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Abstract:

Extracting reaction-kinetic distributions, in terms of activation energies (E) and pre-
exponential factors (A), from the S2 peak data generated by pyrolysis tests conducted
at three or more distinct heating ramps, is a well-established technique. These reaction-
kinetics distributions are of paramount importance in establishing the timing and degree
of petroleum generation from shales undergoing a range of burial and thermal histories. A
commonly adopted approach is to determine and define reaction kinetics using a derivative
of the Arrhenius equation configured in terms of a fixed/constant A value. Although the
fixed-A approach can obtain good fits to multi-rate pyrolysis data, here it is shown that
a formulation of the Arrhenius equation that involves reactions with a range of E and A
values provides equally good fits to the multi-rate pyrolysis data. Moreover, the kinetic
distributions with variable E-A provide more credible reaction kinetics consistent with
those established for a range of kerogen types known for decades.

To establish accurate fits to multi-rate pyrolysis S2 peak data at 1 °C intervals from
250 to 700 °C an optimizer is applied to the preferred Arrhenius equation formulation to
derive reaction increments and transformation fractions to a range of reaction kinetics (E£-A
pairs). The methodology applied involves two steps: Step 1 finds the single E-A pair that
best matches the S2 peak temperatures (three or more for multi-rate pyrolysis data); step
2 uses the E-A pair from step 1 as its modal focus and fits the full S2 peak shape using a
distribution of 11 distinct reaction. This approach can replicate the fixed-A approach but is
best applied using reactions with variable E-A values. The results of applying this method
to multi-rate pyrolysis data for ten published kerogens and shales show credible kinetic
distributions spread along the established E-A trend for kerogen/shales.

1. Introduction

The temperature and timing of transformation of the kero-

et al., 2015) and many shales contain mixtures of kerogen
types complicating their combined reaction kinetics. The level

gen in source rocks (organic-rich sedimentary rocks, predomi-
nantly shales) into petroleum depending upon the formation’s
burial history are key unknowns to be modelled for petroleum
exploration purposes (Hood et al., 1975; Tissot and Espitalie,
1975). Thermal maturity indices linked to Arrhenius equation
first-order reactions (Arrhenius, 1889) effective across labo-
ratory and geological-time scales, and responsive to different
heating rates are essential for such modelling (Lerche et al.,
1984; Lewan, 1985; Wood, 1988; Larter, 1989).

The type of kerogen (e.g., types I, II, III, IV), macerals
involved and their reaction kinetics vary among organic-rich
shales (e.g., Tissot and Welte, 1984; Lewan, 1985, Ungerer
and Pellet, 1987). The reaction kinetics of kerogen can vary
within individual shales on a local and regional basis (Peters

S
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of thermal maturity measured using vitrinite reflectance can
be adequately modelled with a limited set of reaction ki-
netics (Wood, 1988; Larter, 1989; Nielsen and Barth, 1991)
that match the thermal maturity level reached by vitrinite.
However, thermal transformation of kerogen into petroleum
is typically modelled with a distribution of multiple, parallel
Arrhenius reaction kinetics (Sweeney and Burnham, 1990;
Peters and Cassa, 1994; Pepper and Corvi, 1995; Inan and
Schenk, 2001; Dieckmann, 2005; Stainforth, 2009). Such
reaction kinetics distributions reflect the heterogeneity of the
kerogen(s) present in shales and the multiple reactions required
to match kerogen/shale pyrolysis experiments at laboratory
conditions, specifically the shapes and temperature ranges of
their S2 peaks. It is therefore reasonable to associate petroleum
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generation under geological conditions with multiple kinetic
reactions and potentially other processes.

In addition to time and temperature, other factors con-
tribute to the pace of petroleum generation and expulsion
(primary migration) from the kerogens within the source rocks.
Cracking of bitumen and natural gas liquids (i.e., ethane to
butane; C1 to C4 alkanes) to smaller hydrocarbon molecules
is an ongoing process in maturing shales (Tissot and Welte,
1984). Reactions stimulated by sulfur, water, alumino-silicates,
charcoal and potentially other materials present in source
rocks have been shown to significantly influence and catal-
yse petroleum formation (e.g., yields and composition) and
accelerate kerogen reaction rates in certain conditions (Larson
and Walton, 1940; Espitalie et al., 1980; Lewan, 1985; Huang,
1996; Lewan, 1997; Lewan and Ruble, 2002). The growth of
micro-porosity in kerogens as shale formations progressively
pass through stages of thermal maturity (Chalmers et al., 2009,
2012; Passey et al., 2010; Clarkson et al., 2013; Wood and
Hazra, 2017) is likely to effect the timing, temperature and
efficiency of petroleum expulsion from kerogen. Some or all of
these processes, together with first-order reaction kinetics, are
likely to be reflected in the pyrolysis S2 peak characteristics
of specific source rock and kerogen samples.

Modelling kerogen conversion to petroleum, by applying
a parallel set of first-order Arrhenius reactions, therefore,
provides only an approximation of the full petroleum gen-
eration processes that evolve in shales during their thermal
maturation. Nevertheless, parallel sets of Arrhenius equation
evaluations, exploiting their integrals, can be meaningfully
applied to model and fit the shapes of S2 pyrolysis peaks
measured for kerogens and shales in the laboratory. It is then
straightforward to translate those reaction kinetics distributions
to model and predict the most likely timing and degree of
petroleum conversion over geological time scales and geother-
mal gradients.

This study proposes a new methodology for extracting
reaction kinetics distributions from multi-heating rate pyrolysis
data avoiding the oversimplified assumptions involved in the
methods typically applied for that purpose. The implications
of this approach are considered at laboratory and geological
time scales and burial histories.

2. Method

Arrhenius (1889) proposed and justified Eq. (1) to model
reaction rates across a significant range of time scales and its
usefulness in modelling reaction kinetics is well established
(Friedman, 1963; Coats and Redfern, 1964).

karr — Ae (D

where ksqgpg is the reaction rate constant. A is the pre-
exponential (frequency) factor. This a constant that can be
varied to express reactions over different time scales (e.g.,
geological in millions of years (my~' or/my); laboratory in
minutes (min~! or/min) or seconds (s~! or/sec). e is the
mathematical exponent. E is the activation energy for the
reaction (typically expressed in kJ/mol; although, U.S. labora-

tories use kcal/mol). R is the universal gas constant (0.008314
kJ/mol/°K). T is the absolute temperature (in degrees Kelvin,
°K).

Eq. (1) can be rearranged to express it in a linear form and
expressed in terms of E (Eq. (2)):

E =RTlog,(A) —RTlog, (k) 2

where log, refers to the natural logarithm (also expressed as
In).

The relationship of the reaction kinetics of different types
of kerogen are meaningfully expressed in relation to Eq. (2)
by an E versus log,(A) or InA crossplot. Wood (1988, his
Fig. 1 and Table 1) used Eq. (2) to display a broad linear
correlation between E and InA from data published in the
1970s and 1980s for different types of kerogen and hydrocar-
bon reactions. Fig. 1, which incorporates more recently pub-
lished kerogen kinetic data (Peters et al., 2015), confirms the
relevance of that £ and InA trend to kerogen reaction kinetics,
as it was originally defined, particularly over the range E =
175 to E = 275 kJ/mol. That trend identifies that activation
energies varying from £ = 100 kJ/mol to 300 kJ/mol, covering
a wider range of hydrocarbon reactions are characterized by
a strong positive correlation between E and InA-the so-called
compensation effect. Eq. (2) with a temperature value of 659
°K (~386°C) defines that trend (along which the E-A pairs
yield the same reaction rate constant at 659 °K).

Ungerer (1990) published a linear E-logA relationship
(with A expressed in/sec) for reaction kinetics derived from
kerogen, shale and coal pyrolysis analysis performed in the
1980s. That trend is also shown in Fig. 1, with InA expressed
on a/my scale. It is based on Eq. (2) evaluated with a
temperature of 450 °C. Across the range E = 175 kJ/mol to E
= 265 kJ/mol, where the reaction kinetics of most Type I, Type
IT and Type III kerogens tend to lie, the E-A trends defined
by Wood (1988) and Ungerer (1990) intersect and are in close
agreement. This is the E-A range that the analysis presented
in this study focuses upon.

Useful conversions and relationships relevant to reaction
kinetics:

kJ/mol~4.184 kcal/mol;

A expressed as/my = 5.2596 E+11* A expressed as/min;

A expressed as/min = 60*A expressed as/sec;

1 million years = 60%24%365.25%10% = 5.2596 E+11 min-
utes.

The Arrhenius time temperature index (77T I4gg), as defined
by Wood (1988), multiplies the integral of Eq. (1) (shown as
Eq. (3)) between specific temperature intervals by the time
(expressed on a/my scale) spent in each of a series of specified
time intervals. The time intervals are defined so that each
experienced a constant heating rate, but that heating rate is
crucially able to vary from time interval n to the next time
interval n + 1 to reflect changing geological and heat flow
conditions.

A 7;H»I _E
TTIsrg(tn t0 thy1) = 7/ e ’rdT 3)
Ty
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Kinetic Parameters for Petroleum Generation from Kerogen
Derived from Published Pyrolysis Experiments
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Arrhenius equation is typically expressed as:
k = A exp(-E/RT)

R = gas constant

T is temperature in °K

k = arrhenius equation rate constant

%K = temperature in degrees Kelvin

50 60 70 80 90 100

Natural Logarithm of Frequency (or Pre-exponential Factor) (A) (my-')

Trend aUngerer, 1990

¢ Peters et al., 2015

BWood, 1988 < This Study

Fig. 1. Arrhenius equation reaction kinetics in terms of activation energies (E) versus the natural logarithms of the pre-exponential (frequency) factors
expressed on a/million years scale (InA). This study refers to the calculated weighted averages for the ten samples A to J described in the text and using the
proposed optimization method (Opt 3). The Wood (1988) trend was based on an approximate fit through kerogen and hydrocarbon reaction kinetics published
in the 1970s and 1980s. It was drawn to originally focus the Y TTIsgg thermal maturity modelling method. The Ungerer (1990) 450 °C trend is based on
independent kerogen pyrolysis data performed in the 1980s. Other more-recent pyrolysis data for two well-studied shales (Kimmeridge and Monterey, Peters
et al., 2015) are also shown. The E-A values selected (E = 218 kJ/mol and InA = 61.56/my) by Wood (1988) for the ) TTIsgg thermal maturity modelling
method are situated close to the center of this trend and close to the reported reaction kinetics of vitrinite.

where ¢" is the heating rate expressed in °C/my determined
by the geothermal gradient applied at the basin scale for the
time interval n. Calculating the temperatures at times 7, and
ty+1 from the burial history enables a unique value of ¢* to
be applied for each time interval modelled at the geological
scale.

;—,, represents the time adjustment factor for the index. For
the same temperature difference between time point n and n
+ 1, the value of ¢" will become smaller as the length of that
time interval between n and n + 1 increases so the value of
A increases. Hence, the TTI rg as defined by Eq. (3) is not
a double integral (i.e., an integral of time and an integral of
temperature), but a temperature integral with a time adjustment
factor applied to each time interval modelled.

The Eq. (3) integral is determined to sufficient accuracy by
Eq. (4), which applies the approximate solution of Gorbachev
(1975) for each specific temperature (7,41 in °K) interval
experiencing a constant heating rate relative to 7, = 0 °K.

2
é RTn+]
q" E+2RT, |
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The TTI4grg can be meaningfully applied at the geological
scale with the capability of modelling the incremental reaction
contributions from specific kerogen reaction kinetics (i.e., a
single E-A pair) subjected to complex burial histories (Wood,
1988, 2017a). It can also be easily manipulated to provide
similar calculations at laboratory scales (/min, /sec) relevant
to pyrolysis tests.

There are several other effective integral solutions for the
Arrhenius equation (Flynn, 1997). Eq. (5) is an example of
an alternative expression of the Arrhenius equation to derive
the incremental reaction contributions over small temperature
intervals across a constant heating-rate ramp applied in recent
modelling of pyrolysis S2 peak data at the laboratory scale
(e.g., Chen et al., 2017).

2
ﬂ ~ ART _ 2RT e_ﬁ )
dar q E

Most laboratory-based kerogen kinetic and S2-peak pyrol-
ysis studies apply Arrhenius equation derivatives similar to Eq.
(5), where it is appropriate to assume a constant heating rate
between all temperatures recorded. This laboratory assumption
does not, of course, reflect the realities of a multi-dimensional
burial history of a shale formation, where geothermal gradients
and burial (uplift) rates vary significantly over geological time.

At the geological scale it is a necessity to be able to
calculate an Arrhenius equation integral for a series of time
intervals experiencing different heating rates. Wood (1988)
resolved this by expressing the TTIsgg (reaction increments)
for a time interval between any two different temperatures as
Eq. (6), and for time intervals with the same temperature (e.g.,
periods of non-deposition) as Eq. (7).

TTIaRg (tn 10 tyy1 [Tn # Thy1])
_A|_RTE,
¢ |ET2RT,

RT? (6)

T E+2RT,C
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TTIsgg (ty 10 tyy1 [T = Tyy1]) = (t, to t,,H)Ae‘% (N

To derive the cumulative time-temperature index (77T Iygg)
of a rock formation buried at varying rates over geological
time, the values for Eq. (6) and Eq. (7) are summed for all
m time intervals involved in the formations burial history, as
formulated by Eq. (8).

n=m
ISTThrg = Y, Eq. (6) for T, # Ty

n=1

nem ®)
+ Y Eq. (7) for T, =Ty
n=1
Eq. (8) is equation 15 of Wood (1988) expressed in an
abbreviated form and is correlated with vitrinite reflectance for
E =218 kJ/mol and InA = 61.56 /my (Wood, 2018a, 2018b).
The Arrhenius equation and the TTI4gg measure can also
be manipulated to readily calculate the extent to which a
reaction has been completed (i.e., the transformation fraction
or factor, TF) and/or the amount of reactants remaining for
a reaction to continue. Eq. (9) determines the quantity of a
reactant yet to be transformed (¥;) by a reaction at time .

Y, =Yoe X €))

where ¢ is time, and Y is the quantity of a reactant available
before the reaction began. Y; is dependent upon the values
of the E-A applicable to the specific reaction, and k is the
Arrhenius equation constant reaction rate for that specific
reaction.

The k; term in Eq. (9) realistically reflects the thermal
maturation process. The Y, TTIsgrr index (Eq. (8)) essentially
does that for the burial history of the kerogen over a geological
time scale. The Y, TTIsgr index can, therefore, be substituted
for exponent (k;) in Eq. (9) and, the quantity of reactant, ¥;, can
be normalised to a 1 to O scale (Wood, 1988). This simplifies
the petroleum conversion reaction calculation to Eq. (10).

X, = e > Thre (10)
where X; represents the fraction of that kerogen reaction
yet to be converted to petroleum, starting at a value of “1”
and reaching a value of “0” when that kerogen reaction has
generated the last of its petroleum. In petroleum exploration
and in reaction kinetic studies it is usually more relevant to
calculate 1-X;, the transformation fraction at time ¢ (T F;) using
Eq. (12). The scale for TF; is from “0” (that kerogen reaction
has not yet generated any petroleum) to “1” (that kerogen
reaction has generated the last of its petroleum).

TF(0il) = 1 — e ETTIarg (11)

Eq. (6) and Eq. (11) are easily adapted by expressing A on
a/min scale to model at the laboratory scale S2 peaks derived
from pyrolysis tests at constant heating rates to provide the
reaction increments (Eq. (6)) and the transformation fraction
(Eq. (11)) at each 1 °C increment. This study focuses on a

model applying Eq. (6) and Eq. (11) to derive meaningful
values of E and A.

Peak transformation temperature 7 Peakrp is important at
the geological scale for petroleum explorationists, because it
identifies when a kerogen reaction is generating petroleum at
the highest incremental rate. It is also of high importance in
pyrolysis S2 peak characterization and modelling, because it
identifies the S2 peak temperature. T Peakrp is established at
the temperature point 7 for the conditions (Eq. (12)):

TPeakrr =T when (TF)r —(TF)r—; >=0

(12)
and (TF)T+] — (TF)T <0

where T = TPeakrr in °C; T-1 = TPeakyr -1 °C; T + 1 =
T Peakrr + 1 °C.

For single kerogens or shales with a dominant kerogen
type or a mixture of kerogens with quite similar kinetics
the incremental reaction products produced calculated using
Eq. (6) over an appropriate temperature ramp and the S2
pyrolysis peaks typically involves a single peak (unimodal)
with a relatively symmetrical shape. However, for mixtures
of significantly different kerogen types with distinct reaction
kinetics the incremental reaction products produced can be bi-
modal or multimodal leading to various asymmetrical reaction
peak shapes. In such circumstances more than one temperature
may satisfy the T Peakrr conditions expressed by Eq. (12).

Here, the ability to use Eq. (6) and Eq. (11) to model
and accurately fit pyrolysis S2 peak shapes and TF curves,
respectively, for kerogens and shales is demonstrated using
published multi-heating rate pyrolysis curves for shales from
different geographic regions and with distinct kerogen types.
The method used to do this involves the following steps:

(1) Digitize the pyrolysis S2 peak curves at each heating rate
from their published images deriving between 25 and 50
points of “counts” (reaction products) versus temperature
for an S2 peak temperature range lying between 250 °C
and 650 °C;

(2) Interpolate between the digitized data points to provide a
data distribution on a/°C basis;

(3) Normalize the interpolated data to provide an S2 peak
where the normalized counts for the/°C temperature range
sum to 1 to generate the reaction increment distribution;

(4) Calculate the cumulative normalized counts versus per/°C
temperature distribution to generate the TF distribution;

(5) Use Eq. (6) to model and fit the incremental distribution
(from step 3) and/or Eq. (11) to model and fit the TF
distribution (from step 4) by varying E and/or A values
across a series (11 in total) parallel reactions with the aid
of an optimizer;

(6) The results presented here apply Excel’s Solver (GRG
option) as the optimizer in two sequential steps: (a)
to match the S2 peak temperatures for three or more
distinctive pyrolysis heating rates to derive the E-A pair
that best reproduce those peak temperatures; and, (b)
use the E-A pair established by step 6(a) as the central
point of an E-A distribution (of 11 parallel reactions)
that is optimized to reproduce most accurately (minimum
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mismatch as measured by mean squared error) the shape
of the full S2 pyrolysis peak;

(7) The objective function of the step 6(b) optimizer is set to
minimize the mean squared error (MSE) between mod-
elled and normalized data curves. This can be performed
with the normalized counts bell-shaped curve using the
reaction-increment distribution from step 3 (with Eq. (6)),
or the sigmoidal TF distribution from step (with Eq. (11)),
or the combination of the two.

Good matches between model and normalized pyroly-
sis data are achieved for various kerogen reaction kinetic
combinations. The data set that is optimized in step 6(b)
involves intervals of 1 °C for a temperature range extending
from ~250 to ~750 °C for three S2 peaks measured at
significantly different (°C/min) heating rates. Hence, about
1,500 individual data points are tested in each iteration by
the optimizer as part of the curve-fitting optimization process.
The differences between modelled and measured values for
each 1 °C temperature interval contribute to the MSE value
for the combination of the eleven E-A pairs tested.

How the E-A pairs of values are calculated using the
parallel reactions is critical in establishing meaningful reac-
tion kinetics distributions. In steps 6 and 7 of the proposed
methodology each of the eleven parallel first-order reactions is
evaluated separately (with different E-A pairs and contribution
fractions f; (0 to 1) to the mixed kinetics peaks generated from
the combination of those individual reactions). For example,
the model TF curve for each iteration of the optimizer is
generated using Eq. (13).

p
TF,(mixed kinetics) =Y fi* (1— eiZTTIARR)I. 13
i=1

where p is the number of kinetic components contributing to
the shale/kerogen sample with mixed kinetics (i.e., p = 11 for
the optimization methodology applied here); f; = the fraction
of each kinetic component contributing to the shale/kerogen

sample with mixed kinetics, where: 0 < f; <1, and, Y f;=1;

i=1
Each of the p kinetic transformations, (1 — e  LTTlsrr );» can
be calculated with different E-A pairs, or (not recommended)
with a fixed A value.

Most models applied in the past three decades to extract
reaction kinetics distributions from multi-heating rate pyrolysis
tests use a simpler formulation of the Arrhenius equation
derivative to determine the £ and A values for a series of
multiple parallel reactions, as expressed in Eq. (14) (e.g.,
Abbassi et al., 2014; Han et al., 2014; Liao et al., 2018).

dx; E; )
d—tl = —Ax;exp (_RYZ"> s i=1--p

where x; is the residual potential of petroleum formation
associated with reaction #; p is the total number of parallel
reactions considered; ¢ is time; 7T is temperature; R is molar
gas constant; A is a fixed frequency factor; E; is a distinct
activation energy for each of the i reactions.

(14)

Using Eq. (14) to locate the A value that best fits the multi-
rate pyrolysis peaks and then adjusting the E values to refine
the fit to the S2 peak shapes underpins the programmed micro-
pyrolysis process (Burnham et al., 1987; Braun and Burnham,
1990; Braun et al., 1991; Sundararaman et al., 1992) that
applies a mathematical routine to optimize the best fit between
the calculated and measured curves. The method typically
derives S2 pyrolysis peaks using three different heating rates
applying specific furnace setups (Schaefer et al., 1990). Schenk
and Dieckmann (2004) suggested that to obtain reasonable ge-
ological predictions from kerogen reaction kinetics, petroleum
transformation factors are best measured using on low heating
rates of 0.7 °C/min, 2 °C/min and 5 °C/min. However, Peters
(2014) suggested that only temperature ramps of > 30 °C/min
appear to be too fast to obtain good reaction kinetic fits
between modelled and measured curves because of delayed
heat transfer between the thermocouple and the sample. Conse-
quently, most multi-heating-rate pyrolysis conducted in recent
years uses heating ramps that vary between 1 and 25 °C/min.

A version of this simplified (discrete) methodology (Miura,
1995; Kinetics 2000 software developed by Lawrence Liver-
more National Laboratory (LLNL) and Humble Instruments
and Services) continues to be widely applied (e.g., Abbassi et
al., 2014, 2016; Han et al., 2014; Liao et al., 2018). It makes
the dubious assumption that parallel first-order reactions with
a single frequency factor and variable activation energies can
accurately invert kerogen reaction kinetics from multi-heating
rate pyrolysis peaks. The justification for applying a single
frequency factor to all reactions in the distribution was valid in
the 1980s due to limited computing capacity and the empirical
need to reduce the number of unknown parameters involved
in the multiple parallel calculations. However, this approach is
clearly inconsistent with theoretical considerations associated
with kerogen distribution and behavior in shales subjected to
both laboratory or geological conditions (Ungerer and Pelet,
1987; Wood, 1988; Ungerer, 1990).

Rather than use the simplified Eq. (14) with its fixed-A
assumption and constant heating rate restriction (which works
fine in the laboratory, but not for geological burial rates) Eqs.
(6), (11) and (13) are used in this study to demonstrate a new
method for extracting accurate reaction kinetics distributions
from multi-heating rate pyrolysis data applying variables E-A
values to individual reactions in the best-fit distribution. This
new method is compared with the fixed-A methods and the
distinct results obtained by the two methods have significant
implications for the reaction kinetic modelling of petroleum
generation under geological conditions.

3. Pyrolysis data modelled

Published multi-heating-rate pyrolysis S2-peaks for ten
samples of pure kerogen (extracted from source rocks) and
shales displayed as images of incremental hydrocarbon yields
at specific temperatures (within the range 250 to 650 °C)
used in this study, and labelled A to J, are derived from the
following published sources.

A Kerogen from Pingliang Formation (PL-M-O;p, marine
shale, Middle Ordovician) an outcrop sample from the
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Erdos/Ordos Basin (China). Digitized for heating rates 5
deg/min; 15 deg/min and 25 deg/min (Liao et al., 2018).

B Kerogen from Yangchang Formation (YC-L, Ty, lacus-
trine shale, Upper Triassic) from borehole Zheng-8 in the
Erdos/Ordos Basin (China). Digitized for heating rates 5
deg/min; 15 deg/min and 25 deg/min (Liao et al., 2018).

C Kerogen from AP22 Green River Formation (Anvil Points
Mine, Colorado) (Eocene). Digitized for heating rates 1
deg/min; 7 deg/min and 50 deg/min (Reynolds and Burn-
ham, 1995).

D Kerogen from the Kimmeridge Clay (Draupne Formation,
Late Jurassic) Northern North Sea (Norway) core sample.
Digitized for heating rates 1 deg/min; 7 deg/min and 50
deg/min (Reynolds and Burnham, 1995).

E Kerogen from the Phosphoria Shale (Early Permian) from
the Retort Mountain Quarry in Beaverhead, Montana
(USA). Digitized for heating rates 1 deg/min; 7 deg/min
and 50 deg/min (Reynolds and Burnham, 1995).

F South Elwood-composite Monterey Formation (Miocene)
shale sample (13.58 wt% S) from cores drilled in the South
Elwood Field well, Santa Barbara-Ventura Basin, California
(USA). Digitized for heating rates 1 deg/min; 7 deg/min and
50 deg/min (Reynolds et al., 1995).

G Naples Beach Monterey Formation (Miocene) outcrop sam-
ple Santa Barbara County, from 921.5 feet above the base of
the Monterey (8.88 wt% S) formation. Digitized for heating
rates 1 deg/min; 7 deg/min and 50 deg/min (Reynolds et
al., 1995).

H Onshore Los Angeles Basin Modelo Shale outcrop sam-
ple (Nodular Shale, Middle Miocene) Bel Air, California
(USA); a bituminous-phosphatic high-S (6.16 wt% S) for-
mation. Digitized for heating rates 1 deg/min; 7 deg/min
and 50 deg/min (Reynolds et al., 1995).

I Montney Shale (Triassic) sample 172208 (immature, R, =
0.59 wt%) Western Canada Sedimentary Basin (Alberta,
Canada). Digitized for heating rates 5 deg/min; 15 deg/min
and 25 deg/min (Romero-Sarmiento et al., 2016).

J Doig Shale (Triassic) sample 173,182 (early mature, R, =
0.71 wt%) Western Canada Sedimentary Basin (Alberta,
Canada). Digitized for heating rates 5 deg/min; 15 deg/min
and 25 deg/min (Romero-Sarmiento et al., 2016).

The per degree C normalized incremental yield and cumu-
lative transformation curves for each of these samples, at the
three different pyrolysis heating ramps used for analysis, are
listed in the supplementary file (see Appendix).

Another potential data source that was evaluated was the
Upper Cretaceous lacustrine shale samples from the Songliao
Basin (China), published by Wang et al. (2011) at five different
heating rates varying from 10 to 50 °C/min. However, these
pyrolysis results are published as very small images and
as transformation ratios rather than incremental hydrocarbon
yield S2 peaks. Once digitized these curves could not be used
to identify the S2-peak temperatures with confidence, so were
not used for this study. This suggests that in order to use
digitized transformation curves for the method proposed here,
the source images need to be published at a reasonably detailed
scale.

4. Results

4.1 Alternative approaches to mixing reaction kinet-
ics to define kerogen kinetic distributions

It is the mixing of individual reaction kinetics that is
typically applied to match and fit pyrolysis S2-peak shapes.
This combination of reactions reflects the fact that most shales
and coals do not consist 100% of a single kerogen maceral,
but rather their kerogen is made up of a mixture of different
macerals with distinct reaction Kkinetics (i.e., E-A values).
Indeed, even in source rocks with a single kerogen type there
are likely to be multiple reactions involved associated with the
dissociation of various chemical bonds (e.g., C-C, C=C, C-H,
C-S, etc.) associated with the various hydrocarbon molecules
constituting that kerogen. Nevertheless, with a single kerogen
component the set of reactions involved is likely to be simpler
than for source rocks containing multiple kerogen types. There
are several ways in which reactions kinetics can be combined
in an optimum way to match S2 peak shapes. Here, three dis-
tinct peak-matching-optimization approaches are considered,
compared and contrasted:

Opt 1-mix reactions along the E-A kerogen trend defined
in Fig. 1.

Opt 2-mix reactions of a constant A value that match the
S2 peaks of multi-rate pyrograms (produced by three distinct
heat ramps). This is the approach that has been widely adopted
since the 1990s in determining kerogen kinetic distributions.

Opt 3-mix reactions with variable E-A values centered on
an E-A value that matches the S2-peak temperatures of multi-
rate pyrograms produced by three distinct heat ramps (Steps
6a and 6b of the preferred new methodology described here).

In attempting to match S2-peak shapes exactly with mix-
tures of reactions associated with distinct £-A kinetics, all
three of these methods assume that the S2-peaks are made up
only of the products and processes associated with first-order
reactions. While this assumption is reasonable for thermally
immature shales, it is less likely to be realistic for more ther-
mally mature shales because second order reactions associated
with the breakdown and release of bitumens, gases and other
reaction products are likely also to be involved. Here, we focus
upon thermally immature/early mature samples to avoid the
complications of S2-peak matching of thermally mature shales,
which are to be addressed as part of a future study.

A comparison of the reaction peak shapes for distinct
kerogen kinetics using Opt 1 and Opt 2 for four differ-
ent laboratory-scale heating ramps (1 °C/min; 5 °C/min;
15 °C/min; and, 25 °C/min) highlights some of the peak
characteristics and their relative temperature ranges.

Fig. 2 identifies three distinct reactions taken from the
E-A trend defined in Fig. 1. The two extremes lie beyond
the range of typical kerogens, which mostly lie in a kinetic
range that straddles the £150 to-E300 reaction rates close to
the established E-A trend. However, it is useful to consider
the mixing implications of the peak relationships across this
extreme range of possible reactions. Fig. 3 illustrates the peak
characteristics (incremental curves on the left; transformation
factors-T'F 0 to 1-on the right) for these three, reaction kinetics
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Kerogen Kinetics Compared for a Mixing Line
Extending along the Wood (1988) Variable E-A Trend
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Fig. 2. Optimization method (Opt 1) S2 peak shape is adjusted by combining two or more reaction kinetics along the establish kerogen kinetic E-A trend.
Three reaction kinetics are selected to illustrate the reaction peak characteristics (shape and temperature range), and to demonstrate that both activation energy
(E) and pre-exponential factor (A) are important in determining these characteristics. These are: £ = 100; InA = 40.02/my or 13.03/min; E = 218; InA =

61.56/my or 34.57/min; and, E = 350; InA = 85.65/my or 58.66/min.
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First-Order Reaction Curves for Specific E-A pairs
(Heating Rate: 25°C/min)
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Fig. 3. Reaction increments (left) and transformation factors (right) for three distinct reaction kinetics identified in Fig. 2 (E = 100; InA = 40.02/my or
13.03/min; E = 218; InA = 61.56/my or 34.57/min; and, E = 350; InA = 85.65/my or 58.66/min) at four distinct pyrolysis-scale heating ramps. The peak
temperature for reaction £ = 350; InA = 85.65/my is lower than the peak temperature for reaction E = 100; InA = 40.02/my because of its much higher A

value (see Eq. (6)).

and the four different laboratory scale (i.e., pyrolysis) heating
rates. What stands out in Fig. 3 are the relative positions of
the three reaction peaks/curves at the different heating rates.
Both activation energy (E) and pre-exponential factor (A) play
a role in determining the characteristics of those peaks as
demonstrated by Eq. (6).

At the lowest heating rate (1 °C/min) the three reaction
curves overlap significantly with the E350-InA86/my reaction
showing the lowest peak reaction temperature £100-InA40/my
reaction showing the highest peak reaction temperature. As
the heating rate increases the E100-InA40/my reaction pro-
gressively moves to the right and, at the two higher heating
rates (15 °C/min; and, 25 °C/min), occurs at significantly
higher temperatures than the other two reactions. Reaction
E350-InA86/my displays the narrowest reaction peak (Fig. 3,
left) and steepest TF curve (Fig. 3, right) with a reaction
peak that moves gradually to higher temperatures (from 416
to 454 °C) as the heating rate increases. Reaction E218-
InA62/my displays a somewhat broader peak than reaction
E350-InA86/my with a reaction peak that moves to gradually
to higher temperatures (from 427 to 489 °C) as heating rate
increases. Reaction E100-InA40/my shows the most signifi-
cant variation of the reactions considered at different heating
rates. It displays the broadest peak, which becomes broader
as heating rate increases, and, in contrast to the other two
reactions, its reaction peak moves to significantly higher
temperatures (from 444 to 590 °C) as heating rate increases.

The net effect of mixing these three reactions in equal
proportions is that the peak of the mixed reactions would
progressively move to a higher temperature as heating rate
increases. These relationships suggest that the increase in the
mixed peak reaction temperature as heating rate increases
is most significantly influenced by reactions with lower E-
A values. they also suggest that the right flanks of mixed-
reaction curves are influenced more by the lower E-A reactions
involved, whereas the left flanks of mixed-reaction curves are
influenced more by the higher E-A reactions involved. Fig.
3 highlights that mixing reactions with different E-A kinetics
can lead to quite complex outcomes at different heating rates
depending upon the specific E-A values involved.

Fig. 4 identifies three distinct reactions taken with identical
A values distributed along a vertical line that intersects the E-
A trend defined in Fig. 1 at £ = 218 kJ/mol (i.e., the reaction
rate calibrated with vitrinite reflectance (Wood, 2017)). Mixing
reactions along a fixed-A trend is the approach used by many
in defining reaction kinetic distributions. The two ends of the
fixed-A trend are E = 200 kJ/mol and E = 245 kJ/mol. The
narrow range of E values along the fixed-A trend compared
to the variable E-A trend approximating kerogen/hydrocarbon
reactions highlights the sensitivity of varying E at a specific
A value, compared to the compensation effect of increasing or
decreasing E and A in conjunction with each other.

Fig. 5 illustrates the peak characteristics (incremental
curves on the left; transformation factors-TF O to 1-on the
right) for these three, reaction kinetics and the four different
laboratory scale (i.e., pyrolysis) heating rates. What stands
out in Fig. 5 is the similarity in the incremental peak shapes
and widths and gradients of the TF curves of the three
reactions across all four heating rates considered. There is only
a very slight overlap between the curves of the three reactions.
The incremental peaks do increase slightly in width from
the £200-InA62/my reaction to the £245-InA62/my reaction.
Significantly, the peak temperatures are spread over a wide
range (370 to 511 °C for the 1 °C/min heating rate; 427 to
580 °C for the 25 °C/min heating rate). These characteristics
are quite distinct from the variations shown in Fig. 3.

The net effect of mixing the three reactions in equal
proportions is that the peak of the mixed reactions would
progressively move to a higher temperature as heating rate
increases, but in a more regular manner than for mixing
reactions with different £ and A values. These relationships
suggest that all £ values have similar relative impacts on the
peak shape if present in similar fractions. It is also apparent
that in fixed-A reaction mixing the right flanks of mixed-
reaction curves are primarily influenced by the higher-E reac-
tions involved, whereas the left flanks of mixed-reaction curves
are primarily influenced by the lower-E reactions involved.
In terms of E values this is the opposite to their influence
in Fig. 3. the consequence of these characteristics is that
it is generally easier to fit reaction curve shapes by mixing
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Kerogen Kinetics Compared for a Mixing Line
of Fixed A Crossing Kerogen Trend at E=218
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Fig. 4. Optimization method (Opt 2) S2 peak shape is adjusted by combining two or more reaction kinetics along the establish kerogen kinetic E-A trend.
Three reaction kinetics are selected to illustrate the reaction peak characteristics (shape and temperature range). These are: E = 100; InA = 40.02/my or
13.03/min; £ = 218; InA = 61.56/my or 34.57/min; and, E = 350; InA = 85.65/my or 58.66/min.
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First-Order Reaction Curves for E- fixedA pairs
(Heating Rate: 25°C/min)
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Fig. 5. Reaction increments (left) and transformation factors (right) for three distinct reaction kinetics along a constant A trend identified in Fig. 4. These are:
E =200, 218 and 245 all with constant A values: InA = 61.56/my (geological scale) or 34.57/min (laboratory/pyrolysis scale used for the four distinct/min
heating ramps modelled). Note that at a constant A value it is the reactions with the lower E values that have lower peak temperatures.

reactions in varying proportions along a single-A trend, rather
than applying variable E-A kinetics. Just because it is easier
to achieve peak fits using constant A values does not though
make it more appropriate to do so.

4.2 The relationship between peak petroleum trans-
formation temperatures and reaction kinetics

To establish meaningful reaction kinetics in terms of a
distribution of E-A values from pyrolysis tests it is necessary
to match the measured S2-peak data with modelled curves
generated using theoretical reaction algorithms (e.g., Egs. (6),
(11) and (13)) evaluated at laboratory scale heating rates
(i.e., /min scales). On the other hand, in order to apply the
derived kinetics to evaluate petroleum generation in terms of
kerogen transformation fractions into petroleum, it is necessary
to apply the derived kinetics at geological-scale heating rates
(i.e., /my scales). Evaluating pyrolysis data at multiple heating
rates is essential to narrow down the possible E-A ranges
of the reactions that potentially match the S2 peaks. A first
step in achieving appropriate kinetic matches to pyrolysis
S2 peaks is to establish the E-A values that best match the
range of S2 peak temperatures across a range of at least
three heating ramps. Tables 1 and 2 list the reaction peak
temperatures, at laboratory and geological scales respectively,
of single first-order reactions calculated using Eq. (6) and
Eq. (12) for a range of E-A values distributed along the
established kerogen/hydrocarbon reaction trend (Fig. 1) at 5
kJ/mol intervals.

Table 1 is a useful guide with which to access pyrolysis
S2 peak temperatures across a range of heating rates. On the
other hand, Table 2 complements Table 1 by expressing the
reaction kinetics in terms of peak petroleum transformation
temperatures. Switching between laboratory scale (/min) and
geological scale (/my) A values is essential for petroleum
exploration and understanding the generation potential of
specific shales over a range of sub-surface temperatures and
thermal evolutions.

For generic thermal maturity modelling the reaction tem-
peratures of the single reaction E = 218 kJ/mol InA 61.56/my
are calibrated in detail to the wide range of vitrinite reflectance

(R,) percentages to provide indicative measures of thermal
maturity for a wide range of burial and thermal histories
using Eq. (8) (Wood, 2018a, 2018b). Of course, it is possible
to use other £ and A values for that purpose (or indeed
distributions of E-A values) to establish alternative correlations
between reaction kinetics and R,%. However, if the kerogen
present in a specific shale has significantly different reaction
kinetics to the reaction kinetics (whatever ones are used)
for the vitrinite reflectance scale, they will not reflect when
peak petroleum generation occurs in that specific shale. For
example, at a 5 °C/my heating rate, from Table 2, for kerogen
reaction kinetics E = 175 InA = 53.7/my, the peak petroleum
transformation temperature is 117 °C. On the other hand, for
kerogen reaction kinetics E = 275 InA = 72.0/my, the peak
petroleum transformation temperature at that heating rate is
185 °C. Both of these peak transformation temperatures differ
significantly from the peak petroleum transformation temper-
ature for kerogen reaction kinetics £ = 218 InA = 61.6/my,
close to vitrinite, of 152 °C. This range of peak transformation
temperatures emphasizes the importance of establishing and
applying appropriate reaction kinetics to specific shales.

4.3 Matching measured pyrolysis S2 peak tempera-
tures for actual shales/kerogens with reaction kinetic
E-A distributions

With the context set in terms of the characteristics of reac-
tion kinetic incremental contribution peaks and transformation
fraction curves (Figs. 2 to 5), and the range of peak transfor-
mation temperatures for kerogen/hydrocarbon-type reactions,
the reaction kinetics of the ten samples (A to J) with published
multiple heating rate pyrolysis curves are now considered. The
first step in achieving this is to match, with the aid of an
optimizer, the measured S2 peak temperatures, for three or
more distinct pyrolysis heating rates, to the E-A pair that that
best fits those temperatures (i.e., step 6(a) in the methodology
described). Table 3 lists the results for the best matches to
S2 peak temperatures achieved by the optimizer. Table 3 and
Fig. 6 compare the reaction kinetics identified (modelled) by
the optimizer with those published for each sample evaluated.
The agreement between the modelled/optimized values and
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Table 1. Peak reaction temperatures at a laboratory scale for reaction kinetics spread along the E-A trend highlighted in Fig. 1 and calculated with Eq. (6)

and Eq. (12). These temperatures are useful for matching with S2 peak temperatures from pyrolysis tests.

Indicative peak reaction temperatures (°C) for potential kerogen reactions at laboratory scale heating rates

Reaction rate

Laboratory scale

Geological scale

Heating rates °C/min: Applying A/min

50 25 15 10 7 5 2 1
E (kJ/mol) £ (keal/mol) A (min) InA (min) A (/my) In4 (my) Peak temperatures (°C) for reactions at laboratory scale heating
150 359 421E+09 22.16 221E+21  49.15 552 529 512 500 489 479 454 435
155 37.0 1.OSE+10  23.07 5.51E+21  50.06 547 525 509 497 487 477 452 435
160 38.2 2.61E+10  23.99 1.37E+22 5097 542 521 506 494 484 475 451 434
165 39.4 6.50E+10  24.90 3.42E+22  51.89 538 517 503 491 482 473 450 433
170 40.6 1.62E+11  25.81 8.52E+22  52.80 534 514 500 489 480 471 449 432
175 41.8 4.03E+11  26.72 2.12E+23  53.71 530 511 497 486 477 469 447 432
180 43.0 1.O0E+12  27.64 5.29E+23  54.62 526 508 494 484 475 467 446 431
185 44.2 2.50E+12  28.55 1.32E+24  55.54 523 505 492 482 474 466 445 430
190 454 6.23E+12  29.46 3.28E+24  56.45 519 502 489 480 472 464 444 430
195 46.6 1.55E+13  30.37 8.17E+24  57.36 516 499 487 478 470 463 443 429
200 47.8 3.87E+13  31.29 2.03E+25  58.27 513 497 485 476 468 461 442 429
205 49.0 9.63E+13 3220 5.07E+25  59.19 510 494 483 474 467 460 441 428
210 50.2 240E+14  33.11 1.26E+26  60.10 507 492 481 472 465 458 440 427
215 514 5.98E+14  34.02 3.14E+26  61.01 505 490 479 471 464 457 440 427
220 52.6 1.49E+15  34.94 7.83E+26  61.93 502 488 477 469 462 456 439 426
225 53.8 3.71E+15  35.85 1.95E+27  62.84 500 486 476 468 461 455 438 426
230 55.0 9.23E+15  36.76 4.86E+27  63.75 498 484 474 466 460 453 437 425
235 56.2 2.30E+16  37.67 1.21E+28  64.66 495 482 472 465 458 452 436 425
240 57.4 5.73E+16  38.59 3.01E+28  65.58 493 480 471 463 457 451 436 424
245 58.6 1.43E+17  39.50 7.51E+28  66.49 491 478 469 462 456 450 435 424
250 59.8 3.55E+17 4041 1.87E+29  67.40 489 477 468 461 455 449 434 424
255 60.9 8.85E+17  41.32 4.66E+29  68.31 488 475 466 460 454 448 434 423
260 62.1 221E+18  42.24 1.16E+30  69.23 486 474 465 458 453 447 433 423
265 63.3 5.49E+18  43.15 2.89E+30  70.14 484 472 464 457 452 446 432 422
270 64.5 1.37E+19  44.06 7.20E+30  71.05 482 471 463 456 451 446 432 422
275 65.7 3.41E+19 4498 1.79E+31  71.96 481 470 461 455 450 445 431 421
280 66.9 8.49E+19  45.89 4.46E+31  72.88 479 468 460 454 449 444 431 421
285 68.1 2.11E+20  46.80 1.11E+32  73.79 478 467 459 453 448 443 430 421
290 69.3 527E+20 47.71 2777E+32 7470 476 466 458 452 447 442 430 420
295 70.5 1.31E+21  48.63 6.90E+32  75.61 475 464 457 451 446 442 429 420
300 71.7 3.27E+21  49.54 1.72E+33  76.53 473 463 456 450 445 441 429 420
305 729 8.14E+21  50.45 4.28E+33  77.44 472 462 455 449 445 440 428 419
310 74.1 2.03E+22  51.36 1.07E+34  78.35 471 461 454 449 444 439 428 419
315 75.3 5.05E+22 5228 2.65E+34  79.26 470 460 453 448 443 439 427 419
320 76.5 1.26E+23  53.19 6.61E+34  80.18 468 459 452 447 442 438 427 418
325 71.7 3.13E+23  54.10 1.65E+35  81.09 467 458 451 446 442 437 426 418
330 78.9 7.80E+23  55.01 4.10E+35  82.00 466 457 451 445 441 437 426 418
335 80.1 1.94E+24 5593 1.02E+36 8291 465 456 450 445 440 436 425 417
340 81.3 4.84E+24  56.84 2.55E+36  83.83 464 455 449 444 440 436 425 417
345 82.5 1.21E+25  57.75 6.34E+36  84.74 463 454 448 443 439 435 425 417
350 83.7 3.00E+25  58.66 1.58E+37  85.65 462 454 447 443 438 435 424 416
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Table 2. Peak reaction temperatures at a geological scale for reaction kinetics spread along the E-A trend highlighted in Fig. 1 and calculated with Eq. (6)
and Eq. (12). These temperatures are useful for identifying peak petroleum transformation temperatures in actual shales subjected to specific burial and
thermal histories.

Indicative peak reaction temperatures (°C) for potential kerogen reactions at geological scale heating rates

Reaction rate Laboratory scale Geological scale Heating rates °C/my: Applying A/million years (my)
10 9 7 5 4 3 2 1

E (kl/mol)  E (kcal/mol) A (/min) InA (min) A (/my) InA (my) Peak temperatures (°C) for reactions at geological scale heating

150 359 421E+09  22.16 221E+21  49.15 97 96 94 92 90 88 85 81

155 37.0 1.OSE+10  23.07 5.51E+21  50.06 102 101 99 97 95 93 91 86

160 38.2 2.61E+10 23.99 1.37E+22  50.97 107 106 104 102 101 99 96 91

165 39.4 6.50E+10  24.90 3.42B+22  51.89 112 111 109 107 106 104 101 96

170 40.6 1.62E+11  25.81 8.52E+22  52.80 117 116 114 112 110 108 106 101
175 41.8 4.03E+11  26.72 2.12E+23  53.71 121 121 119 117 115 113 110 106
180 43.0 1.00E+12  27.64 5.29E+23  54.62 126 125 123 121 120 118 115 110
185 44.2 2.50E+12  28.55 1.32E+24  55.54 130 130 128 125 124 122 119 115
190 45.4 6.23E+12  29.46 3.28E+24  56.45 134 134 132 130 128 126 124 119
195 46.6 1.55E+13  30.37 8.17E+24  57.36 139 138 136 134 132 130 128 123
200 47.8 3.87E+13  31.29 2.03E+25  58.27 143 142 140 138 136 134 132 127
205 49.0 9.63E+13  32.20 5.07E+25  59.19 146 146 144 142 140 138 136 131
210 50.2 2.40E+14  33.11 1.26E+26  60.10 150 149 148 145 144 142 139 135
215 51.4 5.98E+14  34.02 3.14E+26  61.01 154 153 151 149 148 146 143 139
220 52.6 1.49E+15  34.94 7.83E+26  61.93 157 156 155 153 151 149 147 142
225 53.8 3. 71E+15  35.85 1.95E+27  62.84 161 160 158 156 154 153 150 146
230 55.0 9.23E+15  36.76 4.86E+27  63.75 164 163 161 159 158 156 153 149
235 56.2 2.30E+16  37.67 1.21E+28  64.66 167 166 165 162 161 159 157 152
240 574 5.73E+16  38.59 3.01E+28  65.58 170 169 168 166 164 162 160 155
245 58.6 1.43E+17  39.50 7.51E+28  66.49 173 173 171 169 167 165 163 159
250 59.8 3.55E+17  40.41 1.87E+29  67.40 176 175 174 172 170 168 166 162
255 60.9 8.85E+17  41.32 4.66E+29  68.31 179 178 177 175 173 171 169 165
260 62.1 221E+18  42.24 1.16E+30  69.23 182 181 180 177 176 174 172 167
265 63.3 5.49E+18  43.15 2.89E+30  70.14 185 184 182 180 179 177 174 170
270 64.5 1.37E+19  44.06 7.20E+30  71.05 187 187 185 183 181 180 177 173
275 65.7 3.41E+19  44.98 1.79E+31  71.96 190 189 188 185 184 182 180 176
280 66.9 8.49E+19  45.89 4.46E+31  72.88 192 192 190 188 187 185 182 178
285 68.1 2.11E+20  46.80 L.L11IE+32  73.79 195 194 193 190 189 187 185 181
290 69.3 5.27E+20  47.71 277E+32  74.70 197 197 195 193 192 190 187 183
295 70.5 1.31E+21  48.63 6.90E+32  75.61 199 199 197 195 194 192 190 186
300 71.7 3.27E+21  49.54 1.72E+33  76.53 202 201 200 198 196 195 192 188
305 72.9 8.14E+21  50.45 4.28E+33  77.44 204 203 202 200 199 197 194 191
310 74.1 2.03E+22  51.36 1.07E+34  78.35 206 206 204 202 201 199 197 193
315 75.3 5.05E+22  52.28 2.65E+34  79.26 208 208 206 204 203 201 199 195
320 76.5 1.26E+23  53.19 6.61E+34  80.18 210 210 208 206 205 203 201 197
325 71.7 3.13E+23  54.10 1.65E+35  81.09 212 212 210 208 207 205 203 199
330 78.9 7.80E+23  55.01 4.10E+35  82.00 214 214 212 210 209 208 205 201
335 80.1 1.94E+24  55.93 1.02E+36 8291 216 216 214 212 211 209 207 203
340 81.3 4.84E+24  56.84 2.55E+36  83.83 218 218 216 214 213 211 209 205
345 82.5 1.21E+25  57.75 6.34E+36  84.74 220 220 218 216 215 213 211 207

350 83.7 3.00E+25  58.66 1.58E+37  85.65 222 221 220 218 217 215 213 209
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Table 3. Optimizer best E-A reaction kinetic fits to S2-peak temperatures for ten kerogen/shale samples compared to published reaction kinetics for those
samples. E-A comparisons are illustrated in Fig. 6.

Step 1 in establishing reaction kinetic distributions: Optimized match of S2-peak temperatures for 10 samples at three distinct heating rates

Pyrolysis heating rates °C/min

Best fit kinetics (this study) Published kinetics

Sum
Sample 50 25 15 7 5 1 Z?rli)arred E E A A A A E InA

fit (kJ/mol) (kcal/mol) (/my) (/my) (/min) (/min)  (kJ/mol) (/my)

S2 peak temperature °C

A measured - 470 462 - 438 - - 193 57.83
A modelled - 471 461 - 438 - 2 204.17  48.80 1.27E+26  60.11  2.41E+14 33.12
B measured - 478 465 - 442 - - 200 59.40
B modelled - 477 465 - 442 - 1 196.82  47.04 2.93E+25 58.64  5.57E+13  31.65
C measured 496 - - 459 - 423 - 226 63.03
C modelled 496 - - 458 - 423 1 22524  53.83 241E+27 63.05 4.58E+15  36.06
D measured 474 - - 439 - 405 - 220 63.00
D modelled 474 - - 439 - 406 1 230.41  55.07 1.68E+28 6499  3.2E+16 38.00
E measured 472 - - 436 - 402 - 233 65.24
E modelled 472 - - 436 - 402 0 22275 5324 530E+27 63.84 1.01E+16 36.85
F measured 463 - - 426 - 396 - 226 62.27
F modelled 463 - - 427 - 396 1 22771 5442 2.01E+28 65.17  3.83E+16 38.18
G measured 448 - - 417 - 388 - 272 68.82
G modelled 448 - - 417 - 388 0 247.10  59.06 1.23E+30  69.29  234E+18 4230
H measured 461 - - 428 - 397 - 226 64.46
H modelled 461 - - 428 - 397 0 237.57 56.78 1.14E+29 6690  2.16E+17 3991
I measured - 467 456 - 437 - - 226 64.00
I modelled - 466 456 - 437 - 1 221.70  52.99 290E+27 6324  5.52E+15  36.25
J measured - 479 467 - 446 - - 226 63.48
J modelled - 478 467 - 446 - 1 215.01 51.39 5.57E+26  61.59 1.06E+15  34.60

those published are generally good but not perfect. However,
two factors standout: 1) the relative spread of E-A values
among the samples is consistent fitted and published data sets;
and, 2) both published and modelled values lie close to, but
predominantly just to the right of, the established E-A trend
for kerogen/hydrocarbon reactions.

There are at least three contributing factors on why the
published and modelled values do not coincide exactly: 1) the
S2-peak temperature values used are digitized from published
images and the S2 peak temperatures are likely to vary within
2 or 3 °C of the actual recorded values; 2) the published
kinetics are representative modal or mean values from a
distribution; 3) in some cases there is more than one possible
E-A solution with low sum of the squared error (SSE) that
the optimizer could select to provide a good match for the
multi-rate peak reaction temperatures. It is therefore more
meaningful to compare the E-A distributions of the full S2-
peak-shape fits (step 2 of the optimization methodology) to
establish the most realistic reaction kinetic fit.

4.4 Finding the best reaction kinetics to fits to the full
S2 peak shapes with an optimizer

The second step in the methodology to find the best
distribution of E-A values to reproduce the S2 peak shapes of
the shale/kerogen samples (i.e., step 6(a) in the methodology
described) can be performed using the three optimization
approaches described above (i.e., Opt 1, Opt 2 and Opt 3).
Although Opt 1 (i.e., constraining E-A values to the E-A trend
displayed in Fig. 1) can provide approximate fits to the S2
peak shapes it is unable to provide exact fits to the full S2
peaks. On the other hand, Opt 2 and Opt 3 can provide exact
fits to the full S2 peaks and it is those approaches that are
compared and contrasted here. Both commence with the E-A
values established in Table 3 (i.e., the best S2 peak temperature
matches) as their starting points (initial modal focus for the
reaction kinetics distributions to be constructed) and match the
exactly the same normalized /°C data sets for each S2 peak
for each sample.

The results for the Opt 2 approach (i.e., mixing kerogens
along a fixed A trend) applied to the ten kerogen/shale samples
(using Eq. (6), Eq. (11) and Eq. (13)) are displayed in Table
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Sample Reaction Kinetics Compared
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Fig. 6. Published (digitized samples) versus best-fit model results for reaction kinetic £ and A values for ten kerogen and shale samples studied with multi-rate
pyrolysis data. Details are listed in Table 3.
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Fig. 7. Optimized best-fit reaction kinetic distributions using the fixed A approach (Opt 2) results for the ten kerogen/shale samples studied. Note those
distributions extend over wide ranges of E values and all straddle the identified E-A kerogen/hydrocarbon trend. Details of the kinetic distributions are listed
in Table 4.
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Table 4. Optimizer Opt 2 best E-A reaction kinetic fits to full S2-peak shapes for ten kerogen/shale samples using a distribution E and a fixed A values for
up to 11 individual first-order kinetic reactions for each sample. E-A distributions are illustrated in Fig. 7. Note the fractional contributions sum to 1 and the
shaded values identify modal kinetics.

S2 peak shape fits applying a single A (pre-exponential factor) value to each kinetic component (KC)

Up to 11 kinetic components involved in generating accurate shape fit to digitized S2 peak Fit Error .
Sample Elements Modal — Weighted
KC#1 KC#2 KC#3 KC#4 KC#5 KC#6 KC#7 KC#8 KC#9 KC#10 KC#11 MSE kinetics average
E (kJ/mol) 185.80 200.95 204.00 209.62 218.63 234.09 304.33 334.24 341.90 350.00 - 204.00 206.20
A LN A (/my) 60.11 60.11 60.11 60.11 60.11 60.11 60.11 60.11 60.11 60.11 - 3.67E-01 60.11 60.11
Fraction (f) 0.0271 0.2336 0.4000 0.2352 0.0788 0.0236 0.0004 0.0003 0.0006 0.0004 -
E (kJ/mol) 197.00 201.08 208.53 221.06 336.19 338.18 350.00 - - - - 201.08 205.48
B LN A (/my) 58.64 58.64 58.64 58.64 58.64 58.64 58.64 - - - - 1.43E+00 58.64 58.64
Fraction (f) 0.4000 0.4023 0.1289 0.0377 0.0046 0.0207 0.0058 - - - -
E (kJ/mol) 177.50 187.57 199.39 199.43 209.98 222.66 222.76 222.77 225.00 235.11 289.44 225.00 220.96
C LN A (/my) 63.05 63.05 63.05 6305 6305 6305 6305 6305 6305 6305 6305 5.28E-01 63.05 63.05
Fraction (f) 0.0150 0.0200 0.0010 0.0378 0.0890 0.0099 0.0271 0.3500 0.4000 0.0484 0.0019
E (kJ/mol) 184.73 192.72 198.94 200.24 207.73 218.06 224.92 230.00 236.07 243.47 258.27 230.00 229.88
D LN A (/my) 6499 6499 6499 6499 6499 6499 6499 6499 6499 6499 6499 3.44E-01 64.99  64.99
Fraction (f) 0.0076  0.0090 0.0099 0.0010 0.0270 0.0784 0.1416 0.4000 0.2083 0.0956 0.0214
E (kJ/mol) 178.31 178.33 187.46 196.33 204.54 214.15 223.00 232.68 243.20 254.33 350.00 223.00 221.08
E LN A (/my) 63.84 63.84 63.84 6384 6384 6384 63.84 63.84 6384 6384 63.84 4.46E-01 63.84 63.84
Fraction (f) 0.0113 0.0116 0.0334 0.0360 0.0618 0.1694 0.4000 0.1970 0.0530 0.0257 0.0008
E (kJ/mol) 197.54 210.99 220.06 220.18 228.00 234.97 236.76 236.93 241.88 249.97 350.00 228.00 229.38
F LN A (/my) 65.17 65.17 65.17 65.17 65.17 65.17 65.17 65.17 6517 6517 65.17 5.73E-01 65.17 65.17
Fraction (f) 0.0123 0.0284 0.1137 0.1004 0.4000 0.1519 0.0380 0.0455 0.0676 0.0396 0.0026
E (kJ/mol) 206.38 217.33 227.11 236.38 247.00 257.48 257.71 266.94 278.76 293.35 - 247.00 246.14
G LN A (/my) 6929 6929 6929 6929 6929 6929 6929 6929 6929 6929 - 4.20E-01 69.29 69.29
Fraction (f) 0.0269 0.0558 0.1043 0.1710 0.2800 0.0878 0.1385 0.0932 0.0305 0.0120 -
E (kJ/mol) 203.71 218.14 230.49 230.49 230.49 238.00 246.67 246.67 25542 267.47 287.87 238.00 240.23
H LN A (/my) 6690 6690 6690 6690 6690 6690 6690 6690 6690 6690 6690 3.19E-01 66.90  66.90
Fraction (f) 0.0127 0.0308 0.1108 0.0601 0.0273 0.4000 0.1313 0.1101 0.0788 0.0296 0.0086
E (kJ/mol) 214.97 220.17 22691 229.00 229.81 231.72 232.02 232.26 235.17 239.22 250.65 229.00 229.09
I LN A (/my) 64.54 6454 6454 6454 06454 6454 6454 6454 6454 06454 6454 6.58E-01 64.54  64.54
Fraction (f) 0.0659 0.0012 0.3312 0.3500 0.0061 0.0013 0.0005 0.0982 0.0672 0.0633 0.0150
E (kJ/mol) 188.52 213.66 213.67 213.82 213.85 213.96 215.00 223.69 226.65 240.34 279.94 215.00 215.06
J LN A (/fmy) 6159 6159 61.59 6159 6159 6159 6159 61.59 6159 6159 6159 8.66E-01 61.59  61.59
Fraction (f) 0.0228 0.3151 0.0005 0.0707 0.0733 0.0741 0.3500 0.0013 0.0786 0.0121 0.0015
4 and illustrated in Fig. 7. These best fit kinetic distributions The results for the Opt 3 approach (i.e., mixing kerogens
involve a significant range of E-values that all straddle the with E and A unconstrained; the optimizer is free to select

established E-A kerogen/hydrocarbon trend. Note the MSE
values for these fits are low. MSE values below about 1.0E00
demonstrate almost perfect fits to the S2 incremental peak
shape and TF curve for each sample. The weighted average
E value of the best-fit reaction kinetics distribution is close
to the modal value in all cases. If the distribution is to be
described by a single E-A pair either the modal or weighted
average values could be considered as representative.

reactions with any E-A combination in order to achieve
the best S2 peak-shape fit) applied to the ten kerogen/shale
samples are displayed in Table 5 and illustrated in Fig. 8.
These best-fit kinetic distributions involve a significant range
of E-A values for each sample that also straddle the established
E-A kerogen/hydrocarbon trend, but tend to be distributed
closer to that trend, mostly in a semi-parallel manner. Note the
MSE values for these fits are also very low (< 1.0E00 in all
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Table 5. Optimizer Opt 3 best E-A reaction kinetic fits to full S2-peak shapes for ten kerogen/ shale samples using a distribution E-A values for up to 11
individual first-order kinetic reactions for each sample. E-A distributions are illustrated in Fig. 8. Note the fractional contributions sum to 1 and the shaded
values identify modal kinetics.

S2 peak shape fits applying a variable A (pre-exponential factor) value to each kinetic component (KC)

Up to 11 kinetic components involved in generating accurate shape fit to digitized S2 peak Fit Error .
Sample Elements Modal — Weighted
KC#1 KC#2 KC#3 KC#4 KC#5 KC#6 KC#7 KC#8 KC#9 KC#10 KC#11 MSE kinetics average

E (kJ/mol) 150.86 155.76 175.84 195.82 196.13 196.17 196.18 196.19 196.34 196.53 204.00 204.00 198.72
A LN A (/my) 5643 5744 5880 59.03 5991 53.81 57.70 56.03 59.76 65.51 60.11 6.12E-01 60.11  58.88

Fraction (f) ~ 0.0005 0.0006 0.0227 0.2379 0.0279 0.0248 0.2272 0.0575 0.0003 0.0006 0.4000

E (kJ/mol) 168.68 176.09 197.00 198.01 198.68 198.84 198.93 204.36 208.57 223.5194 226.9708 197.00 199.51
B LN A (/my) 58.02 61.68 58.64 5895 5744 59.15 59.18 56.72 6082 57.67 58.98 3.58E-01 58.64 58.83

Fraction (f)  0.02006 0.0085 0.4000 0.0001 0.1392 0.0513 0.1979 0.0195 0.1293 0.0340 0.00005

E (kJ/mol) 183.98 197.86 201.00 210.46 223.74 223.77 225.00 233.74 237.08 248.84 249.08 225.00 221.61
C LN A (/my) 60.86 5743 5999 63.07 64.06 6298 63.05 7337 6329 064.84 60.32 4.25E-01 63.05 63.11

Fraction (f)  0.0271 0.0254 0.0172 0.0934 0.0285 0.3494 0.4000 0.0299 0.0260 0.0012 0.0018

E (kJ/mol) 177.66 188.41 199.53 210.73 220.63 220.88 220.93 220.96 220.97 221.07 230.00 230.00 222.44
D LN A (/my) 60.04 6191 6741 6385 67.61 6021 6223 6431 63.02 69.57 6499 6.77E-01 6499 63.85

Fraction (f)  0.0020 0.0252 0.0188 0.0798 0.0070 0.0527 0.2254 0.1258 0.0546 0.0086 0.4000

E (kJ/mol) 176.06 183.78 192.39 200.92 211.50 213.88 214.09 223.00 234.83 235.56 247.45 223.00 215.85
E LN A (/my) 63.56 53.54 6394 6290 6387 60.80 60.30 63.84 7642 66.65 66.24  7.54E-01 63.84 63.03

Fraction (f)  0.0257 0.0361 0.0464 0.0804 0.0996 0.0669 0.1344 0.4000 0.0012 0.0897 0.0197

E (kJ/mol) 198.37 208.82 213.87 21592 216.19 218.36 219.20 221.49 223.35 228.00 238.81 228.00 224.63
F LN A (/my) 6449 6457 6448 6495 6224 6247 6398 6289 6574 65.17 64.54 5.61E-01 65.17 64.35

Fraction (f)  0.0200 0.0188 0.0479 0.0025 0.1024 0.0917 0.0115 0.0765 0.0964 0.4000 0.1322

E (kJ/mol) 197.76 207.84 217.23 222.84 228.39 236.70 236.83 236.93 247.00 25690 261.67 247.00 235.23
G LN A (/my) 58.87 60.56 68.59 66.69 6841 6581 75.18 6528 69.29 64.30 67.46 5.17E-01  69.29 67.23

Fraction (f)  0.0271 0.0539 0.0954 0.0585 0.1535 0.2043 0.0174 0.0151 0.2800 0.0349 0.0597

E (kJ/mol) 238.00 246.72 247.03 247.56 247.85 24790 24828 250.55 256.27 261.12 276.70 238.00 247.07
H LN A (/my) 6690 6848 7190 67.06 70.08 6697 6737 67.03 71.12 67.88 68.94 8.27E-01 6690 68.05

Fraction (f) ~ 0.4000 0.0123 0.0470 0.2220 0.0500 0.0104 0.0117 0.0120 0.1271 0.0597 0.0477

E (kJ/mol) 208.39 222.00 227.43 228.01 228.13 234.61 237.28 241.73 267.50 281.42 312.59 228.01 227.76
1 LN A (/my) 5899 6324 64.11 6444 6274 69.02 6641 61.04 6545 67.56 75.57  6.39E-01 6444 64.23

Fraction (f)  0.0008 0.3500 0.1286 0.3542 0.0570 0.0214 0.0710 0.0008 0.0029 0.0035 0.0098

E (kJ/mol) 191.90 199.19 215.00 215.62 215.96 216.00 216.06 225.79 225.79 229.13 240.71 215.00 216.44
J LN A (/my) 5526 53.12 6159 67.77 6182 61.83 61.83 57.15 6346 6192 65.93  6.86E-01 61.59 61.73

Fraction (f)  0.0292 0.0020 0.3500 0.0017 0.1055 0.2074 0.1853 0.0005 0.0702 0.0320 0.0163

cases) indicating almost perfect fits to the S2 incremental peak
shape and TF curve for each sample. The weighted average
E-A value of the best-fit reaction kinetics distribution is close
to the modal value in some cases (e.g., for samples B, C, F, I
and J the E values are within 5 kJ/mol and A values are very
similar). On the other hand, the modal and weighted average
values of the reaction kinetic distributions for samples A, D,
E, G and H differ by greater than 5 kJ/mol and A values are
also distinct. If the distribution is to be described by a single
E-A pair for samples A, D, E, G and H the weighted average

values are more representative of that distribution than the
modal values of the distribution.

Note that the modal values of the best-fit distributions are
the same for Opt 2 and Opt 3 approaches, as both optimization
routines are seeded with those values (i.e., the best fit S2
peak temperature kinetics for Table 1). However, it should
be recognized that in shales with significant proportions of
more than one kerogen type that modal value is reflecting
the combined effects of multiple reaction kinetics and may
not itself represent the reaction kinetics of a single kerogen
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Fig. 8. Optimized best-fit reaction kinetic distributions using the variable E-A approach (Opt 3) results for the ten kerogen/shale samples studied. Note those
distributions extend over wide ranges of E values and all straddle the identified E-A kerogen/hydrocarbon trend. Details of the kinetic distributions are listed

in Table 5.
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Fig. 9. Optimized best-fit key reaction kinetics (contributing >= 5% to solutions) using the variable E-A approach (Opt 3) results for the ten kerogen/shale
samples studied. Note these key-contributing reactions tend to be situated closer to the established E-A kerogen/hydrocarbon trend than those contributing
smaller fractions to the solutions (compare with Fig. 8). Details of the key kinetic reactions plotted are listed in Table 6.
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Table 6. Optimizer Opt 3 best E-A reaction kinetic fits to full S2-peak shapes for ten kerogen/ shale samples using a distribution E-A values showing just
those reactions in the solution that contribute >= 5% fraction to the solution. The E-A distributions of these significant reactions are illustrated in Fig. 9.
Note the fractional contributions of these major contributing reactions sum to > 0.9 in all but one case.

S2 peak shape fits applying a variable A (pre-exponential factor) value to each kinetic component (KC)
only kinetics contributing >= 5% to the fit are included

Key Kinetic Components Involved in Generating Accurate Shape Fit to Digitized S2 peak Contribution

Sample  Elements KC#l KC#2 KC#3 KC#4 KC#  KC#H6 KCH#7  KC#8  KC#  KC#10 KC#11 % of Fit
E (kJ/mol) 195.82 196.18  196.19 204.00

A LN A (/my) 59.03 5770 56.03 60.11
Fraction (f) 0.2379 02272 0.0575 04000 92.27%
E (kJ/mol) 197.00 198.68 198.84 198.93 208.57

B LN A (/my) 58.64 5744 5915  59.18 60.82
Fraction (f) 0.4000 01392 00513  0.1979 0.1293 91.77%
E (kJ/mol) 210.46 22377 225.00

C LN A (/my) 63.07 6298  63.05
Fraction (f) 0.0934 03494 0.4000 84.28%
E (kJ/mol) 210.73 22088 22093 22096  220.97 230.00

D LN A (/my) 63.85 6021 6223 6431  63.02 64.99
Fraction (f) 0.0798 00527 02254 0.1258  0.0546 0.4000  93.85%
E (kJ/mol) 19239 20092 21150 213.88 214.09 223.00 235.56

E LN A (/my) 6394 6290 6387 60.80 6030  63.84 66.65
Fraction (f) 0.0464 0.0804 0.0996 0.0669 0.1344  0.4000 0.0897 91.73%
E (kJ/mol) 213.87 216.19 21836 2149 22335 22800 238.81

F LN A (/my) 64.48 6224 6247 6289 6574 6517  64.54
Fraction (f) 0.0479 0.1024  0.0917 0.0765 0.0964 04000 0.1322  94.72%
E (kJ/mol) 207.84 21723 22284 22839  236.70 247.00 261.67

G LN A (/my) 60.56 6859  66.69 6841 6581 69.29 67.46
Fraction (f) 0.0539  0.0954 00585 0.1535 0.2043 0.2800 0.0597  90.55%
E (KJ/mol)  238.00 247.03 24756  247.85 25627 261.12  276.70

H LN A (/my)  66.90 7190  67.06  70.08 7112 6788 68.94
Fraction ()  0.4000 0.0470 02220  0.0500 0.1271 00597 0.0477  95.36%
E (kJ/mol) 22200 22743 22801 228.13 237.28

I LN A (/my) 6324  64.11 6444 6274 66.41
Fraction (f) 03500 0.1286 03542  0.0570 0.0710 96.08%
E (kJ/mol) 215.00 21596 21600 216.06 225.79

J LN A (/my) 61.59 6182 6183  61.83 63.46

Fraction (f) 0.3500 0.1055 0.2074  0.1853 0.0702 91.84%
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Weighted Average Kinetics for Best S2 Peak Shape Fits
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Fig. 10. Weighted average kinetics for the optimized best-fit reaction kinetics distributions for Opt 2 (labelled f for fixed-A) and Opt 3 for the ten kerogen/shale
samples studied. Note, these kinetic weighted-average solutions all lie close to the established E-A kerogen/hydrocarbon trend.

type. Some of the samples do show indications of bimodal
distributions. This is perhaps most significant for sample G
where two reactions with E values separated by ~10 kJ/mol
(Table 4 and Table 5) have significant fractional contributions
in the optimum solutions. This potentially explains the broader
S2 peak associated with that sample.

However, whether Opt 2 or Opt 3 best fits are applied,
in order to match the S2 peak all reactions included in the
distribution make a contribution. Hence, all reactions involved
in the kinetic distribution (not the modal or weighted average
values) should be used in applying the best fit results to a
geological scale thermal history for a specific shale sample in
order to accurately reflect the extent and timing of petroleum
generation.

For Opt 3 the individual reactions that contribute >= 5%
fractions to the optimum solutions are highlighted in Table 6
and Fig. 9. These reactions typically make up more than 90%
of the reactions involved in the optimum best-fit solutions.

By comparing Figs. 8 and 9 it is clear that those reactions
contributing most to the best-fit solutions generally lie close
to the established E-A trend than those reactions contributing
small (< 5%) fractions to those solutions. In general, for
both Opt 3 and Opt 2 approaches the reactions making small
contributions tend to be making contributions to improve the
fits to the more distal portions of the left and right flanks
of the S2 peaks. Consequently, such reactions play a less
significant role in the petroleum generation timing and peak-
generation temperatures of the kerogen mix than the other
more significant reaction contributions.

Fig. 10 compares the weighted-averages of the kinetics
distributions for the best-fit solutions for each sample applying

approaches Opt 2 and Opt 3. Considering, these fits are based
on exactly the same data set and are seeded with the same
modal solutions (i.e., those from Table 3) the differences in
these weighted averages are significant. Sample G stands out
in this regard, with the bimodal kinetic distribution in Opt 3
solution undoubtedly contributing to that distinction. All of
the weighted average solutions, for both Opt 2 and Opt 3, lie
close to or offset just to the right of the established E-A trend.

Figs. 11 to 13 illustrate the actual best-fit solutions (Opt
3) to the /°C reaction increments and reaction transformation
curves for three samples (A, I and G, respectively) that plot
towards each end and the center of the range of reaction
kinetics displayed in Fig. 10. Other samples could be shown
as the quality of the fits achieved are similar for each sample
(a comparison of MSE values in Table 5 reveals the high
degrees of fits achieved for all samples with Opt 3). Note
the significantly broader peak involved for sample G (Fig. 13)
which, as mentioned, is indicative of bimodal nature of the
reaction kinetics required for the optimum solution.

5. Discussion

5.1 Appropriate formulations of the Arrhenius equa-
tion to fit S2 pyrolysis peaks

The results presented demonstrate that the formulation of
the Arrhenius equation in terms of Eq. (6) to establish reaction
increments and Eq. (11) to establish transformation fractions is
a viable and effective way to establish E-A distributions (using
Eq. (13)) that accurately match/fit the full shapes of multi-
heating-rate S2 pyrolysis data when that data is expressed on
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Fig. 11. Reaction increments (left) and transformation factors (right) for sample A at three different heating rates with the Opt 3 best-fit solutions almost
perfectly overlying the digitized data for these curves. The weighted-average of the reaction kinetics distribution achieving this best fit (MSE = 6.12E-01) is:

E =198.72 klJ/mol InA = 58.88/my.

a normalized scale of 0 to 1. This formulation is more versatile
than the Arrhenius equation formulated as Eq. (14) which
requires the reaction kinetic distributions to be expressed in
terms of a constant/fixed a value and is restricted to a single
heating rate over time.

Egs. (6), (11) and (13) are able to provide meaningful
fits to multi-heating-rate S2 pyrolysis data, with the aid of
optimizers, using reaction kinetics distributions with fixed-A
or with variable E-A values. This makes these equations more
useful than those using Eq. (14), and raises the question of why
do some petroleum geologists persist in applying that over-
simplified formulation of the Arrhenius equation derivative?

5.2 Appropriate methodology for fitting multi-
heating-rate pyrolysis S2 peaks

Both the fixed-A (Opt 2) and variable E-A (Opt 3) methods
applying the two-step methodology proposed with Eqs. (6),
(11) and (13) can clearly provide accurate fits (i.e., low MSE
between modelled and measured curves) to real multi-rate

S2 data sets, as demonstrated by the ten samples evaluated.
However, which method (Opt 2 or Opt 3) provides the most
credible results? A comparison of Fig. 7 with Figs. 8 and
9 reveals that the reaction kinetics involved in the Opt 3
best-fit solutions are distributed more realistically along the
established E-A kerogen/hydrocarbon trend. On the other
hand, the Opt 2 best-fit solutions, although they straddle the
established E-A kerogen/hydrocarbon trend they involve some
reactions that lie at significant distances either side of that
trend.

The more distant reactions are from the established E-A
trend the more questionable they are in terms of relevance
to kerogen/hydrocarbon reactions and geological time scales.
Most shales involve mixtures of kerogen types I, II, III and
IV with reaction kinetics known to lie in the vicinity of the
established E-A trend. Matching S2 peaks with reaction kinetic
distributions that involve individual reaction E-A values that
lie close to and/or extend over ranges that are parallel to that
trend are the most credible fits to the data. Consequently, Opt
2 (variable E-A distributions) are considered to be much more
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Fig. 12. Reaction increments (left) and transformation factors (right) for sample I at three different heating rates with the Opt 3 best-fit solutions almost
perfectly overlying the digitized data for these curves. The weighted-average of the reaction kinetics distribution achieving this best fit (MSE = 6.39E-01) is:

E = 227.76 kJ/mol InA = 64.23/my.

credible than fixed-A distributions. This has significant impli-
cations for modelling petroleum generation using appropriate
distributions of kerogen reaction kinetics. Clearly, more than
one viable reaction-kinetic distribution “best-fit” solution exist
for most shales, even using multi-heating-rate pyrolysis data
modelled on a high-resolution (i.e., each 1 °C) basis. The
challenge is to select the most credible one. Geologically,
fixed-A reaction kinetics distributions offer little to support
their credibility other than that Eq. (14) is slightly easier to
manipulate and compute than Egs. (6), (11) and (13).

5.3 Refining the established kerogen/hydrocarbon E -
A trend

The established activation energy versus pre-exponential
factor (E-A) trend for kerogen/hydrocarbon reactions dates
back to the 1980s (Wood, 1988) and is based on the limited
set of data available at that time from various source published
in the 1970s and 1980s. In the original publication that
trend was illustrated as a dashed line with a question mark

at its lower end, and the individual data points extracted
from pyrolysis experiments on kerogens and hydrocarbon-
related reactions identified a significant spread of data around
that trend. Ungerer (1990) subsequently published a similar
trend based on pyrolysis data performed on selected kerogen
samples in the 1980s which also showed a significant spread of
data about the trend line proposed (see Fig. 1 here and Fig. 8§,
Ungerer, 1990). Although a significant amount of subsequently
published kinetic data on kerogens and shales reveal E-A
distributions that plot close to or straddle the Wood (1988)
and Ungerer (1990) trends (e.g., Peters et al., 2015; samples
evaluated in this study), there is, undoubtedly, scope to refine
and establish a kerogen/shale E-A trend with better-defined
range limits on that refined trend using a larger data set.

To define a more representative E-A trend for the more
common global kerogen/shale types, a large data set of multi-
heating rate pyrolysis data for various thermally-immature
kerogens/shales needs to be collected/compiled from around
the world. It is likely that it would be possible to use a better-
defined E-A trend to constrain pyrolysis S2 peak modelling
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Fig. 13. Reaction increments (left) and transformation factors (right) for sample G at three different heating rates with the Opt 3 best-fit solutions almost
perfectly overlying the digitized data for these curves. The weighted-average of the reaction kinetics distribution achieving this best fit (MSE = 5.17E-01) is:

E = 235.23 kl/mol InA = 67.23/my.

further, i.e., to review the credibility of peak fits using Opt
3 and, perhaps, to derive more reliable indicative kerogen
reaction kinetics from the Opt 1 method described for single-
heating rate pyrolysis data.

5.4 Extracting meaningful reaction Kkinetics data
from single-heating-rate pyrolysis S2 peaks

There has been some debate in recent years (Peters, 2014;
Peters et al., 2015; Waples, 2016) regarding the value of single-
versus multi- heating rate pyrolysis data in deriving mean-
ingful reaction kinetics for modelling petroleum generation
from kerogen/shales. The results of this study support the case
that multi-heating rate data (using three significantly distinct
heating ramps) provides more reliable reaction kinetic data.
To some extent though that discussion has been focused on
the wrong issue. It should have identified that the practice of
using a fixed A-value to model reaction kinetic distributions
applies flawed logic and imposes unrealistic assumptions.

The reason why single-heating ramp S2 peak data provide
unreliable reaction kinetic results is that there are multiple E-
A distributions that can provide excellent shape fits to a single
S2 peak shape. This is illustrated by Fig. 14 which shows two
“best-fit” results applying the optimizer (step 2 only) to just

the slowest heating ramp (1 °C/min) data for sample E. The
graph on the left (Fig. 14) shows the “best-fit” solution (MSE
= 1.75E-01) when seeded initially with the 11 reactions set at
reaction kinetics of E218 kJ/mol InA 61.56/my. The weighted
average of the reaction kinetics for that fit is E165.60 kJ/mol
InA61.44. The graph on the right (Fig. 14) shows the “best-
fit” solution (MSE = 1.24E-01) seeded initially with the 11
reactions spread with equal fractions along the established E-
A trend. The weighted average of the reaction kinetics for that
fit is E247.51 kJ/mol InA62.96. Neither of these fits lies close
to the best fit established collectively for the three heating
rates, which is (E = 215.85 kJ/mol InA = 63.03, Table 5).
The two fits shown in Fig. 14 are two of many that could
be established to fit this single heating-rate peak, depending
upon the E-A values with which the eleven kinetic reactions
considered by optimizer are seeded. Clearly the reaction kinet-
ics derived in this way are unreliable. Table 7 reinforces this
point by listing the “best-fit” results for the other samples (A to
J) apply similar attempts to fit reaction kinetics distributions
to the single peak derived from the lowest-heating-rate S2-
peak pyrolysis data. The high MSE (> 1.0E+00) for almost
all the three-peak cases associated with single-peak fit attempts
indicate that allow the optimizer fits the single peak well the
kinetics distributions it uses to do so do not fit the other two
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three-peak fits. Highlighted MSE values are for the objective function optimized in each case. MSE values of less than about 3.0E-01 indicate good fits for

single-peak objectives. MSE values of less than about 9.0E-01 indicate good fits for three-peak objectives.

Reaction kinectics distribution comparisons for single S2 peak fits with optimum (Opt 3) three-peak fits

Weighted average of

reaction Kinetics

Fastest

Middle

Slowest

Measured
for all three

Sample Optimization objective distribution providing heating rate heating rate feating rate peaks
name best fit
E (kJ/mol) InA (/my) MSE Pkl MSE Pk2 MSE Pk3 MSE All 3
3 peak-fit optimized 198.72 58.88 7.077E-02 2.925E-01 2.485E-01 6.118E-01
A E218 seed Pk3 only optimized  196.18 60.57 3.074E+00 2.303E-01 6.759E-02 3.372E+00
E-A trend Seed Pk 3 optimized ~ 194.35 61.38 4.960E+00 2.491E-01 7.275E-02 5.282E+00
3 peak-fit optimized 199.51 58.83 9.158E-02 1.476E-01 1.188E-01 3.579E-01
B E218 seed Pk3 only optimized  204.26 61.56 3.788E+00 2.412E-01 1.553E-01 4.185E+00
E-A trend Seed Pk 3 optimized ~ 208.65 60.03 1.575E+00 2.343E-01 1.675E-01 1.977E+00
3 peak-fit optimized 221.61 63.11 1.257E-01 1.491E-01 1.507E-01 4.255E-01
C E218 seed Pk3 only optimized  214.81 61.56 7.985E-01 1.393E-01 1.168E-01 1.055E+00
E-A trend Seed Pk 3 optimized ~ 204.62 59.19 8.361E-01 3.988E-01 2.336E-01 1.469E+00
3 peak-fit optimized 222.44 63.85 8.035E-02 3.293E-01 2.676E-01 6.773E-01
D E218 seed Pk3 only optimized 177.98 61.27 5.037E+00 8.804E-01 8.217E-02 5.999E+00
E-A trend Seed Pk 3 optimized  173.01 56.65 1.717E+00 1.119E+00 1.632E-01 2.999E+00
3 peak-fit optimized 215.85 63.03 2.307E-01 2.490E-01 2.747E-01 7.545E-01
E E218 seed Pk3 only optimized  165.61 61.44 6.013E+00 9.079E-01 1.748E-01 7.095E+00
E-A trend Seed Pk 3 optimized ~ 247.51 62.96 3.597E+00 1.662E-01 1.238E-01 3.887E+00
3 peak-fit optimized 224.63 64.35 1.591E-01 2.299E-01 1.720E-01 5.610E-01
F E218 seed Pk3 only optimized — 211.44 61.63 5.697E-01 2.253E-01 7.999E-02 8.749E-01
E-A trend Seed Pk 3 optimized ~ 182.07 57.87 1.760E+00 6.032E-01 8.061E-02 2.444E+00
3 peak-fit optimized 235.23 67.23 2.040E-01 1.575E-01 1.551E-01 5.166E-01
G E218 seed Pk3 only optimized  176.70 61.00 3.251E+00 5.707E-01 1.052E-01 3.927E+00
E-A trend Seed Pk 3 optimized ~ 180.11 60.01 2.352E+00 5.504E-01 9.703E-02 3.000E+00
3 peak-fit optimized 247.07 68.05 1.056E-01 3.513E-01 3.702E-01 8.271E-01
H E218 seed Pk3 only optimized  183.81 61.20 4.921E+00 8.667E-01 9.200E-02 5.880E+00
E-A trend Seed Pk 3 optimized ~ 186.99 58.33 1.450E+00 8.516E-01 1.002E-01 2.402E+00
3 peak-fit optimized 227.76 64.23 1.169E-01 2.457E-01 2.765E-01 6.391E-01
I E218 seed Pk3 only optimized  193.43 61.13 4.881E+00 5.706E-01 1.304E-01 5.582E+00
E-A trend Seed Pk 3 optimized ~ 210.75 60.39 1.171E+00 3.542E-01 8.516E-02 1.610E+00
3 peak-fit optimized 216.44 61.73 2.570E-01 2.642E-01 1.647E-01 6.858E-01
J E218 seed Pk3 only optimized = 201.36 61.46 4.986E+00 4.430E-01 2.563E-01 5.685E+00
E-A trend Seed Pk 3 optimized ~ 228.02 56.09 5.123E+00 2.871E-01 8.857E-02 5.498E+00




24 Wood, D.A. Advances in Geo-Energy Research 2019, 3(1): 1-28

Reaction Kinetics for Sample E
Fit Optimized for 1°C/min Heating Rate Only

Optimizer seeded with: )
350 E=218 LnA =61.56. % 350
MSE for single peak = 1.75E-01. '
300 | Weighted average of "best-fit" + e
reaction kinetics distribution: P
5250 | E=165.60 kJ/mol LnA=61.44/my A
£ 2218
5 200 >
= -
w 150 va
,}/
100 _B100
50
0
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Ln A (/my)

Reaction Kinetics for Sample E
Fit Optimized for 1°C/min Heating Rate Only

400

Optimizer seeded with E-A trend.

350 MSE for single peak = 1.24E-01. /,4)"350
Weighted average of "best-fit" »
300 reaction kinetics distribution: +
E=247.51 kJ/mol LnA=62.96/my t o4
=250 NE
] + o7
E +, & +
5 200 +Le 218
= o
w 150 Y
',”'
100 _B100
50 ’
0
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
Ln A (/my)

Fig. 14. Two “best-fit” reaction kinetics distributions derived by optimization for single-heating rate (1 °C/min) S2-peak pyrolysis data of Sample E using
different seed values. These are two of many possible excellent E-A fits to that single peak. Neither fit shown is close to the best fit established for the
three-heating rate S2 peaks for that sample (E = 215.85 kJ/mol InA = 63.03, Table 5).

peaks. Also, the weighted averages of the kinetic distributions
for the single-peak fits differ significantly from the three-peak
kinetics.

5.5 Peak fitting issues relating to thermally mature or
post mature samples

The reaction-kinetic modelling presented here focuses
upon immature/early mature shale pyrolysis data. S2 pyrolysis
peaks of shale samples at peak or post-peak thermal maturity
tend to be broader and more complex than those for immature
shales, which in most cases are relatively narrow and symmet-
rical across a liner temperature scale. Thermally mature shales
often produce asymmetrical S2 peaks exhibiting multi-peak,
fronting and back-tailing shapes (terms adopted from Jurisch
etal., 2012). It is clear that a more complex set of processes are
involved combining first-order reactions (e.g., progression of
kerogen maturation), second order reactions (e.g., breakdown
of bitumen, natural gas liquids etc. to smaller hydrocarbon
molecules) and potentially non-kinetic processes (release of
gases from more extensive nano-porosity in mature kerogens).
Further work is required to quantify the combination of
these processes. Work in progress is focused on modelling to
produce accurate fits and explain the more complex, broader
S2 peaks associated with kerogens/shales at peak or post
thermally mature conditions. This is considered important as
being able to model and predict these complex S2 peak shapes
should help in locating thermally mature sweet-spots in shales
that are more likely to be associated with higher petroleum
yields.

6. Conclusions

Modelling S2 pyrolysis data normalized to a scale of O
to 1, using reaction kinetics based on the Arrhenius time
temperature index 7TIsgg method to calculate reaction in-
crements (Eq. (6)) and transformation fractions (Eq. (11)) on
a detailed temperature scale (1 °C interval from 250 to 700
°C), and to combine those for multiple reactions using Eq.
(13), provides excellent fits to published data for shales and

kerogens extracted from shales in thermally immature or early
mature conditions.

A two-step optimization approach is required to derive
reaction kinetics distributions in terms of activation energies
(E) and pre-exponential factors (A) that can fit the full S2 peak
shapes with minimum errors. This requires multi-rate pyrolysis
data generated at three different heating rates. Step 1 applies
an optimizer to Egs. (6), (11) and (13) (on a 1 °C scale) to
identify the E-A pair that best matches the S2 peak generation
temperatures for the three heating rates. Step 2 then takes that
E-A pair as the modal point from which ten other reactions
defined as E-A pairs are optimized (on a 1 °C intervals) to
match the full shapes of the S2 peaks for the three different
heating rates.

Two distinct approaches can be taken for step 2 that both
provide excellent fits to the S2 curve data. The first approach
(Opt 2) fixes the A value at the modal value derived by
step 1 and locates its optimum best-fit solution by finding
the fractions of 11 E values (including the modal value) that
best fit the data of the three S2 peaks. This is similar to the
approach adopted by many kerogen kinetic studies over the
past 25 years (applying Eq. (14) rather than Egs. (6), (11) and
(13)). The second approach (Opt 3) takes as its mode the E-
A pair derived from step 1 and locates its optimum best-fit
solution by finding the fractions of 11 E-A values (including
the modal value) that best fit the data of the three S2 peaks.
This cannot be done with Eq. (14), but requires Egs. (6), (11)
and (13).

A comparison of the best-fit solutions with the established
E-A trend of kerogen/hydrocarbon reactions suggests that the
Opt 3 approach provides more credible best-fit solutions than
the Opt 2 approach. The reactions contributing to the Opt
3 best-fit solutions are distributed along the established E-
A trend, which is logical for shales that contain a mixture of
kerogen types. On the other hand, the solutions generated by
Opt 2 include contributions from reactions that are located
far from the established E-A kerogen/hydrocarbon reaction
line. Also, there is clearly no theoretical justification to expect
all the reactions involved in kerogen/shale thermal maturation
to be aligned along a single A value. That over-simplified
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assumption has been made by chemists/analysts purely for
the convenience of being able to achieve easy fits to the data
using equations such as Eq. (14). It is unfortunate that many
geoscientists seem to have accepted that approach without
questioning the implications and validity of that assumption.

There is a limited number, but more than one set, of
kinetic reactions that can fit with reasonable accuracy even
three pyrolysis S2 peaks generated by multi-rate analysis.
However, the number of realistic fits is limited. This is not
the case when fitting one S2 peak from a single heating rate
pyrolysis analysis, where multiple potential fits with quite
distinct reaction kinetics can be generated if E-A are allowed to
vary in an unconstrained way. Consequently, it is not possible
to obtain reliably accurate reaction kinetics distributions from
single-heating-rate pyrolysis data. Indicative reaction kinetics
can be achieved by constraining the solutions to involve only
those reactions lying close to the established E-A trend, but
these need to be refined by multi-rate pyrolysis data to verify
the validity of the reaction kinetic distribution.

This work focuses upon immature/early mature shale
pyrolysis data. Further work is required to model, fit and
explain the more complex, broader S2 peaks associated with
kerogens/shales at peak or post thermally mature conditions.

The established E-A trend for kerogen/hydrocarbon reac-
tions dates back to the 1980s and is based on the limited set of
data available at that time. Although a significant amount of
subsequently published kinetic data on kerogens and shales
provide E-A distributions lying close to or straddling that
trend, there is clearly a requirement to refine that trend. To
better define the spread of reaction kinetics around that trend
a large dataset of kerogen/shale multi-heating rate pyrolysis
data needs to be collected and compiled from shales around
the world.

Open Access This article is distributed under the terms and conditions of
the Creative Commons Attribution (CC BY-NC-ND) license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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Appendix

A supplementary file is available online that lists the/°C normalized reaction increments for S2 peak data relating to each
of three multi-heating rate runs of the ten published samples (A to J) digitized for this study.



