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Abstract:
Physical phenomenon in nature is generally simulated by partial differential equations.
Among different sorts of partial differential equations, the problem of two-phase flow in
porous media has been paid intense attention. As a promising direction, physics-informed
neural networks shed new light on the solution of partial differential equations. However,
current physics-informed neural networks’ ability to learn partial differential equations
relies on adding artificial diffusion or using prior knowledge to increase the number of
training points along the shock trajectory, or adaptive activation functions. To address
these issues, this study proposes a physics-informed neural network with long short-term
memory and attention mechanism, an ingenious method to solve the Buckley-Leverett
partial differential equations representing two-phase flow in porous media. The designed
network structure overcomes the dependency on artificial diffusion terms and enhances the
importance of shallow features. The experimental results show that the proposed method is
in good agreement with analytical solutions. Accurate approximations are shown even when
encountering shock points in saturated fields of porous media. Furthermore, experiments
show our innovative method outperforms existing traditional physics-informed machine
learning approaches.

1. Introduction
Physical phenomena in nature are usually modeled by

partial differential equations (PDEs). Because the fields of
PDEs are infinite dimensional spaces, they are quite difficult
to solve those PDEs. In the past several decades, to accurately
structure physical processes, predict physical phenomena, and
push breakthroughs in geotechnical engineering discoveries,
numerous researchers employed numerical methods to simu-
late physical systems, that is to say, numerical simulations.
Finite-dimensional approximations have been developed, such
as the finite element method, finite volume method, finite
difference method, etc. Solutions to high-dimensional PDEs
usually imply huge matrices, resulting in a large computational
cost. In this case, the numerical schemes require dividing the
space into multiple small grid blocks. Therefore, numerical

simulations are not feasible for real-time and many query
scenarios with high computational requirements.

With the popularity of machine learning, it has been one
of the ubiquitous methods for solving physical engineering
problems. At present, these techniques have been demonstrated
to be a promising approach in solving the aforementioned
issues (Cai et al., 2021; Jin et al., 2021; Almajid and Abu-
Al-Saud, 2022; Kemeth et al., 2022; Vinuesa and Brunton,
2022). Machine learning approaches can be classified into
two methodologies: data-driven methods and physics-informed
neural networks (PINN) methods. Data-driven approaches can-
not achieve good performance without large amounts of data.
As a matter of fact, reservoir engineering data are classified
as small data set owing to the complicacy of physics laws
and the unpredictability of fluid movement within porous
media. For instance, considering that drilling is only a ref-
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erence point that is unevenly dispersed in a huge reservoir,
information is scarce (Jin et al., 2021). Data-driven models
can make predictions faster than numerical simulators. Data-
driven techniques outperform numerical simulations when the
training dataset is easily accessible and the underlying physics
equations are unknown. But the data-driven approach does
have certain drawbacks (Almajid and Abu-Al-Saud, 2022).
The fundamental problem is that the complex model structure
is very difficult to analyze and evaluate, which makes it poorly
interpretable and lacks system flexibility. Cai et al. (2021)
review flow physics-informed learning, integrating seamlessly
data and mathematical models, and implementing them using
PINNs.

PINN is a representative example of physics-informed
machine learning (PIML) in solving PDEs (Raissi et al.,
2019; Khoo et al., 2021; Cuomo et al., 2022). In PINNs,
PDEs indicating physical laws are typically incorporated into
the loss functions of machine learning models to constrain
objective optimization. The main breakthrough of PINN is the
insertion of an automatic differential residual network that
encodes physical formulas (Raissi et al., 2019). The great
advantage of PINNs as PDE solvers is that they can handle
high-dimensional problems with highly complex boundaries
since there is no need to create complex meshes. PINN-based
methods allow simulations to be limited only by the underlying
physics and require no input samples. In PINNs, Neural
Networks (NN) can be viewed as a gradient-based approach
to PDE optimization (Khoo et al., 2021). PINN forces NN to
minimize PDE residuals. Furthermore, NNs can act as near-
universal functions because of their potential for nonlinear
prediction and data integration (Cuomo et al., 2022). They can
estimate any invisible and unmeasurable phenomena with the
required precision. However, it is essential to reassemble the
spatially dynamic fluid to account for low-cost computation.
Fukami et al. (2019) proposed a high-precision framework,
which has been shown to be effective in generating turbulence
from unusually rough flow fields. For more complex problems,
more hidden units are needed, and more and more parameters
need to be updated in the network, which involves additional
computation.

It must be admitted that the PINN process is partic-
ularly time intensive to complicated PDE problems, lack-
ing generalization and losing accuracy when working with
complex grids. From this point of view, traditional PINN-
based techniques are constrained by low-dimensional systems
and are better at straightforwardly time-independent physics
phenomena. PINNs have disadvantages in issues with drastic
gradients or issues requiring coupled PDEs. To get rid of
time-dependent issues, researchers employ continuous-time
approaches, in detail, regarding time and spatial dimensions
in the same way (Meng et al., 2020). The initial modality of
PINNs has been improved by introducing domain fragmen-
tation techniques (Jagtap and Karniadakis, 2020), nonlinear
formulas (Haghighat et al., 2021), adjustable weighting on the
optimization issue or novel network with feature embedding
(Wang et al., 2021).

In recent years, deep learning has been introduced to study
two-phase flow in porous media, which has attracted many

academic interests due to its ability to deal with nonlinearity
and high dimensions. Due to the high generalization quality of
deep learning, it is widely considered to be a better solution
for dealing with computational PDEs. Encoding the PDEs
into the deep learning model essentially reduces the size of
the training dataset required to adjust the parameters of deep
learning models. PIML and physics-informed deep learning
are active research topics (Wu et al., 2018; Raissi et al., 2019;
Karniadakis et al., 2021; Lu et al., 2021; Ranade et al., 2021).
Several recent studies have demonstrated the advantages of
using deep learning models to solve Buckley-Leverett PDEs
(Almajid and Abu-Al-Saud, 2022). Fuks and Tchelepi (2020)
optimized a two-phase immiscible transport problem in porous
media with the help of a second-order derivative term using
PINN methods. They employ artificial dissipation to discover
answers using shocked and blended waves. Rodriguez-Torrado
et al. (2022) proposed informed attention-based neural net-
works (PIANNs). PIANNs combine Gated recurrent units and
attention mechanisms to overcome the limitations of current
PINNs by adding artificial dissipation. This work motivates us
to explore the use of recurrent neural networks and attention
mechanisms to provide high-quality solutions to Buckley-
Leverett PDEs.

This study is inspired by existing works (Haghighat et al.,
2021; Cuomo et al., 2022; Rodriguez-Torrado et al., 2022).
In view of the original PINN structure, an innovative deep
learning approach was developed to solve nonlinear partial
differential equations in porous media by pairing a long
short-term memory (LSTM) with an attention mechanism.
Experiments were carried out on various NNs to examine
their prediction performance, especially convolutional neural
networks (Esmaeilzadeh et al., 2020), residual convolutional
neural networks (Coutinho et al., 2022), residual networks
(Cheng et al., 2021; Hanna et al., 2022), PINN approach (Fuks
and Tchelepi, 2020), and generative adversarial network (Yang
and Perdikaris, 2019). With tens of thousands of training and
testing, the proposed method reaches more accurate solutions
than existing methods. The remaining of this paper is the
following. Section 2 describes an oil-water system in porous
media and gives an account of the standard Buckley-Leverett
model with oil and water. Section 3 illustrates the traditional
PINN and our proposed approach, listing network structure
and loss function in our proposed physics-informed LSTM
with attention mechanism. Experiments and results are solved
in Section 4, minutiae including experimental results and
comparisons with classic PINNs. Section 5 discusses this
paper’s work. Conclusions are drawn in Section 6.

2. Oil-water system in porous media
This study considers the standard Buckley-Leverett model

with oil and water. In a porous medium of permeability k(x)
and porosity φ(x), the wetting phase, water (w), displaces the
nonwetting phase, oil (o). Gravity and capillary effects are
neglected. The water and oil saturation are governed by a
mass balance coupled system complimented by Darcy’s law
equations. According to Corey-Brooks relative permeabilities,
the water saturation can be governed by a non-linear Buckley-
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Fig. 1. The comparison between analytical solution and FDM
solution.

Leverett equation:

∂S(x, t)
∂ t

+
d f (S(x, t))

dx
= 0 (1)

where S(x, t) is the saturation of water. f (·) is the fractional
flow function. f (S(x, t)) is the fractional flow of water. Inde-
pendent variables x and t are dimensionless space and time
and are expressed as:

t =
q

φAL
tT , x =

xT

L
(2)

where q refers to the total flow rate, φ is the porosity, L denotes
the length, A is the cross-sectional area, tT is the dimensional
time, and xT represents the dimensional distance.

At the initial condition (t = 0), the saturation of water is
Swc. At any time and at the boundary condition (x = 0), the
saturation of water is 1−Sor. Boundary and initial conditions
can be marked as:

S(x, t = 0) = Swc, S(x = 0, t) = 1−Sor (3)
Specifically, the result of S(x, t) is re-expressed as u. In

this case, Eq. (1) is simplified as:

ut + f (u)x = 0 (4)
The dependent variable u is given by the network based

on variables of space coordinate x, time coordinate t. The
fractional flow function of water f (S) in Eq. (1) is expressed
as:

f (S) =
M(S−Swc)

2

M(S−S2
wc)+(1−S−Sor)2 (5)

where M is the mobility ratio, which is calculated as the
proportion between oil viscosity (µo) and water viscosity (µw).
M is assumed to be proportional to 2 in our study. The PDE
in Eq. (1) and non-convex flux function f (S) in Eq. (5) make
up classical Buckley-Leverett problem that mentioned above.

The Fig. 1 shows the comparison between analytical solu-
tion and numerical solution by using FDM where time t = 15
days. It can be seen that the numerical scheme fails to track
the shock location. Next, it is necessary to correct the solution
to better approximate the saturation of water.

3. PINN structure optimization in solving
Buckley-Leverett problem

Researchers attempted to use PINNs to address discontin-
uous issues equipping non-convex flow function with shock
points, which is known as the Buckley-Leverett equation (Fuks
and Tchelepi, 2020; Fraces and Tchelepi, 2021). Fortunately,
Buckley-Leverett model is the same to explore immiscible
oil-water saturation in petroleum reservoir engineering (Lu
et al., 2018). Fraces and Tchelepi (2021) provided solution
to the Buckley-Leverett dilemma, in which the entropy and
velocity restrictions are included in the NN residual. Although
this approach can well capture the shock front, there is
difficulty to reconstruction results. Xu et al. (2021) presented
that the weak form formulation of the PDEs into the loss
function to deal with strong discontinuities in two-phase flow
issues. Unfortunately, the Buckley-Leverett equations used in
the preceding two studies are not suitable to the realistic
reservoir, they are only simplified equations that explain water
saturation movement. The occurrence of discontinuities is the
fundamental concern with using PINN to solve the Buckley-
Leverett problem.

3.1 PINN
Previous works on solving the Buckley-Leverett equation

use PINN structures. PINN’s architecture has been almost
exclusively based on fully connected feed-forward NNs. Using
PINN’s original framework (Raissi et al., 2019). Fuks and
Tchelepi (2020) introduced an artificial dissipation term to
PDE, which contribute to match the shock front. So, a second-
order derivative term is added to the original Buckley-Leverett
PDE. Eq. (1) is redefined as the following expression:

Z(x, t) =
∂S(x, t)

∂ t
+

d f (S(x, t))
dx

− ε
∂ 2S(x, t)

∂x2 (6)

where ε is regarded as a coefficient parameter, generally, its
order of magnitude is 10−2 or 10−3. Fuks and Tchelepi (2020)
set ε to 2.5×10−3, PINN retrieves the proper solution at shock
fronts.

The precondition of solving nonlinear PDE using PINN
is selection of the compatible NN architecture, and corre-
sponding hyperparameters also need be tweaked. Our approach
follows the work of Raissi et al. (2019) for comparable
situations. Fig. 2 demonstrates the simplified architecture of
PINN for solving Buckley-Leverett PDE. In NN part, there
are two parameters in the input layer, spatial coordinates x
and time t. At the input layer x and t provided, the result of
the output layer generation is water saturation, marked as u.
NN with physics informed constraints are used to describe
PDEs. Fuks and Tchelepi (2020) demonstrated that PINNs
underperform to extract the best answer of the hyperbolic PDE.
The study shows that when shocks are existent, the PIML
methods are unsuitable for hyperbolic PDEs with discontinuity
values.

3.2 The proposed LSTM-AM approach
Current PINNs’ ability to learn PDEs relies on adding

artificial diffusion or using prior knowledge to increase the
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Fig. 2. The architecture of simplified PINN with PDE residual.

+.

.
tanh

.
𝜎𝜎(∗) 𝜎𝜎(∗)tanh(∗)𝜎𝜎(∗)

Ck-1

hk-1

Xk

Ck

hk

.
+

Element-wise multiplication

Element-wise addition

fk ik okk

hk

c~

Fig. 3. A LSTM unit.

number of training points along the shock trajectory or adap-
tive activation functions. To address these issues, a framework
based on LSTM and attention mechanism is designed to solve
the Buckley-Leverett PDE.

LSTM is a powerful deep learning method to model
sequence-to-sequence input-output relationship. It can better
capture the dependency of long distance. It inherits the most
characteristics of recurrent neural network and solves the
problems of gradient disappearance/gradient explosion in the
process of long sequence training.

A LSTM cell shown in Fig. 3 cosmists of a set of
independent weights and biases that are shared across the
entire temporal space within the cell. Each LSTM contains
four interacting units, including an input gate ik, an internal
cell (c̃k), a forget gate fk, and an output gate ok. The input
gate guides the input flow into the internal cell state. The
internal cell memorizes the cell states from the previous time
step through self-loop connections. The output gate controls
the output flow into the LSTM cell output. With the interaction
of input/forget/output gates, cell states in the LSTM can
selectively disseminate valuable information along temporal/s-
patial sequences to capture long short-term dependencies in a
dynamical system.

The relationship among these gates can be described by

the equations as follows:

ik = σ(Wxixk +Whixk−1 +bi) (7)
fk = σ(Wx f xk +Wh f xk−1 +b f ) (8)

c̃k = tanh(Wxcxk +Whcxk−1 +bc) (9)
ok = σ(Wxoxk +Whoxk−1 +bo) (10)

ck = fk ⊙ ck−1 + ik ⊙ c̃k (11)
where σ means the logistic sigmoid function. Wαβ with
α = {x,h} and β = { f , i,c,o} refers to the weight matrices
in terms of different inputs within different gates. bβ denotes
the corresponding bias vectors. tanh denotes the hyperbolic
tangent function. ⊙ is the Hadamard product (element-wise
product). As can be seen from the Fig. 5, hidden sequence
[h1,h2, · · · ,hk−1] and cell sequence [c1,c2, · · · ,ck−1] assist in
inputting sequence [x1,x2, · · · ,xk], which exports correspond-
ingly [h2, · · · ,hk] and [c2, · · · ,ck], especially intermediate tran-
sition cell state [c̃2, · · · , c̃k]. The complex connection mecha-
nism makes a LSTM based network powerful in mapping the
temporal/spatial long-term feature maps to the corresponding
output space.

Attention mechanisms (AM) can allocate computing re-
sources to more important tasks and filter out irrelevant
information when computing power is limited (Vaswani et al.,
2017). The attention mechanism is chosen because it has fast
convergence speed, few parameter settings, and the ability of
capturing significant features, which improves the efficiency
and accuracy of task processing. After feature sequences go
through hidden state ht and cell state Ct in the LSTM unit, αk

t
is defined as a tangent activation function operation result of
kth input features at time t. Next, αk

t is normalized with the
help of a softmax function. β k

t represents an attention weight,
a which is the score of how much attention should be devoted
on the kth feature sequence. zt is the output of the attention
mechanism block at time t.

Inheriting LSTM advantages, assisted by attention mecha-
nism, this study makes further efforts to pursue more nuance
flow fluctuations in porous media. Borrowed the idea from
(Wang et al., 2021; Rodriguez-Torrado et al., 2022), LSTM
is integrated with attention for more precise prediction. In our
study, LSTM with attention mechanism network structure cap-
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Buckley-Leverett equation.

ture the location of the saturation front in this case. As shown
in Fig. 6, the solutions obtained by our LSTM-AM method
are more accurate than those obtained by CNN, ResCNN, NN,
ResNN, and GAN at different time points at t = 0.25, 0.50,
and 0.75.
(LSTM-AM) is regarded as function approximators. Fig. 4
depicts the architecture of solving Buckley-Leverett equation
with our LSTM-AM.

The output of the network is marked as u. LSTM-AM can
optimize u(x, t) and PDE solution. For each PDE solution
function u, the initial conditions (ICs) are described as u0,
t = 0. The boundary conditions (BCs) are determined for each
spatial dimension depending on the geometrical issues. The
hyperbolic tangent activation function and sigmoid function
are applied in LSTM layer and attention layer, respectively.

The LSTM-AM can explicitly account for multiplicative
interactions between different input dimensions and enhance
the hidden states with residual connections. As shown in
Fig. 4, the trunk of the network comprises LSTM and AM.
Meanwhile, introduction of two encoders with conventional
fully connected architectures maps the inputs variables to a
high-dimensional feature space. and then use a point-wise
multiplication operation to update the hidden layers according
to the following forward propagation rule:

Encoder1 = tanh(NN(X)), Encoder2 = tanh(NN(X)) (12)
H1 = LSTM1(X) (13)

Z1 = tanh(H1 ⊙Encoder1 +(1−H1)⊙Encoder2) (14)
H1 = LSTMl(AM(Zl−1)), l = 1,2, · · · ,n−1 (15)

Zl = tanh(H l ⊙Encoder1 +(1−H l)⊙Encoder2) (16)
H l+1 = LSTMl+1(AM(Zl)) (17)

uθ (X) = tanh(NH2(tanh(NH1(Hn)))) (18)

3.3 Loss function
To constrain the PDE to the deep learning model, the

model is enforced to satisfy the Eq. (1) by embedding Eq.
(1) into the loss function. The training goal is to minimize the
total regularized loss involving the collected data points from
the PDE residual, initial conditions, boundary conditions, and
observations. The various loss terms are defined as follows.

PDE residual loss:

lossr =
1

NR

NR

∑
i

∣∣∣∣Aφ

q
∂S
∂ t

+
∂ f (S)

∂x

∣∣∣∣2 (19)

Boundary condition loss:

lossb =
1

Nb

Nb

∑
i

∣∣Sp −Sb
∣∣2 (20)

Initial condition loss:

lossi =
1
Ni

Ni

∑
i

∣∣Sp −Si
∣∣2 (21)

where A is the cross-sectional area, q refers to the flow
rate, and φ is the porous medium porosity. Sp represents the
saturation value of the point in the x dimension at a certain
time. Nr, Nb, and Ni are the number of collocated, boundary
condition and initial condition points, respectively. For all
experiments, the training data consist of Ni = 250 and Nb = 250
randomly distributed points on initial and boundary conditions
and Nr = 2,000 collocation points for the residual term. Note
that there are no observations in the training data, and a small
dataset is used. All data points were sampled randomly over
the interior of the domain x ∈ [0,1] and t ∈ [0,1]. Regularizing
the loss terms and summarize them, the total loss is obtained
as:

loss = λrlossr +λblossb +λilossi (22)
where λr, λb and λi are optimized through experiments.

The workflow of our method is described as four steps.
First, the deep learning model is built. Second, data points used
in training, validation, and testing are collected from initial
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Fig. 6. The comparisons of the predictions from different algorithms.

condition, boundary condition, and collocation points. Third,
a gradient-based optimization method (Adam optimizer) is
applied to PDE for calculating the gradient descent direction of
model’s parameters. As the most popular optimization method,
Adam optimizer keeps minimizing the loss value; it is feasible
to lower the loss by an order of magnitude with tens of
thousands more iterations. Forth, the deep learning model is
calibrated and start next loop to continue the training for
optimizing the parameters of model, proceeding with optimally
approximating u with the help of our proposed LSTM-AM net-
work structure. All weights are initialized randomly according
to the Xavier initialization scheme (Glorot and Bengio, 2010).

4. Experiments
This section shows the results predicted by our model. To

evaluate the accuracy of PINNs, the results from the PINNs
models are compared with the analytical solutions of the
Buckley-Leverett problem. Our method is also compared with
other mainstream neural solver architectures.

4.1 Experimental results
Taking different dimensionless time points t = 0.25 (red

dashed line), 0.50 (cyan-blue dashed line), and 0.75 (yellow
dashed line) as an example, The LSTM-AM solution is shown

in Fig. 5. It can be seen that the network successes in this
case to provide a close approximation (dashed lines) of the
underlying analytical solution (blue lines). Specially, the shock
is well captured and nearly indiscernible from the exact PDE
solution.

4.2 Comparisons with existing PINNs
Our LSTM-AM model is compared with other NN-based

techniques, including convolution neural network (CNN) (Es-
maeilzadeh et al., 2020), residual CNN (ResCNN) (Coutinho
et al., 2022), NN (Fuks and Tchelepi, 2020), residual NN
(ResNN) (Cheng et al., 2021), and generative adversarial
network (GAN) (Yang and Perdikaris, 2019). All compared
models use ICs, BCs, and PDE constraints.

Fig. 6 shows a comparison of the predicted solutions
of PIMLs (dashed red line) with the exact solution (solid
blue line) of the Buckley-Leverett equation at three different
instants. Note that except our method, other PIML approaches
used the diffusion term mentioned in Section 3.1 Eq. (6) to

Physics-informed learning identifies a number of param-
eters that not only fit the input data but also satisfy the
physical phenomena in the manner of PDEs, initial conditions,
and boundary conditions. This is accomplished by adding a
suitable optimizer and minimizing loss function. Extending
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Table 1. The comparisons of the final training loss from
different algorithms.

Model Loss

ResNN 8.909×10−5

ResCNN 6.813×10−5

GAN 5.617×10−5

NN 1.512×10−5

CNN 6.813×10−6

LSTM-AM 7.051×10−7

the number of trainings often improves solution accuracy
but accompanying a computational expense. As a black box,
NN needs to be trial and error tested, so we ran 20,000,
iterations to train the PINNs. In the influence of network
parameters and floating-point operations per second, as an
effective counterweight, the optimal solution is found with
different iterations. To capitalize on comparative experiments
(Fuks and Tchelepi, 2020; Cheng et al., 2021; Fraces and
Tchelepi, 2021; Haghighat et al., 2021), the proposed LSTM-
AM successfully cut down final training loss to 10−7, lower
than others as shown in Table 1.

To further compare these methods with our approach, the
L2 relative error is computed for the entire solution. The L2
relative error is expressed as the following:

L2 relative error =
||u− û||22
||u||22

(23)

where u is the real solution, û is the predictions obtained by
the PINN methods. The smaller the relative error, the better
the match between the true and the estimated solution. From
the Table 2, it can be clearly seen that LSTM-AM’s average
L2 relative error is lower than other models. This indicates the
proposed method in this study has better accuracy in solving
the Buckley-Leverett PDEs than methods of CNN, GAN, NN,
ResCNN and ResNN.

5. Discussion
Once machine learning algorithms are equipped with the

physics laws, it can predict PDE solutions more efficient than
traditional numerical simulations. In this study, a novel PIML
method is presented to address the issue of oil drainage in
water-filled porous medium. Fig. 5 shows that our predic-
tive solution is in perfect agreement with exact Buckley-
Leverett solution. After training, the model offers appropriate
reservoir simulations at each time-step. Unfortunately, this
study concentrates on nonconvex flux functions in the PDE,
ignoring convex condition. To consider the full range of flow
simulations, the next step is to parameterize the convex hull
of the flux function and further put the convex theory into
practice. Furthermore, based on the experience summarized
in (Alwated and El-Amin, 2021; Yang et al., 2021), further
work will be done on multiscale simulation of multi-physics
problems in porous media.

Table 2. The comparisons of the L2 relative errors from
different algorithms.

Model L2 relative er-
rors

ResNN 0.08648

ResCNN 0.06806

GAN 0.05157

NN 0.03532

CNN 0.02096

LSTM-AM 0.01972

6. Conclusion
It is difficult to solve the partial differential equation

of non-convex flux function composed of Buckley-Leverett
problem in porous media flow. In this study, an innovative
PINN with long-short-term memory and attention mechanism
architecture is employed to solve the Buckley-Leverett flow
problem, focusing on nonlinear two-phase transport in porous
media. In the proposed method, the required prior knowledge
comes from the initial/boundary conditions and the PDE. The
underlying PDE is incorporated into the loss function of the
neural network. The solution of the PDE can be predicted
without any labeled data. Compared to the previous variant
NN, our method provides an efficient and accurate method
for solving partial differential equations in porous media. It
can capture the fluid shock characteristics and ensures that the
predicted output conforms to the relevant physical properties.
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