. As a result, LBM is swiftly
emerging as one of the most frequently employed approaches
for addressing multiphase flows (Liu et al., 2015). LBM
originates from the lattice gas automata method, thus inherits
its numerous advantages. It is well-suited for massively par-
allel computers due to its temporal and spatial localization.
LBM remains under active development; some of the primary
models employed for investigating multiphase flow in porous
media comprise the color gradient model, the pseudopotential
model, the free energy model, and the He-Shan-Doolen model.

The three-phase color gradient model employs various col-
ors to distinguish between fluid phases (Fig. 3) and introduces
interfacial tensions between the fluids via the color gradient
(Gunstensen, 1992; Spencer et al., 2010). By incorporating the
weighted wetting angle (Eq. (5)), it facilitates the computation
of multiphase flow in porous media with varying wetting
characteristics (Zhang et al., 2016):

θr =
Cb

1−Cr
θrb +

Cg

1−Cr
θrg

θg =
Cb

1−Cg
θgb +

Cg

1−Cg
θgr

Cb = 1−Cr −Cg

(5)

where θi represents the weighted wetting angle of phase i,
i = r,g,b; θi j represents wetting angle between phase i- j,
i = r,g,b, j = r,g,b; Ck denotes the density fraction of k phase
defined as Ck = ρk/ρ , k = r,g,b.

Notably, the color gradient model offers several significant
advantages, including the flexibility to adjust interfacial ten-
sion and its stable performance even at high viscosity ratios
(Yu et al., 2019). At present, this model finds application
in predicting three-phase relative permeability profiles during
immiscible CO2 flooding and investigating the influence of

wettability, capillary number and viscosity ratio on these
profiles (Yu et al., 2019; Zhu et al., 2021). Xie et al. (2018,
2020, 2021, 2022) also extended the color gradient model to
consider multiphase viscoelastic flows. On the other hand,
there are also some limitations of this model, particularly
when it comes to addressing the challenge of CO2 miscibility
with crude oil. Nonetheless, it excels in applications involving
immiscible flooding.

The pseudopotential model is a versatile tool for simulating
multicomponent flows at varying mass and constant tempera-
ture, which effectively handles complex boundary conditions
in multiphase fluid systems (Shan and Chen, 1993). In previ-
ous research, this model has been employed to simulate the
relative permeability of two immiscible phases (Li et al., 2005;
Huang and Lu, 2009; Dou and Zhou, 2013). This is due to
its remarkable efficiency in simulating two-phase flow and its
capacity to easily incorporate inter-particle interaction forces
and model rock wettability, making it one of the most widely
adopted LBM models (Chen et al., 2014). The pseudopotential
model consists of the single-component multiphase (SCMP)
model and the multicomponent multiphase (MCMP) model
(Wei et al., 2018). In SCMP, the phase separation of multiple
components is achieved by adding a long-range force based on
the van der Waals equation of state to different fluids. How-
ever, this approach limits the independent control of physical
parameters for other fluids by adjusting the strength of the
interaction force, impacting qualitative analysis. Consequently,
MCMP is the preferred choice despite some of its drawbacks,
such as high spurious currents at the interface, coupling
between surface tension and density ratio, thermodynamic
inconsistencies, and interfacial divergence caused by high
viscosity ratios (Yu and Fan, 2010). Several researchers have
addressed these issues by incorporating multiple relaxation
time collision operators and Guo’s forcing method (Guo
et al., 2002). Thus, the pseudopotential model holds great
promise for both miscible and immiscible simulations in the
carbon dioxide flooding process.

The free energy model, which utilizes free energy flooding
to account for interfacial tension effects, has been successfully
employed to describe multiphase flow in porous media (Swift
et al., 1996; Alpak and Saxena, 2023). Specifically, the MCMP
free energy model is frequently utilized in cases where inertial
forces can be neglected (Hao and Cheng, 2010; Zhou and
Huang, 2023). After optimization, this model allows for inde-
pendent variation of the interfacial tension and contact angle of
the fluid, providing greater flexibility in modeling multiphase
flow. Despite its promising capabilities, alongside the He-
Shan-Doolen model (He et al., 1998), MCMP is currently
underdeveloped and remains infrequently employed in model-
ing three-phase relative permeability as further refinement and
development are still required.

5. Influencing factors

5.1 Saturation history
Saturation history, often referred to as saturation sequence,

represents the specific path of saturation that a fluid follows
during seepage. In the context of two-phase flow, changes in
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Fig. 5.  A possible path for DDI and DCI saturation history.

Fig. 4. A possible path for DDI and DCI saturation history.
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Fig. 5. Relative permeability of the oil phase at different
saturation paths (Kianinejad et al., 2015).

the saturation of one fluid inevitably result in changes in the
opposite direction for the other fluid. Consequently, the analy-
sis of saturation history in two-phase flow is relatively straight-
forward. However, in three-phase flow problems, no corre-
lation exists between saturation changes, hence three-phase
flow presents a significantly larger number of saturation paths
compared to two-phase flow (Carlson, 1981; Blunt, 2000; Lu et
al., 2012; Shahrokhi et al., 2014). To more explicitly represent
the saturation history, a method has been proposed involving
the use of three letters: “D” (Decreasing), “I” (Increasing), and
“C” (Constant). These letters are used to indicate the changes
in water-oil-gas saturation, with “D” representing a decrease,
“I” an increase, and “C” indicating constancy (Oak, 1990).
For CO2 flooding, the primary saturation history patterns
observed are “DDI” and “DCI” (Fig. 4). The phenomenon
in which different relative permeabilities are observed for the
same saturation history undergoing distinct saturation paths
is referred to as the relative permeability hysteresis effect,
which is commonly observed in three-phase flow systems.
Correspondingly, several key hysteresis models have been
developed, including the Land hysteresis model (Land, 1968),
Killough hysteresis model (Killough, 1976), Carlo hysteresis
model (Carlson, 1981), Beattie hysteresis model (Beattie et
al., 1989), Larsen hysteresis model (Larsen and Skauge, 1999),
and Kjosavik hysteresis model (Kjosavik et al., 2002). It
has been demonstrated that different saturation paths within
the same saturation history significantly impact the relative
permeability of the oil phase, sometimes varying by several
orders of magnitude (Fig. 5) (Kianinejad et al., 2015).
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Fig. 6. Effect of different saturation histories on relative permeability.
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The impact of saturation history on three-phase relative
permeability exhibits variations, as depicted in Fig. 6. The
observed convex curvature of the gas isoperms in the figure
contradicts the findings of Stone’s model, which suggests
that gas relative permeability is solely determined by gas
saturation and follows a linear relationship. In the case of
immiscible displacement (IID), gas as a non-wetting phase
becomes trapped by advancing water and oil. As water and oil
saturations increase, a larger proportion of gas transitions into
a discontinuous phase, resulting in a decrease in gas relative
permeability. Conversely, in the case of drainage displacement
(DDI), gas remains in a continuous phase with minimal
trapping, leading to a relatively high gas relative permeability
that is predominantly influenced by gas saturation. Conse-
quently, compared to IID, the gas isoperms in DDI exhibit
a greater curvature and are positioned further away from the
100% gas saturation point, indicating a departure from the
linear behavior predicted by Stone’s model. Saraf compared
the experimental results of unsteady-state and steady-state
methods in terms of relative permeability for three-phase gas
flow, and found that the relative permeability of the gas phase
in unsteady-state conditions is a function of gas saturation and
gas saturation history. However, the relative permeability of
the water phase exhibits some dispersion without a specific
trend, indicating that it is primarily a function of water
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Table 2. Three-phase relative permeability for different saturation histories.

Reference Flow state Wettability Saturation history Media Gas

Saraf et al. (1982) steady, unsteady water-wet CDI, DCI Berea N2

Grader and O’Meara (1988) steady water-wet DDI Glass beads Decane

Maini et al. (1989) steady water-wet IDI, DID / N2

Oak (1990) steady water-wet DDI, IID Berea N2

Oak (1991) steady mixed-wet DDI, IID Berea CO2

Marek et al. (1991) steady water-wet IDI / N2

Eikje et al. (1992) steady water-wet CID, CDI Berea /

Kvanvik et al. (1992) unsteady mixed-wet DCI, CID Berea /

Dria et al. (1993) steady water-wet DDI / CO2

Muqeem et al. (1993) steady water-wet IDI Ottawa N2

Maloney et al. (1993) steady water-wet DDI Berea /

Sarma et al. (1994) steady, unsteady water-wet IDI / /

Siddiqui et al. (1996) steady water-wet DDI, IDD Glass beads Decane

Kalaydjian et al. (1997) steady, unsteady water-wet CDI Fontainebleau,
Clashach

N2

Akin and Demiral (1997) unsteady mixed-wet IDI Berea N2

Petersen et al. (2008) steady / DDI, IID / gas

Shahverdi et al. (2011a) steady, unsteady water-wet, mixed-wet DCI, DID Clashach CH4, n-C4

Masihi et al. (2011) steady water-wet IDI / N2

Cao and Siddiqui (2011) unsteady water-wet IDD, DDI, DID Berea /

Lu et al. (2012) steady water-wet, oil-wet DDI, IID / N2

Alizadeh and Piri (2014a) steady water-wet DDI Bentheimer N2

Kianinejad et al. (2015) unsteady water-wet DID Sand pack air

Kianinejad and DiCarlo (2016) / water-wet DDI Berea N2

Zhang et al. (2018) steady water-wet, oil-wet DDI, IDD / CH4

Alhosani et al. (2021c) steady / DDI, IID Bentheimer N2

saturation and is almost independent of saturation history.
The relative permeability of the liquid phase does not show
strong dependence on the direction of liquid saturation changes
but is influenced by the gas saturation history. In contrast to
the unsteady-state method, during steady-state flow, the fluids
follow similar paths, resulting in a limited impact of saturation
history on relative permeability (Saraf et al., 1982). Maini
obtained similar results from steady-state experiments (Maini
et al., 1989).

The literature has shown some inconsistency regarding the
influence of saturation history on phase permeability, some-
times yielding conflicting results (Alizadeh and Piri, 2014a).
Nevertheless, it is now widely acknowledged that the relative
permeability of the wetting phase is predominantly governed
by its saturation and is minimally impacted by any saturation
history. In contrast, the relative permeability of the interme-
diate and non-wetting phases is influenced by a combination
of the saturation levels of each phase and the associated satu-

ration history. For a comprehensive overview of experiments
conducted on saturation history over the years, the reader is
referred to Table 2.

5.2 Interfacial tension
Throughout the three-phase flow process, numerous in-

terfaces form between each fluid phase as well as between
the fluids and rock particles. During this flow, a sequence of
physical and chemical interactions unfolds, resulting in inter-
facial molecular interactions. These in turn lead to capillary
phenomena and introduce various additional resistance effects
during the seepage process. In CO2 miscible flooding, a vital
factor for enhanced recovery is the formation of a miscible
zone at the flooding front (Fig. 10), which strongly hinges
on the phase interfacial tension. This also plays a role in
the mechanism of carbon dioxide residual trapping (Fig. 7).
Substantial evidence suggests that at sufficiently low interfacial
tensions, relative permeability is influenced by the ratio of flow
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Fig. 8. Carbon dioxide dynamic storage process and the residual trapping mechanism.
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Fig. 7. Carbon dioxide dynamic storage process and the residual trapping mechanism.

Fig. 8. Gas flooding of oil by avoiding water at low interfacial tension (Li et al., 2021).

rate to interfacial tension (Bardon and Longeron, 1980; Asar
and Handy, 1988). Given that low interfacial tension is more
likely to occur near the miscible zone at the leading edge, its
effect can be quantified by examining the impact of interfacial
tension on fluid flow through the lens of the capillary number
Nc (Jerauld, 1997):

Nc =
k
σ

∥∥∥∂Pi

∂ s

∥∥∥ (6)

where σ represents interfacial tension.
Given the controllable nature of interfacial tension (IFT)

within the hydrocarbon/alcohol/water system, extensive re-
search has been conducted to explore the impact of low
interfacial tension on the percolation process. Consequently,
numerous scholars have carried out three-phase relative perme-

ability experiments under conditions of low interfacial tension
(Delshad et al., 1987; Jerauld, 1997). The results consistently
indicate that changes in interfacial tension between the non-
wetting phases do not affect the relative permeability of the
wetting phase, while the relative permeability of the nonwet-
ting phases is notably affected by such changes (Delshad et
al., 1987; Kvanvik et al., 1992; Cinar and Orr, 2005; Cinar et
al., 2007).

Even though different IFT values do not coincide within the
relative permeability saturation range of the oil phase, it has
been observed that the residual oil saturation decreases and the
relative permeability significantly increases as the gas/oil IFT
decreases. This reduction in gas/oil interfacial tension allows
gas to bypass water and displace oil (Fig. 8). As water satur-
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ation decreases and gas saturation increases, the gas primarily
infiltrates pores containing oil and circumvents certain water-
filled pores (Jahanbakhsh et al., 2016). During the carbon
dioxide flooding process, CO2 typically infiltrates the reservoir
in a supercritical state (Fig. 9), characterized by exceedingly
low IFT. This facilitates the displacement of oil by carbon
dioxide within minute pores, enabling the retention of carbon
dioxide within the pore space. Such behavior can prove
advantageous for carbon dioxide flooding applications.

During carbon dioxide flooding operations, when the reser-
voir pressure reaches the minimum miscible pressure, a mis-
cible zone forms at the leading edge of the displacement
process, leading to a significant reduction in the IFT between
the two phases. However, it is important to note that ear-
lier experiments were predominantly conducted with nitrogen
(Table 2); therefore, the influence of the miscible zone was
not accounted for (Fig. 10). As a consequence of the carbon
dioxide replacement process, the measurements of three-phase
relative permeability exhibited substantial variations due to the
impact of the miscible zone at the forefront of the replacement
(Dria et al., 1993). In fact, these results sometimes contradicted
the assumptions of many empirical models (Shahverdi et
al., 2011a). Subsequently, it was revealed that alternating
water and gas injection, as well as CO2 foam drive, can
harness the IFT effect, enabling residual oil to flow through
the miscible zone and facilitating efficient recovery during
subsequent water injection (Mayberry et al., 2008; Tang et
al., 2019; Wang et al., 2020).

While it has been firmly established that gas/oil systems
with extremely low interfacial tension are nearly miscible
(Shelton and Yarborough, 1977), and that CO2 and crude
oil can amalgamate into a single liquid phase under such
conditions, it remains uncertain whether ultra-low IFT in
surfactant systems is closely associated with miscibility. At
present, conclusive data on this matter is lacking.

The influence of IFT on three-phase relative permeability

has not yet received adequate attention in the current research.
Although the presence of a third phase can significantly alter
the magnitude of IFT between the other two phases, limited
experiments have measured IFT in the presence of a third
fluid phase, while other experiments have mostly overlooked
its existence (Alizadeh and Piri, 2014b). Current investigations
into interfacial tension systems have primarily focused on wa-
ter/oil/microemulsion systems, with only a handful of studies
delving into the effects of IFT on the dynamics of multiphase
fluid flow. In fact, there is a noticeable dearth of literature
concerning the impact of IFT on the flow characteristics of
oil/gas/water in three-phase flow scenarios.

5.3 Rock wettability
In the context of two-phase flow, rock wettability has a

substantial influence on fluid dynamics, and its variations have
a pronounced impact on the spatial distribution of oil and water
within the pore space. This in turn alters the direction of cap-
illary forces during drainage, ultimately affecting residual oil
saturation. While it has been well-established that wettability
significantly affects the relative permeability of two phases,
there has been limited exploration of this effect on three-
phase flow. Divergences in rock wettability notably influence
the spatial arrangement of oil and water in the pore space (Fig.
11), subsequently influencing the direction of capillary forces
during drainage. The Gussow principle, widely acknowledged
as the predominant theory of oil and gas accumulation, has
led to a consensus that reservoir rocks are predominantly
hydrophilic media. As a result, early investigations into three-
phase relative permeability and wettability have predominantly
focused on water-wet rocks. Meanwhile, the development of
prediction models for three-phase relative permeability has
been primarily based on water-wet media (Table 2).

Comprehensive research has unveiled that a significant por-
tion of reservoir rocks do not exhibit pronounced hydrophilic
behavior, and notable variations in wettability can exist within
various regions of the same reservoir (Brown and Fatt, 1956).
Moreover, it has been observed that small pores tend to
exhibit water-wet characteristics, whereas larger pores feature
considerably lower water wettability (Schmid, 1964; Alhosani
et al., 2021a). The first instance of water film rupture was
observed in water drive experiments. It was demonstrated that
the wettability of the rock surface may alter due to this rupture,
leading to mixed wettability behavior (Salathiel, 1973). In turn,
an increase in oil-water wettability was linked to a decrease
in water saturation. Changes in wettability were also found
to correspond to alterations in water-driven recovery, with
optimal results occurring when the Amott index approached
zero (Jerauld and Rathmell, 1997). Furthermore, various in-
fluencing factors were found to exert varying degrees of
impact on the three-phase relative permeability in rocks with
differing wettability (Skauge and Larsen, 1994; DiCarlo et
al., 2000; Cinar et al., 2007; Akindipe et al., 2022). Jerauld’s
findings revealed that the presence of trapped gas in a mixed-
wetted core did not cause a notable decrease in residual oil
saturation, which was attributed to the weak mixed wettability
of the system. However, the relative permeability of the water
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Fig. 10. Carbon dioxide miscible (a) immiscible and (b) process.

Fig. 11. Configurations of oil, gas and water distribution in triangular pores. (a)Water-wet pore; (b) oil-wet pore with a gas
layer; (c) oil-wet pore containing gas; (d) oil-wet pore containing water; (e) fractionally-wet pore I with one oil-wet side; (f)
fractionally wet pore II with two oil-wet sides (Zhou and Blunt, 1998).

phase was reduced due to the presence of trapped gas. It is
believed that in mixed wetted pores, water and gas compete for
larger pores before infiltrating smaller pores due to the lower
resistance to flow in the former (Jerauld and Rathmell, 1997).

Under distinct wetting conditions, apart from the vary-
ing degrees of influence, the wetting characteristics of each
phase differ (Zhou and Blunt, 1998; Hui and Blunt, 2000).
In scenarios where CO2 and crude oil approach miscibility,
both substances exhibit intermediate wetting in a water-wet
medium, and neither CO2 nor oil can occupy the central pore
space position (Fig. 12), resulting in both having the same
pathway for movement (Alhosani et al., 2019).

A strong wetting hysteresis has been observed in the
relative permeability of oil, gas and water phase in both mixed-
wet and water-wet systems (Shahverdi et al., 2011b). Notably,
there is a significant contrast between the results obtained
for these two wettability conditions, which also deviates
significantly from predictions made by the common three-
phase model. However, subsequent experiments conducted by
Shahverdi yielded results contradicting his earlier findings

(Shahverdi and Sohrabi, 2016). Consequently, it is imperative
to garner substantial experimental and theoretical knowledge
to enhance the reliability of associated experimental data
concerning the influence of rock wettability on three-phase
permeability.

5.4 Permeability and pore geometry
For many years, conventional core data have played a

fundamental role in determining critical reservoir proper-
ties, encompassing total pore storage capacity, permeability
distribution, and the permeability of various fluids (Zhu et
al., 2022a). After an extensive period of research, it became
evident that the relative permeability of a fluid is influenced not
only by factors like phase saturation and saturation history but
also by the physical attributes of the porous medium through
which the fluid flows (Kvanvik et al., 1992; Munkerud and
Hoimyr, 1995; Shahverdi and Sohrabi, 2013). While the extent
of this dependency on three-phase relative permeability has not
been studied extensively, it is believed that the characteristics
of the porous media can influence saturation envelopes and al-
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Fig. 12. Distribution of oil, CO2 and water in immiscible and
miscible displacement.

ter their sizes in ternary saturation diagrams (Grader and
O’Meara, 1988). Beyond the inherent non-uniformity in per-
meability distribution within the reservoir, the intricate spatial
arrangements of pore space are also dictated by the capillary
dimensions and tortuosity of the rock (Fatt, 1966; Morgan
and Gordon, 1970; Grader and O’Meara, 1988; Maloney et
al., 1989; Dernaika and Masalmeh, 2019). Both micropores
and macropores exert a significant influence on three-phase rel-
ative permeability (Fig. 13). The relative permeability of water
in these two cores is solely determined by water saturation.
Bentheimer sandstone, however, exhibits lower irreducible wa-
ter saturation and a larger envelope. At high water saturation,
the relative permeability of this kind of sandstone is twice
that of Berea sandstone. This difference can be attributed to
the presence of a greater number of micropore pores in Berea
Sandstone, which imparts higher resistance to water flow
through the pores. Regarding the oil-phase isoperms, those of
Bentheimer sandstone exhibit concavity towards the oil-phase
apex at low gas saturation, indicating a stronger dependence
of oil-phase relative permeability on gas-phase saturation.
Moreover, the oil-phase relative permeability experiences a
pronounced decrease with increasing gas saturation, which
may be associated with the abundance of medium-sized pores
in this sandstone.

5.5 Fluid spreading characteristics
The spreading behavior of oil film occurs when a gas phase

occupies the central region of the pore space, causing the
oil phase to form a thin layer positioned between the gas
and water phases (Fig. 14). This thin oil film is referred to
as spreading layer and is typically just a few microns thick.
The presence of this layer ensures hydraulic continuity for the
respective phases, enabling flow even at very low saturation
levels (Dumore and Schols, 1974). Due to this phenomenon,
there has been a resurgence of interest in research on the
generation and flow mechanisms of these films (Kantzas et
al., 1988). Recent observations have highlighted that water-
wet media tend to promote the formation of oil films, resulting
in exceptionally low oil-bearing saturation (Kalaydjian, 1992;
Kalaydjian et al., 1993). Particularly in strongly water-wet
conditions, the flow of oil and water films exerts a significant
influence on the oil recovery efficiency of positively spreading
systems (Oren and Pinczewski, 1991).

In the presence of gas, the spreading coefficient (K) of oil
on water can be elucidated through the balance of interfacial
tensions (Adamson and Gast, 1967):

Fig. 13. Three-phase relative permeability results for the
Berea (left) and Bentheimer (right) sandstones (Maloney et
al., 1990).

K = σwg − (σwo −σog) (7)
where subscript w, g and o represent water, gas and oil,
respectively.

K > 0 indicates that oil will form a spreading film on the
water phase, allowing for the continuous flow of both oil and
water through the film. Conversely, if K < 0, no oil film forms
and only water can flow (Oren et al., 1992). The mathematical
representation of the contact angle between oil and water is
given by the following equation:

cosθ = 1+
K

σog
(8)

Under the above definition, in an oil/gas/water system, only
one of the three phases can exhibit spreading behavior, while
the other two must remain non-spreading at the interface.
When none of the fluids exhibit spreading behavior at the
interface with the other two fluid phases, it is termed as a non-
spreading three-phase system. In cases where all three phases
are present in the pore space, the static equilibrium or spatial
arrangement of the fluids can be described in three forms
(Grattoni et al., 1997). The spreading coefficient of oil on
water plays an important role in fluid distribution and recovery
in water-wetted and partially wetted porous media. Conversely,
in oil-wetting porous media, the spreading coefficient does
not significantly impact the flooding efficiency, while the
spreading coefficient of water on oil alters fluid distribution
in the core (Vizika and Lombard, 1996; Sahni et al., 1998).
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(a) (b) (c)

Fig. 14. Three forms of fluid spreading: (a) Wetting phase spreading; (b) non-wetting phase spreading; (c) non-spreading.

Fig. 15. The comparison of three-phase relative permeability
curves between a low and a high oil-phase viscosity system.

5.6 Fluid viscosity
Initially, it was widely accepted that the two-phase vis-

cosity ratio has no impact on relative permeability. However,
subsequent research revealed that factors such as capillary
number, fluid viscosity and interfacial tension can indeed
modulate it (Delshad, 1981). For non-wetting phases with
particularly high viscosities, the relative permeability of the
non-wetting phase increases with the rising viscosity ratio
between the non-wetting phase and the wetting phase. Inter-
estingly, the relative permeability of the wetting phase appears
to be unaffected by changes in the viscosity ratio (Zhang et
al., 2019). However, it is worth noting that despite the viscosity
ratio increasing, the relative permeability of the wetting phase
elevates significantly, while the relative permeability of the
non-wetting phase remains relatively stable. This suggests that
the primary factor driving the change in relative permeability
is likely the viscosity of the fluid rather than its wettability

(Zhu et al., 2021).
Maloney conducted a study to investigate the impact of

viscosity on the relative permeability of Berea sandstone. This
involved varying the viscosity of both the oil and brine phases
(Fig. 15). The experimental results revealed that the relative
permeability of the gas phase is influenced by the saturation of
oil and is significantly lower in the presence of higher-viscosity
oil. This phenomenon was attributed to the occurrence of plug
flow within the gas phase and a change in the interfacial
tension between oil and water, and it was concluded that
the observed effects cannot be solely attributed to changes in
viscosity (Maloney et al., 1989). As the pore space increases,
the impact of viscosity ratio tends to decrease significantly
and becomes negligible when the permeability exceeds 1,000
mD. This phenomenon can be explained by the Coton’s water
film theory, that is, a higher viscosity of the non-wetting phase
leads to a motion that resembles sliding, thereby increasing its
relative permeability (Derjaguin et al., 1987).

6. Challenges and prospects

6.1 Challenges
Although the concept of three-phase relative permeability

was introduced almost 100 years ago, several factors have
contributed to the limited attention to this field. Firstly,
the experimental methods for measuring three-phase relative
permeability are constrained by excessive complexity, long
duration, and the need for extended steady-state experiments,
lasting up to half a year or more. Secondly, in practical
engineering applications, the accuracy of predicting three-
phase relative permeability using two-phase data often suffices
for production needs, which reduces the demand for more
precise three-phase data. Consequently, progress in three-phase
relative permeability experimental measurement technology
has stagnated. Additionally, despite advancements in computer
technology, developments in numerical simulation studies on
three-phase relative permeability have been scarce. The ap-
plication of traditional computational fluid dynamics industry
methods in porous media encounters obstacles such as mod-
eling challenges, mesh quality issues, and high computational
resource requirements, hampering growth in this field.

6.2 Prospects
The rapid development of carbon capture, utilization and

storage (CCUS) technology has been driven by the imple-
mentation of carbon peaking and carbon neutrality policies.
This technology encompasses various aspects, including the
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injection of carbon dioxide into high-water-content reservoirs
in the late stages of development and the critical area of carbon
dioxide storage in deep carbon reduction efforts. The relative
permeability of three phases plays a pivotal role in both
CO2 flooding and storage, which often occur concurrently.
Carbon dioxide storage is a dynamic process, particularly
concerning residual trapping, making the calculation of storage
volume equally complex. The subsurface flow capacity of oil,
CO2 and water can be characterized by three-phase relative
permeability, making it invaluable for calculating dynamic
residual trapping. Exciting developments in microscale imag-
ing technology and mesoscopic kinetic methods, such as LBM,
have facilitated progress in three-phase relative permeability
studies, offering alternatives to time-consuming experiments.
Notably, the pseudopotential model has shown great potential
in simulating miscible displacement, an important aspect of
CCUS. It is essential to recognize that many prior prediction
models are based on experiments conducted in water-wet
conditions using nitrogen as the replacement gas; however,
given that carbon dioxide exhibits miscibility with crude oil,
it is imperative to consider three-phase relative permeability
within the context of CCUS.

7. Conclusions
The concept of three-phase relative permeability has ex-

isted since the 1940s, while the measurement technology in
this domain has remained largely stagnant. Therefore, this field
requires urgent improvements, necessitating the involvement
of more researchers to drive its conscientious development.
To address these challenges, the author proposes four key
suggestions:

1) Enhancing experimental data: Experimental data serve
as the foundation for three-phase prediction models and
numerical simulation technologies. Hence, the primary
focus should be on overcoming the limitations of existing
steady-state and unsteady-state measurement methods,
which entails either refining current techniques or ex-
ploring innovative experimental approaches. The ideal
objective is to reduce experimental cycles and streamline
processes, generating substantial data to advance both
prediction models and numerical simulations.

2) Consideration of third phase: Emerging evidence indi-
cates that the presence of a third phase can influence
the magnitude of two-phase interfacial tension. However,
most experiments continue to measure surface tension
under conditions involving only two-phase fluids. This
practice inevitably impacts experimental outcomes, par-
ticularly at interfaces involving CO2 and crude oil.

3) Quantitative rock wettability assessment: As discussed in
Section 4 regarding rock wettability, it is essential to
recognize that rock wettability is not uniform and can
shift during an experiment. The current rock wettability
assessments are qualitative and lack quantitative evalua-
tions, which can lead to anomalous experimental results.

4) LBM pseudopotential model for CO2 flooding: The pseu-
dopotential model within LBM offers promising capabili-
ties in regulating the miscible region at the flooding front.

This model is well-suited for CO2 miscible flooding and
holds substantial development prospects.
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