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Abstract:
Reservoir history matching refers to the process of continuously adjusting the parameters
of the reservoir model, so that its dynamic response will match the historical observation
data, which is a prerequisite for making forecasts based on the reservoir model. With the
development of optimization theory and machine learning algorithms, automatic history
matching has made numerous breakthroughs for practical applications. In this perspective,
the existing automatic history matching methods are summarized and divided into model-
driven and surrogate-driven history matching methods according to whether the reservoir
simulator needs to be run during the automatic history matching process. Then, the basic
principles of these methods and their limitations in practical applications are outlined.
Finally, the future trends of reservoir automatic history matching are discussed.

1. Introduction
In reservoir management, the typical production data that

can be measured include the surface production rate, water
cut, bottom-hole pressure, etc. However, the model parameters
(such as absolute and relative permeabilities, porosity) and
dynamic variables (such as pressure and water saturation)
cannot be measured directly. Reservoir engineers routinely
obtain estimates of these parameters and variables by history
matching, and then use the history-matched model to predict
future trends.

The traditional reservoir history matching method is to
manually adjust the reservoir model based on field experiences
until the dynamic responses match the historical observation
data, which is a time-consuming trial-and-error process. In
recent years, automatic history matching (AHM) methods have
been developed and employed in many practical applications,
benefiting from the development of optimization theory and
machine learning algorithms. AHM refers to the process of
using intelligent optimization algorithms to find the optimal

reservoir model parameters.
Depending on whether the forward reservoir simulations

need to be run during the AHM process, AHM methods
are divided into model-driven and surrogate-driven history
matching methods (Fig. 1). The current status of AHM is
presented in Section 2 and Section 3. Section 4 discusses
several directions that are expected to become popular in the
future.

2. Model-driven history matching
By using the least squares method or the maximum a pos-

teriori estimation method to establish the objective function,
the AHM problem can be transformed into a single objective
optimization problem that can be solved by optimization meth-
ods (Rwechungura et al., 2011). The optimization algorithms
need to call the reservoir numerical simulator multiple times
to obtain the response data with adjusted parameters of the
reservoir model (Bertolini and Schiozer, 2011). Therefore, this
type of method is referred to as model-driven history matching
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Fig. 1. The existing research perspectives and outlooks for history matching.

method.
According to whether a gradient is required, optimiza-

tion algorithms can be divided into gradient-based algorithms
(Yang and Watson, 1988; Eydinov et al., 2008; Chen et
al., 2009) and gradient-free algorithms (Romero and Carter,
2001; Emerick and Reynolds, 2013; Paredes et al., 2013).
The commonly used gradient algorithms include Newton-
type algorithms, steepest descent method (Chen et al., 2021)
and conjugate gradient method. Newton-type algorithms not
only need the gradient of the objective function, but also the
Hessian matrix. The representative algorithms include Gauss
Newton method, Levenberg-Marquardt method, Levenberg-
Marquardt-Fletcher method, Quasi-Newton method, etc. Hes-
sian matrix is the second-order derivative of the objective func-
tion with respect to the model parameters, and its calculation
involves solving the sensitivity coefficient matrix of the model
parameters. For large-scale reservoirs, neither the coefficient
matrix nor the sensitivity coefficient matrix can be calculated.
Therefore, Newton-type methods are not applicable to large-
scale computing problems. The steepest descent method and
the conjugate gradient method only require the gradient of
the objective function to efficiently solve the history matching
problem, and its convergence is acceptable. However, the
calculation of analytic gradient needs to work directly with
the reservoir numerical simulation code, which is difficult and
significantly increases the computational costs. In practical ap-
plications, an approximate gradient is generally used to replace
the real gradient. The commonly used methods to calculate
the approximate gradient are the finite difference method,
automatic differentiation method, simultaneous perturbation
stochastic approximation method, and adjoint method. It is
worth mentioning that the adjoint method requires only two
simulations regardless of the number of decision variables to
compute gradients for optimization problems. Gradient-based
algorithms are efficient but can only locate a local optimum; as
the number of decision variables increases, the computational
efficiency of such algorithms decreases dramatically.

Compared with gradient-based algorithms that are sen-
sitive to initial values and easily fall into local optima,
gradient-free algorithms have the ability of global search. The
gradient-free algorithms often used in AHM mainly include
the heuristic search algorithm (Romero and Carter, 2001),
Monte Carlo Markov Chain (MCMC) method (Liu and Oliver,
2003; Efendiev et al., 2006), and data assimilation method
(Gu and Oliver, 2004). The heuristic search algorithm is a
kind of algorithm that uses the location information of the
solution in the search space and constructs the search path
through specific rules. The frequently used algorithms are
simulated annealing algorithm, genetic algorithm, and particle
swarm optimization algorithm (Yazdanpanah et al., 2019).
The heuristic search algorithm can be used to obtain the
global optimal solution, but it requires tens of thousands of
simulations to fully converge, which is not affordable for
reservoir history matching, especially for large-scale real reser-
voirs. The MCMC method randomly samples the Bayesian
posterior probability of uncertain parameters for automatic his-
tory fitting solutions. The commonly applied MCMC methods
include the Glibbs algorithm, Metropolis-Hastings algorithm,
etc. At present, the typical data assimilation methods employed
in automatic history fitting include the ensemble Kalman
filter (Zha et al., 2018) and ensemble smoother (Emerick
and Reynolds, 2013). The ensemble Kalman filter absorbs
observation data sequentially for the dataset update, while the
ensemble smoother utilizes all observation data for the dataset
update at the same time.

3. Surrogate-driven history matching
A real reservoir model typically contains hundreds of

thousands of grid blocks populated with different properties.
Geostatistical modeling is used to quantify the effect of
reservoir heterogeneity on reservoir flow behavior. Despite
the tremendous increase in hardware computing power in the
last decade, the time requirement for each simulation run
during optimization could still be significant. One possibility



138 Liu, P., et al. Advances in Geo-Energy Research, 2023, 7(2): 136-140

to mitigate the heavy computational cost of numerical sim-
ulations is to use a surrogate model (Cullick et al., 2006),
which approximates the solutions of the reservoir simulation
with much lower computational cost. The commonly adopted
surrogate modeling methods can be roughly divided into
three categories: Hierarchical-based model, projection-based
reduced-order model, and data-driven surrogate model.

3.1 Hierarchical-based surrogate model
Hierarchical-based surrogate models reduce the computa-

tional cost of the forward model by simplifying the underlying
physical process or reducing the resolution of the reservoir
model. Many previous studies focused on how to upscale
properties from the measurement scale (i.e., fine scale) to the
coarse scale for fast simulations (Ashby and Falgout, 1996;
Winter et al., 2003). The main drawback of this approach is
the lack of robustness. Because the reservoir is a complex
system, subtle perturbation in the initial model may lead to
huge variations in the final simulation results. It is difficult to
realize a proxy of the complex reservoir by simply reducing
resolution through coarsening.

Another idea of the hierarchical-based surrogate is to
simplify the physical process, which is well illustrated by
the interwell numerical simulation model (Zhao et al., 2016).
To reflect the interactions between reservoir wells and reduce
the complexity of the model, the reservoir injection and
recovery system are simplified and characterized as a series
of well-to-well connected cells, each characterized by two
parameters, conductivity, and control volume. Conductivity
describes the flow capacity of the cell and control volume
reflects the oil storage capacity of the connected unit. This
converts the traditional grid-based calculation into a connected
cell-based calculation, which saves considerable computational
time. Then, the oil-water dynamic index at the well location
can be evaluated by the pressure at the well location, water
saturation can be traced by material balance, and the oil-water
two-phase leading-edge propulsion theory can be based on the
connected cell.

3.2 Projection-based surrogate model
The projection-based method reduces the dimension of

the model by projecting the control equation into a low-
dimensional subspace based on orthogonal vectors, thus re-
ducing the computational cost of the model-based workflows.
These methods are usually divided into SVD-based (McPhee
and Yeh, 2008; Ghommem et al., 2013; Yeung et al., 2022)
and Krylov-based strategies (Dunbar and Woodbury, 1989;
Woodbury et al., 1990).

Reduced-order modeling approaches have been among the
most effective ways to reduce the computational effort of
model-based workflows by reducing the number of dimensions
of the model. The main idea behind projection-based reduced-
order modeling is to construct (linear) low-order alternative
models by projecting the dynamics of the system into the main
variability subspace of the model dynamics. Most reduced-
order modeling strategies use a proper orthogonal decomposi-
tion of the ”snapshot” of time series about the model state.

3.3 Data-driven-based surrogate model
Data-driven surrogate models approximate forward models

by mapping a set of inputs (reservoir parameters) to out-
puts (reservoir dynamics). The data-driven surrogate model-
ing technique relies on statistics and can be regarded as a
maximum-likelihood process. The approaches for constructing
data-driven surrogates can be divided into online and offline
methods.

Traditional data-driven-based surrogate models (Hussain et
al., 2002; Stone, 2011) include, but are not limited to, Gaussian
process, kriging, polynomial chaos expansions, radial basis
functions, and support vector machine. The main drawback
of these methods is the lack of robustness, which may lead
to inaccurate responses in highly complex nonlinear cases.
Therefore, they often require continuous sampling during the
solution process and the dynamic construction of surrogate
models.

Offline methods build a sufficiently accurate surrogate
model that can completely replace the role of numerical sim-
ulation and approximate the entire search space. Most studies
(Dachanuwattana et al., 2018; Li et al., 2019) use sensitivity
analysis methods to select some key parameters and then use
traditional machine learning methods to construct alternative
models. The emergence of deep learning makes it possible to
directly establish the mapping from high-dimensional spatial
parameters to reservoir dynamics without sensitivity analysis.
Most of these methods are based on the image-to-image
regression framework (Tang et al., 2020; Zhang et al., 2022). In
most cases, the observation data for history matching are time-
series data obtained from the measurements of production and
injection wells, such as oil production rate, water production
rate and bottom hole pressure. After the image-to-image
regression framework has been established, the production data
can be calculated through the Peaceman formula. Another
feasible solution is to directly fit the pressure or saturation
field obtained from the inversion of seismic data by taking 4D
seismic data as observation (Oliver et al., 2021). In addition,
the image caption method has been widely studied in the
general field of deep learning, and can be introduced into
the history fitting framework to directly establish an image-
to-sequence surrogate framework (Ma et al., 2022).

In order to enhance the accuracy of data-driven surrogate
models, physical equations can be embedded into machine
learning models (Raissi et al., 2019; Wang et al., 2020). Many
deterministic and probabilistic machine learning methods have
been proposed, in which physics are embedded as additional
optimization constraints (Rao et al., 2021). These frameworks
can incorporate the discretized control equations into the
training of convolutional neural networks, and thus improve
the prediction accuracy of the surrogate model.

In addition, several data-driven end-to-end history match-
ing methods have been proposed (Kim et al., 2020; Jo et al.,
2022). These first learn the mapping of production data to the
reservoir model, and then obtain the posterior reservoir model
by inputting observation data into the trained model.
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4. Future trends
During the development of reservoir history matching,

early research focused on how to improve the efficiency
of optimization algorithms (model-driven methods), such as
searching for the global optimum of the objective function for
gradient-based algorithms, improving data-matching results
for ensemble-based algorithms, adapting to high-dimensional
problems for MCMC algorithms, and balancing the diversity
and convergence of the search population for evolutionary
algorithms. Despite these improvements in history matching,
effective optimization algorithms are still necessary to ac-
curately estimate the actual posterior space of the objective
function for uncertainty quantification.

The future development of optimization algorithms can
be classed into two directions: improving convergence and
promoting diversity. The convergence of optimization algo-
rithms reflects computational efficiency, which is critical for
history matching because the numerical simulation of large-
scale reservoirs is always time-consuming. Gradient-based
algorithms and ensemble-based algorithms show fast conver-
gence but have their inherent drawbacks. For gradient-based
algorithms, the global optimum might be missed in the search-
ing process due to the influence of multiple local optima. For
ensemble-based algorithms, the diversity of solutions cannot
be guaranteed, which is also called ensemble collapse; here,
models of the final ensemble are almost the same, degrading
the production prediction based on this ensemble. Strategies
to improve the convergence and diversity of history matching
include the multimodal optimization strategy (Ma et al., 2021),
adaptive methods (Sun et al., 2021), distributed algorithms
(Gao et al., 2022), among other approaches. In addition, the
authors argue that novel algorithms coupled with machine
learning can enhance the efficiency of history matching.

At the same time, the surrogate-based method in history
matching has undergone rapid development, while utilizing
this method to practical applications has proved challeng-
ing. This is due to the limited response data for different
parameter combinations, high computational efforts in gen-
erating samples using numerical simulations, and inaccurate
and uninterpretable results of surrogates. To improve the
effectiveness of the surrogate, further studies should be carried
out from the aspect of data generation, surrogate architecture
and surrogate transfer. The samples for training the surrogate
are usually derived from numerical simulations, with the
computational cost of this process being almost the same
as that of model-driven methods, diminishing its superiority.
Using fewer samples or generating additional samples based
on low-fidelity methods, such as streamline simulation (Yin
et al., 2021), model upscaling (Jiang and Durlofsky, 2023), or
data augmentation (Shorten and Khoshgoftaar, 2019), could
improve the computational efficiency of building the surrogate.
Moreover, even for experienced specialists, it is difficult to
design the deep learning architecture for building surrogates,
because lots of hyperparameters need to be tuned. Thus,
new modules of neural networks (e.g., attention mechanism,
physics-informed neural network (Raissi et al., 2019)) or
automatic design methods (e.g., neural architecture search)

should be established to improve the applicability of the
surrogate. Finally, the surrogate model should be updated
efficiently based on newly observed data from reservoirs, such
as by using transfer learning (Weiss et al., 2016; Zhong et al.,
2022) or continual learning (Zenke et al., 2017), to achieve
real-time history matching and production optimization.
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