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Abstract: In this paper we review the Dynamic Van der Waals theory, which is a recent developed method to study phase
separation and transition process in multiphase flow. Gradient contributions are included in the entropy and energy functions,
and it’s particularly useful and non-trivial if we consider problems with temperature change. Using this theory, we can simulate
that, a droplet in an equilibrium liquid will be attracted to the heated wall(s) which was initially wetted, which is the main
cause of the famous hydrodynamic phenomena-Leidonfrost Phenomena. After more than ten years development, this theory has
been widely used to study the fluid flow in vaporing and boiling process, e.g., droplet motion. Furthermore, this theory has been
combined with phase field model, which could be extended to solid-liquid phase transition. There has also been researches about
constructing LBM scheme to extend to the Dynamic Van der Waals theory, using Chapman-Enskog analyze. In all, due to its
rigorous thermodynamic derivation, this theory has now become the fundamental theoretical basis in the heated multiphase flow.
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1. Introduction
In terms of physics and engineering, hydrodynamics is a

subdivision for the description of fluids, which are usually
combined with heat transfer and phase transition, and usually
involving multiphase flow. For example, in the energy industry,
performance forecasts, including reliability and safety, depend
largely on ”hot and flow” research techniques, from macro-
scale to medium-scale to microscopic scale, to study oil
recovery, fuel turbines, chemical batteries and power plants.
Since the 1970s, a solution based on the Renault average
Navier-Stokes (RANS) equation has developed a general-
purpose computational fluid dynamics (CFD) to compute a
combination of fluid flow and heat transfer. With the great
development of supercomputers in the 1990s, methods includ-
ing large eddy current simulation (LES) and direct numerical
simulation (DNS) were more accurate, and computationally
demanding methods are increasingly being used (Charles and
Daivis, 2009; Xie et al., 2016). It is clear that the complex
dynamic behavior of the interface-dominated system is needed,
especially the behavior of the interfaces in these systems. On

the macroscopic length scale, the response of the interface
leading material to the applied deformation, concentration
gradient, or temperature gradient is usually described by a
continuous model. There is a clearly recognizable interface
in macroscopic free surface flow or thin films (such as films
encountered in coatings), and we need to address the temporal
evolution of the interface when modeling these systems. In
the flow of red blood cells involving emulsions, finely divided
polymer blends, microcapsule dispersions, or arterial blood
flow, the dynamics of a single interface is usually not resolved
at the macroscopic scale.

In order to construct such a coarse-grained macroscopic
model, it is necessary to study the dynamics of each interface
at a small length scale, that is, to track the temporal evolution
of the interface of a single emulsion droplet or red blood
cell or other small-length phenomenon. Therefore, in these
systems, modeling interface dynamics is also very important.
However, the macroscopic approach is developed with the
assumption of continuity, which is not applicable anymore
for certain physical problems, especially in the microscopic
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and mesoscale scale. The latest developments of computa-
tional techniques have been shifted to phase-field models, also
known as diffue interface (DI) models, where the interface
is modeled as a three-dimensional region and the values
of all the properties of the material in one of its batch
phases are constantly changing in other batch stages value.
Diffuse interface method (DIM) has recently been more and
more concerned by researchers and engineers, especially for
those who are implementing multi-phase numerical simulation.
Compared to a large variety of multiphase modeling methods,
including the long-history sharp interface method, DI model
shows the need for developing the governing equations of
mass, momentum, and energy balance to address attractive
features across the field, including interface and the nearby
area. In DI model, the interface and the nearby area is being
seen as a thin layer but with a thickness (infinite). Using this
treatment, physical properties, including pressure, temperature
and matter density will be continuous in space (Chen et al.,
2001; Chen and Meiburg, 2002; Pecenko et al., 2011).

Different with the so-called sharp interface method, the
phase field method is related to the study of multiphase
processes whose characteristic length scales are comparable
to typical interface thicknesses (e.g., coalescence and de-
composition events involving emulsion flow in droplets or
droplets). The framework begins by assuming that the free
energy function of the square gradient term is included in
the order parameter (for example, the population density and
the component concentration field) (Kou and Sun, 2015; Kou
and Sun, 2016a). From this function, the spatial distribution
of these order parameters in the interface area is generated
through an energy minimization theorem. This method leads
to the natural extension of the van der Waals model of the
phase transition and the general thermodynamics in the phase
transition, assuming a simple pair of potential energy between
pairs.

A popular description of the gas-liquid phase transition
in a one-component fluid is the van der Waals theory. It
is a mean field theory of hardball particles with long and
attractive interactions, which is often used to describe the
thermal equilibrium conditions. In addition, van der Waals
introduced the Helmholtz free energy density gradient term in
the 1893 pioneering paper to describe the gas-liquid interface.
This gradient term has been applied a lot to statistically
analyze the mechanism in non-uniform physical problems,
including the paper of Ginzburg and Landau on type I su-
perconductors, as well as the paper of Cahn and Hilliard
on binary alloys. It’s noted that the temperature T is always
treated as a given parameter independent of the space in many
existing published theories on phase transition and dynamic
process. The Ginzburg-Landau theory is based on a free energy
function with uniform T. Needless to say, there are various
situations in which a phase change occurs in an uneven T or
heat flow. In the fluid system, the wetting dynamics, the boiling
process and the droplet movement are strongly influenced by
the applied heat flux. In the liquid crystal of the first-order
phase change and the binary fluid mixture, the Rayleigh-
Bernard convection is very complex with phase separation.
In some studies, the superfluidic transition can be influenced

by the heat flux nonlinearity, which produces a sharp interface
separating the superfluid and normal fluid. It is very difficult
to understand this problem. We need to first construct a kinetic
model to study the non-equilibrium effect, in which phase
transition and fluid mechanics are inseparable coupling.

Korteweg proposed in 1901 the hydrodynamic equation of
the binary fluid mixture, including the stress caused by the
composition gradient. Then, in the presence of gradient stress,
the diffusion interface between the two phases appears in the
solution of the fluid mechanics equation. In this row, diffusion
interface models in a variety of 2D numerical simulations have
been proposed to describe the phase change and motion in
single or binary component mixtures. It’s extraordinary itself
to have the numerical solution for single component flow.
Note that the diffusion interface model or phase field model
has been used for numerical analysis of dendritic instability
in crystal growth. As a further series of studies, it has been
studied that the critical dynamics in classical fluids, including
the mass density and composition of the gradient contribution,
are relevant even in a phase state where the correlation length
near the critical point increases. The so-called model H of
near-critical binary mixtures has recently been designed to
describe the dynamics of thermal fluctuations but also to
describe phase separation processes and steady states under
shear flow. It is mentioned that the van der Waals liquid in
Kawasaki has a long-distance hydrodynamic equation in which
stress is non-local convolution, but is reduced to a well-known
form in the critical dynamics of gradient approximation. At the
same time, a set of non-linear hydrodynamic equations with
gradient contribution was established in the early stage, and a
simplified version similar to superfluidic conversion was used
for critical dynamics and to study the nonlinear effects of heat
flow.

In 2005, Prof. Onuki presented a theory that take into
account the gradient contribution of both the entropy and
energy, which is named by his as the dynamic van der Waals
theory (Onuki, 2005, 2007). They constructed hydrodynamic
equations with gradient stresses and converted them numeri-
cally to check the droplet motion in the heat flow. A typical
one of these findings is that the temperature within the droplets
becomes uniform with heating, but under zero gravity. It has
been observed that the interface region is quite close to the
coexistence curve, T = Tcx (p), even in nonequilibrium, due
to the strong latent heat transportation effect, but the pressure
outside the droplet is uniform distributed. The subsequent
theory will show similar results so it’s validated. Thus, the
Malangoni effect due to uneven surface tension does not
work in a one-component pure liquid, and even at very small
impurity concentrations, the mixture can produce faster fluid
and interfacial motions. This phenomena has been further
recollected and studied in Onuki’s following work (Takae and
Onuki, 2010). Based on that, a sequence of papers have been
published, focusing on the temperature distribution and phase
transition in vaporing or boiling process (Teshigawara and
Onuki, 2008; Xu and Qian, 2012; Kou et al., 2016).

This review is structured as follows: In Section 2, the
general form, including basic governing equations, as well
as some physical derivation and explanation are presented.
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Besides, a set of numerical tests are designed and their results
will show the fundamental but complicated physical process
including evaporation and bubble motion in superheated fluid
flow. In Section 3 we discuss several numerical frameworks,
which are all relevant to dynamic van der Waals theory or
could be seen as its extensions. In Section 4 we discuss
some potential future developments of the dynamic van der
Waals theory, including multiscale schemes, which will make
simulations of phase change and transition in fluid dynamics,
especially coupled with heat transfer more effectively.

2. Theory

2.1 Van der Waals Theory

The Helmholtz free density f (n,T ) for monoatomic
molecules is written as following, as a function of the number
density n and the temperature T ,

f = kBTn

[
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d
thn
)
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in the above equation, v0 = ad is the molecular volume and
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while the van der Waals pressure is expressed as:
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Meanwhile, Van der Waals introduced the gradient free
energy density:
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1
2

M |On|2 (7)

and the surface tension is defined as:
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Obviously, M is the coefficient of the gradient term in the
Helmholtz free energy defined in equilibrium as M =CT +K.
The capillary pressure tensor C, which depends on the density
of the density gradient, incorporates the total pressure tensor.
The gradient term represents the contribution of the density

nonuniformity to the pressure tensor as a function of the
density gradient and explains the energy required to form and
maintain the density nonuniformity. The contribution of the
gradient term to the pressure tensor is given by the coefficient
M. The expression of the contribution of the density gradient
to the equilibrium pressure is described by Felderhof (1977)
and Anderson and Gerbing (1988). A key prediction of the
van der Waals gradient theory is that the interface between the
vapor and the liquid becomes wider as the critical temperature
increases (Charles, 2014).

2.2 Gradient theory and equilibrium conditions

Gradient contributions to the entropy and the internal
energy in van der Waals theory could be included into:

Sb =
∫
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[
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2
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in which the two coefficients C and K are often selected as
K = 0 and C is a parameter.

The gradient term represents the decrease in entropy and
the increase in energy due to the inhomogeneity of n. They
are particularly important in the interface area. We then define
the local temperature T by:

1
T
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n
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where n is fixed in the derivatives. This definition of T is
analogous to that in a microcanonical ensemble. We will use
it even for inhomogeneous n and e in nonequilibrium. We also
define a generalized chemical potential per particle including
the gradient contributions by:

µ̂ =−T
(

δSb

δn

)
ê
= µ−TO·M

T
On+
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2
|On|2 (12)

Now, regarding Sb as a functional of n and ê, we consider
small changes of n and ê and which yield an incremental
change of Sb.

δSb =
∫
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In the Ginzburg-Landau theory, we furthermore minimize
W with respect to n to obtain:

µ̂ = kBT v = const (14)

We can then find the stress based on van der Waals pressure
as:

Πi j = pδi j−CT

[
nO2n+

(On)2

2

]
δi j +CTOinO jn (15)
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(a)

(b)

(c)

(d)

Fig. 1. Simulation results of cases under only temperature gradient.
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(a) (b)

(c)

Fig. 2. Simulation results of cases under only temperature gradient (in horizontal direction).

2.3 Generalized hydrodynamic equations

A fluid mechanics equation was proposed by Onuki that
takes into account gradient entropy and energy (Onuki, 2007).
They have the same form as the compressible fluid in the
preceding literature except that the stress tensor contains the
gradient contribution. The guiding principle is derived from
the nonnegative determinism of entropy generation in bulk
areas. We assume that the fluid is in a solid container with
a controlled boundary temperature and that the velocity field
v disappears at the boundary. We include, in the following,
the gravity g exerted in the axial downward direction. The

continuum equation could be written as:

∂

∂ t
ρ =−O(ρ~v) (16)

where ρ = mn, thus we could transfer it to:

∂

∂ t
n =−O(n~v) (17)

Afterwards, the momentum and energy equation could be
written as:

∂

∂ t
ρ~v =−O·(ρ~v~v)−O·(Π−σ)−ρgez (18)
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(a) (b)

(c)

Fig. 3. Simulation results of Leidonfrost effect.

∂

∂ t
eT =−O·(ρ~v~v)−O·(Π−σ)−ρgvz (19)

2.4 Numerical cases

First, we calculate the droplet motion under temperature
gradient and without gravity. From the left figure, we can see
the initial state, with a droplet in the centre of a domain.

We draw the velocity quiver at the same time to show the
trend of droplet motion.

From the figures above, we can see that the droplet is
driven to the warm walls, and with a bounce back process

and effect back the heat transfer process. The velocity caused
by droplet motion may bring heat or cold and disturb the
temperature field. It can be reasonable, as the surface tension is
inverse proportional to the temperature. So if the temperature
is higher, the surface tension is lower, and the surface tension
is higher in a lower temperature. As a result, droplet surface
in the warm part will be less tight than that of the cold part,
and this difference in surface will drive the drople move to the
warmer part. Besides, due to the different tension, the droplet
shape will be changing throughout the whole process.

To avoid the misunderstanding of gravity effect, the left
wall is the warm wall here. We can see that with the temper-
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ature rise, there will be velocity emerging inside the bubble,
and then it will move to the warm wall. This is the same as
references.

Furthermore, we want to show the Leidenfrost effect,
which means that a gas layer near the hot wall to keep the
droplet suspension. The trick here is to find a proportional
gravity acceleration coefficient, to show the balanced effect of
surface tension (caused by temperature gradient) and gravity.
So, we set the top wall a warmer boundary, to attract droplet
against gravity. Again, the droplet is attracted to the warm
walls, but under gravity it will again drop down. So, there
will be a very thin gas layer in the bottom and cause a bounce
back of the droplet.

In these figures, it’s easy to get that the droplet is driven
by both the gravity and surface tension difference. As we care
more on the bounce-drop’ balance process, we focus on the
droplet moving already to the bottom part and try to capture
the balance process. It can be read from these figures that the
droplet will show a process of flattened first, driven by gravity
and then bounce back, driven by temperature difference and
then iterations. Due to the balance between surface tension and
gravity, the shape of droplet varies significantly and intensely.

3. Recent developments and Extensions

3.1 Phase Filed Model coupled with Equation of
State

The phase field model is used to replace the boundary
condition at the interface with the evolution of the auxiliary
field (phase field) acting as the initial parameter by the partial
differential equation. This phase field has two different values
(for example, +1 and -1) in each phase, and there is a
smooth change between the two values in the area around
the interface, and then the region has a finite width diffusion.
In general, hydrodynamics and elasticity will be both included
in single component system. It can be used to study problems
including liquid-liquid or solid-liquid phase transitions, and
recently it has been developed further to study gas-liquid
phase transitions. In the case of a first-order phase change,
the velocity field is caused around the interface even in the
presence of a density difference between the two phases, even
if no shear flow is applied. As an application, they present
two simulation results in the case of melting, where the solid
domain is placed on the heated wall in one case and in another
case is suspended in the warmer liquid under shear flow in
(Onuki, 2007). They have found that the solid region moves
or rotates as a result of elasticity, releasing latent heat. We also
checked the liquid-liquid phase of the high viscosity domain
to a less viscous liquid on the heating wall, which caused an
uneven velocity field in the projected portion of the domain.
In these phase transitions, in the presence of a heat flow in the
surrounding liquid, the interfacial temperature is almost equal
to the coexistence temperature Tcx (p) leaving the heating wall
(Takae and Onuki, 2010; Liu et al., 2016).

Researchers has developed the phase field model of fluids
based on the van der Waals theory (Takae and Onuki, 2010).
It can handle uneven evaporation and condensation, occupying

latent heat. The purpose of this kind of method is to include
hydrodynamics and elasticity on the basis of clear thermo-
dynamics. Therefore, such model could be applied to solid-
liquid phase and liquid-liquid phase change (Lamorgesea et
al., 2017).

Kou et al. (2016) proposed a general diffuse reflection
interface model with realistic state equation (such as the
Peng Robinson equation of state). Based on the NVT-based
framework principle, a multi-component two-phase fluid flow
is described. The NPT-based framework is used to simulate the
real fluid. The proposed model uses Helmholtz free energy
rather than Gibbs free energy in the NPT-based framework.
Different from the traditional routines, they combine the first
laws of thermodynamics with the relevant thermodynamic
relations to obtain the entropy equilibrium equation, and then
derive the transport equation of Helmholtz free energy density.
In addition, by using the second law of thermodynamics, they
have obtained a set of uniform equations that describe the
partial miscibility of the two fluids and the bulk phase. The
relationship between the pressure gradient and the chemical
potential gradient is established. This relationship leads to a
new formula for the momentum balance equation, indicating
that the chemical potential gradient is the main driving force of
fluid motion. In addition, they demonstrate that the proposed
model satisfies the total (free) energy dissipation over time.
For the numerical simulation of the proposed model, the key
difficulty is due to the strong nonlinearity of the Helmholtz
free energy density and the tight coupling between the molar
density and the velocity. In order to solve these problems, they
proposed a novel convex and concave splitting of Helmholtz
free energy density and deal well with the coupling rela-
tionship between molar density and velocity by very careful
physical observation (Kou et al., 2015; Kou and Sun, 2016a).

For comprehensive binary mixtures, Liu et al. (2016)
proposed a new scheme of diffuse interface model based on
the mass, momentum and energy conservation, as well as
the second thermodynamic law. The analysis and numerical
analysis show that the model can well describe the phase
equilibrium of the actual binary mixture (carbon dioxide /
ethanol considered in this paper) by adjusting the attraction
parameters between the two component model molecules.
They also show that the calculated surface tension of the
different concentrations of CO2 + ethanol mixture is consistent
with the measured values in the literature when the mixed
capillary coefficients are used as the geometric mean of the
capillary coefficients for each component. Simulated three
different cases of two droplets in the shear flow with the
same or different concentrations, indicating that the higher the
surface tension of CO2 at higher concentrations, the easier the
droplet deformation.

In many cases, the van der Waals force model of the
single component system and the Cahn-Hilliard or phase field
model of the binary incompressible flow are inappropriate.
One such situation is the binary system near the critical point
of the phase diagram, such as carbon dioxide or water at
elevated pressure and temperature. The above application, that
is, the solvent used as a solvent in the vicinity of the critical
value in chemical analysis and synthesis, is an example. This
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compressible binary mixture has not been extensively studied
using this method. Onuki studied the properties of very dilute
binary mixtures. Instead of modeling the mixture as a single
fluid, the Helmholtz free energy density extends through the
van der Waals theory to the two-component fluid. Solute
density assumptions are very small, depending on the density
of the solvent. No governing equation for the binary system
was given (Kou and Sun, 2013, 2016b; Liu et al., 2016).

From another point of view, In the D.I. model, the interface
is modeled as a three-dimensional region of finite thickness,
where the sequence parameters continuously change from a
value in a body phase to its neighboring value. The model
begins with a free energy function with a nonlocal contribu-
tion, expressed in the initial order of the squared gradient of
the sequential parameters. The spatial distribution of density
or concentration in the interface area is then determined by
minimizing the free energy. When a pair of simple intergran-
ular potentials are assumed, the natural extension of the van
der Waals force model is obtained (Shen and Yang, 2015).
Assuming the simple constitutive relationship of the flux of
the material in a very viscous binary mixture, the theory
of Cahn-Hilliard joint decomposition can be obtained. For
systems that can not ignore the flux of fluxes, a reversible force
called the Korteweg force must be added to the Navier-Stokes
equations proportional to the chemical potential gradient. For
systems that are not in equilibrium, the force is nonzero and
is responsible for the strong convection observed when the
mixture is separated, and is not present in the system where the
chemical potential is uniform. Like the Gibbs fractal surface
model, the diffuse reflection interface model has been widely
used in the mixing and delamination of binary mixtures,
buoyancy-driven separation of droplets, droplet breakage and
coalescence, Marangoni effect and flow of nanometer and
microchannels (Lamorgese et al., 2017). Diffuse interface
models resolve the steep but smooth transition of an order
parameter for a two-phase system at the fluid interface. Ideas
to describe both phases of an inhomogeneous system in one
unifying framework originate from van der Waals (1873)
(Widom and Rowlinson, 1970; Rowlinson, 1979) and Cahn
& Hilliard (1958). Derivations of diffuse interface equations
for single and binary fluid systems from a nonequilibrium
thermodynamics framework have been presented, amongst
others, by Anderson et al. (1998), Jacqmin (1999) and Onuki
(2007) (Nold, 2016).

3.2 Boiling and droplet motion

The dynamic van der Waals theory is more applicable in
simulations of physical process with heat transfer and phase
change, that’s why it’s widely used in numerical researches on
boiling and droplet motions. Several new continuum mechan-
ics modeling frameworks are developed for liquid-vapor flows,
especially in boiling and evaporation process, concentrating
mostly on the fluid flow belonging to van der Waals type,
using new schemes combining entropy function and other
thermodynamic variables. Generally, it can be shown that the
energy stability of such schemes in discretized style, which

will lead to an unconditionally stable property and accuracy
up to 2nd order. A set of benchmark problems and their
analytical solution have developed and generally used for
validation. Large variety of simulations have been carried out
to demonstrate the large capability and usage of the algorithm
based on dynamic van der Walls theory (Tryggvason et al.,
2011; Liu et al., 2015; Taylor and Qian, 2016).

In a one-component fluid, the temperature of the bubbles
(or droplets) of the thermal capillary (Marangoni) is almost
impossible to vary. Generally, we can see the interface as
an isothermal fluid layer where the temperature is saturated
(Amijo and Barnard, 2010). Meanwhile, we need to take
into account the fact that evaporation and condensation might
occur on both sides in the same time, and the bubbles may
be displaced. At the HYLDE equipment of CEA-Grenoble
and the ISL DECLIC plant, we observed that two different
fluids were affected by the temperature gradient under gravity.
Experiments and subsequent analyzes are carried out near
the critical point of gas-liquid, benefiting from the critical
universality. In order to better understand the phenomenon,
has been carried out 1D numerical simulation. After applying
the temperature gradient, two schemes can be demonstrated.
At the beginning, there will be a temperature change around
and in the bubble due to the difference in compressibility and
the so called piston effect, which means that along with the
expansion of the thermal boundary layer, the fast adiabatic
bulk thermalization will be induced. Different distribution
of temperature will result in a different physical process of
evaporation, as well as condensation, and such phenomena
might vary the bubble shape and drive the bubble/droplet
motion. After a long time, or at the near-steady state, there
will a temperature gradient in the liquid and such gradient is
the main cause of droplet/bubble motion to the hot wall. The
temperature in bubble/droplet will have no such gradient. Bub-
ble velocity in such process has been studied and compared
with existing theories in Nikolayev’s work (Nikolayev et al.,
2017). They derive a set of hydrodynamic equations based on
the thermodynamic theorem which contains the stress caused
by density gradient. The so-called gradient effect is used again.
Such governing equations can be further developed and wider
applied in phase transition process in non-uniform temperature
distribution (Nikolayev et al., 2017).

Droplet movement has been extensively researched due
to its wide application potential in chemical and biology
engineering, as well as petroleum industry. Various physical
processes involving droplet movements can take into account
both phase change (including both evaporation and conden-
sation process) and associated phenomena including velocity
slip and substrate cooling/ heating. The hydrodynamic and
thermal properties of fluid flow will be automatically resolved
using the phase method (such as phase field method) coupled
with dynamic van der Waals theory. Besides, in many other
methods, the rate of evaporation and condensation is set
previously, but here such rate is obtained through calculation,
which is another advantage. The numerical results will show
that the wettability increasing direction on solid substrate is
the main direction. Professor Qian investigated the movement
of vaporized droplets in a one-component fluid on a solid
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substrate with a wettability gradient. Another result we can
obtain is that the relative contribution of phase transition and
boundary velocity on contact line is mainly decided by the slip
length. We can see two examples of the droplet migration and
the energy dissipation process from Kou and Sun (2016c).

Recently, there has been a simple kinetic model for the
evolution of a droplet in a cell, based on the Van der Waals
equation of state, to investigate the behavior of liquid-vapor
undergoing adiabatic expansion during isochoric and rapid
heating. The evolution of the two phase fluid between the
molecular and hydrodynamic scales is studied at different time
steps, focusing on out-of-equilibrium and surface effects. Re-
searcher have found a formula for the temperature difference
between the gas and the droplets and they check it with numer-
ical calculations. Afterwards, the formula is applied to delimit
the thermalized and non-thermalized expansion regimes. The
growth rate of liquid fraction is proportional to the estimation
value, while a limit of droplet evaporation rate is derived in
case of rapid expansion. Also, there has been discussion on the
range of experimental situations (Armijo and Barnard, 2010).
Onuki himself also proposed the boiling process, which could
be divided into nuclear boiling, membrane boiling and their
transition state.

There has also been researches on an extended thermody-
namics (ET) theory of dissipative dense gases. In particular,
the ET theory with six fields has been studied, where the shear
viscosity and heat conductivity is ignored. Two nonequilib-
rium temperatures is emerged. It’s generally viewed that the
translational modes and the internal modes are the two main
cause of the merge, which will help us understand the origin of
dynamic pressure more clearly. Furthermore, the characteristic
velocities is evaluated associated with the hyperbolic system
and the fluctuation-dissipation is addressed by its relation to
the bulk viscosity. The fluid flow based on dynamic van der
Waals theory is taken as an example in such research.

Teshigawara and Onuki (2008) focused on the evaporation
of a hydrophilic drop on an isothermal substrate. The total
evaporation rate is counted in their research it’s found that the
rate is doubled in region compared to that on the interface of
contact line. It could be further concluded that the evaporation
occurs mainly near the contact line, especially in large time
scale, which is the same as results from other thermodynamical
theory. Meanwhile, the accuracy should be more concerned in
this method as in some cases, the edge evaporation rate is
even higher than the total one, which is questioned (Xie et al.,
2016).

3.3 Other extentions

The vapor condensation on the planar liquid surface caused
by the reflection of weak shock waves was studied by three
different simulation methods. The first is based on the molec-
ular dynamics (MD) simulation of Lennard-Jones fluid, which
should provide a reference solution. The second method is
based on the diffusion interface model (DIM), consistent with
the thermodynamic properties and transport properties of the
Lennard-Jones fluid. The third method is based on a hybrid

model (HM), where the liquid is described by pure fluid
mechanics, and the steam is described by the Boltzmann
equation. The two phases are connected by kinetic boundary
conditions. The results show that DIM can not accurately
predict the rate of condensation when vapor phase dilution, but
it becomes more accurate when the gas phase becomes thicker.
Assuming the unit condensation factor, HM reproduces MD
with almost ideal vapor condensation accuracy (Barbante and
Frezzotti, 2016). Besides, there has also been simulaitons using
the dynamic van der Waals theory and coupling with Navier-
Stokes equations in nanotubes (Grjeu et al., 2013).

Meanwhile, the dynamic van der Waals theory is used to
simulate the single vapor bubble growth when the bulk liquid
is heated (Chaudhri et al., 2014). For one component van der
Waals fluid, the expansion dynamics of bubbles arising in pool
boiling regime has been widely studied, where the contact line
motion and the effect of substrate wettability are the main
focus. It was found that the substrate wettability could control
the apparent contact angle as well as the bubble growth rate
(total evaporation rate), and that’s how we can determine the
line speed. It has also been obtained that an approximate
expression could be derived from the theory, which is in
good accordinane with the simulation result. It’s indicated
that the movement velocity of contact line velocity is mainly
determined by three factors, (1) interface shape, the effect
is even higher when the bubble growing in a slow rate (2)
constant apparent contact angle and (3) constant bubble growth
rate. Thus, the contact line velocity is sensitive to substrate
wettability through a significant contact angle, where the latter
is also the main cause of bubble growth. The hydrophobic
surface produces a thinner bubble shape than the hydrophilic
surface, as well as a higher evaporation rate, which results in
a faster contact line speed. Such results are connected with
the vapor film formation and further boiling process (Xu et
al., 2012; Taylor and Qian, 2016).

There is also a lattice Boltzmann scheme that allows
simulating the thermodynamic mechanical equations of mul-
tiphase fluids, including the contribution of interface free
energy (Sofonea et al., 2004). This is an example of LBM
that correctly reproduces the quality, momentum, and energy
equations established by Onuki in the second phase of the
Chapman-Enskog extension. Assuming the simple constitutive
relationship of the flux of the material in a very viscous binary
mixture, the theory of Cahn-Hilliard joint decomposition can
be obtained. The phase-field method has been used to simulate
the mixing of conventional mixtures, the junction decomposi-
tion in conventional mixtures and the various heterogeneous
problems of van der Waals liquids, the phase separation effect
on heat transfer and nucleation (Gonnella et al., 2007; Gan et
al., 2012).

In conclusion, the uncertainties and challenges need to
be highlighted in Drp. Significant progress is necessary to
transform micro-tomography and conceptual model from the
current researchch problem into a robust computational big
data tool for multi-scale scientific and engineering problems
in earth science related fields.
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4. Conclusion
Multicomponent and multiphase fluid flows are very im-

portant in both real life and scientific research, while their
modeling is still in an early stage. As a result, for researchers
who want to do numerical simulation, it’s always a problem to
select. One main focus in energy research is the phase transi-
tions, in which the fluctuations of the temperature T are often
assumed to be small, and for some extreme conditions, such as
in macroscopic level, are generally neglected. Meanwhile, the
physical process of varying temperature is still attracting so
much attention that we may consider phase transition and other
thermodynamical-releveant phenomena. A popular example is
that in applied heat flux, the wettability may be deeply affected
by the temperature gradient (Garrabos et al., 2001). Besides,
the boiling processes remain largely unexplored, which is very
common seen in chemistry or energy industry (Beysens et
al., 1999). To treat such problems, Onuki (2005) proposed
to consider with the gradient contribution of entropy and
energy, with which the temperature is defined as a functional
of the order parameter and the energy density. Based on that,
a family of thermal and hydraulic governing equations have
been derived, and that’s called dynamic van der Waals theory.
This theory is non-trival for its concerning on gradients, as
well as a very convincing physical origin, and with which we
can perform better numerical simulation on phase change and
transition process with better efficiency and accuracy.

Acknowledgements
The authors would like to express their gratitude to the

anonymous referees for their efforts in providing valuable
comments.

Open Access This article is distributed under the terms and con-
ditions of the Creative Commons Attribution (CC BY-NC-ND) li-
cense (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits un-
restricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

References
Anderson, J.C., Gerbing, D.W. Structural equation modeling in

practice: A review and recommended two-step approach.
Psychol. Bull. 1988, 103(3): 411-423.

Armijo, J., Barnard, J.J. Droplet Evolution in Warm Dense
Matter Expanding Flow. Livermore, CA, Lawrence
Livermore National Laboratory (LLNL), 2010.

Barbante, P., Frezzotti, A. Simulations of condensation flows
induced by reflection of weak shocks from liquid
surfaces. Paper 110004 Presented at 30th International
Symposium on Rarefied Gas Dynamics, 2016.

Charles, A. Smoothed Particle Modelling of Liquid-Vapour
Phase Transitions. Melbourne, Australia, RMIT Univer-
sity, 2014.

Charles, A., Daivis, P. Smooth particle methods for vapour
liquid coexistence. Paper Presented at 18th World IMACS
/ MODSIM Congress, Cairns, Australia, 13-17 July, 2009.

Chaudhri, A., Bell, J.B., Garcia, A.L., et al. Modeling
multiphase flow using fluctuating hydrodynamics. Phys.
Rev. E 2014, 90(3): 033014.

Chen, C.Y., Meiburg, E. Miscible displacements in capillary
tubes: Influence of Korteweg stresses and divergence
effects. Phys. Fluids 2002, 14(7): 2052-2058.

Chen, C.Y., Wang, L., Meiburg, E. Miscible droplets in a
porous medium and the effects of Korteweg stresses.
Phys. Fluids 2001, 13(9): 2447-2456.

Felderhof, B.U. Hydrodynamic interaction between two
spheres. Phys. A 1977, 89(2): 373-384.

Gan, Y.B., Xu, A.G., Zhang, G.C., et al. Physical modeling of
multiphase flow via lattice Boltzmann method: Numerical
effects, equation of state and boundary conditions. Front.
Phys. 2012, 7(4): 481-490.

Garrabos. Y., Lecoutre-Chabot, C., Hegseth, J., et al. Gas
spreading on a heated wall wetted by liquid. Phys. Rev.
E 2001, 64(5): 051602.

Gonnella, G., Lamura, A., Sofonea, V. Lattice Boltzmann
simulation of thermal nonideal fluids. Phys. Rev. E 2007,
76(3): 036703.

Grjeu, M., Gouin, H., Saccomandi, G. Scaling Navier-Stokes
equation in nanotubes. Phys. Fluids 2013, 25(8): 082003.

Korteweg, D.J. Sur la forme que prennent les equations
du mouvements des fluides si l’on tient compte des
forces capillaires causees par des variations de densite
considerables mais connues et sur la theorie de la
capillarite dans l’hypothese d’une variation continue de
la densite. Archives Neerlandaises des Sciences Exactes
et Naturelles 1901, 6: 1-24.

Kou, J., Sun, S. Convergence of discontinuous Galerkin meth-
ods for incompressible two-phase flow in heterogeneous
media. SIAM J. Numer. Anal. 2013, 51(6): 3280-3306.

Kou, J., Sun, S. Numerical methods for a multi-component
two-phase interface model with geometric mean influence
parameters. SIAM J. Sci. Comput. 2015, 37(4): B543-
B569.

Kou, J., Sun, S. Thermodynamically consistent modeling and
simulation of multi-component two-phase flow model
with partial miscibility. arXiv preprint arXiv:1611.08622.
2016a, 1-29.

Kou, J., Sun, S. Unconditionally stable methods for simulating
multi-component two-phase interface models with Peng-
Robinson equation of state and various boundary
conditions. J. Comput. Appl. Math. 2016b, 291: 158-182.

Kou, J., Sun, S. Multi-scale diffuse interface modeling of
multi-component two-phase flow with partial miscibility.
J. Comput. Phys. 2016c, 318: 349-372.

Kou, J., Sun, S., Wang, X. Efficient numerical methods for
simulating surface tension of multi-component mixtures
with the gradient theory of fluid interfaces. Comput.
Methods Appl. Mech. Eng. 2015, 292: 92-106.

Kou, J., Sun, S., Wang, X. An energy stable evolution method
for simulating two-phase equilibria of multi-component
fluids at constant moles, volume and temperature.
Comput. Geosci. 2016, 20(1): 283-295.

Lamorgese, A., Mauri, R., Sagis, L.M.C. Modeling soft
interface dominated systems: A comparison of phase
field and Gibbs dividing surface models. Phys. Rep.
2017, 675: 1-54.



134 Zhang, T., et al. Adv. Geo-Energy Res. 2017, 1(2): 124-134

Li, Q., Luo, K.H., Kang, Q.J., et al. Lattice Boltzmann
methods for multiphase flow and phase-change heat
transfer. Prog. Energy Combust. Sci. 2016, 52: 62-105.

Liu, J., Amberg, G., Do-Quang, M. Diffuse interface method
for a compressible binary fluid. Phys. Rev. E 2016, 93(1):
013121.

Liu, J., Landis, C.M., Gomez, H., et al. Liquid-vapor phase
transition: thermomechanical theory, entropy stable
numerical formulation, and boiling simulations. Comput.
Methods Appl. Mech. Eng. 2015, 297: 476-553.

Nikolayev, V.S., Beysens, D.A. Boiling crisis and non-
equilibrium drying transition. Europhys. Lett. 1999,
47(3): 345-351.

Nikolayev, V.S., Garrabos, Y., Lecoutre, C., et al. Evaporation
condensation-induced bubble motion after temperature
gradient set-up. C.R. Mec. 2017, 345(1): 35-46.

Nold, A. From the Nano-to the Macroscale-Bridging Scales
for the Moving Contact Line Problem. London, UK,
Imperial College London, 2016.

Onuki, A. Dynamic van der Waals theory of two-phase fluids
in heat flow. Phys. Rev. Lett. 2005, 94(5): 054501.

Onuki, A. Dynamic van der Waals theory. Phys. Rev. E 2007,
75(3): 036304.

Pecenko, A., Van Deurzen, L.G.M., Kuerten, J.G., et al. Non-
isothermal two-phase flow with a diffuse-interface model.
Int. J. Multiph. Flow 2011, 37(2): 149-165.

Rowlinson, J.S. Translation of JD van der Waals’ The
thermodynamik theory of capillarity under the hypothesis
of a continuous variation of density. J. Stat. Phys. 1979,
20(2): 197-200.

Shen, J., Yang, X. Decoupled, energy stable schemes for
phase-field models of two-phase incompressible flows.

SIAM J. Numer. Anal. 2015, 53(1): 279-296.
Sofonea, V., Lamura, A., Gonnella, G., et al. Finite-difference

lattice Boltzmann model with flux limiters for liquid-
vapor systems. Phys. Rev. E 2004, 70(4): 046702.

Takae, K., Onuki, A. Phase field model of solid-liquid and
liquid-liquid phase transitions in flow and elastic fields in
one-component systems. arXiv preprint arXiv 1003.4376.
2010, 1-6.

Taylor, M.T., Qian, T. Thermal singularity and contact line
motion in pool boiling: Effects of substrate wettability.
Phys. Rev. E 2016, 93(3): 033105.

Teshigawara, R., Onuki, A. Droplet evaporation in one-
component fluids: Dynamic van der Waals theory.
Europhys. Lett. 2008, 84(3): 36003.

Tryggvason, G., Scardovelli, R., Zaleski, S., et al. Direct
numerical simulations of gas-liquid multiphase flows.
New York, USA, Cambridge University Press, 2011.

Widom, B., Rowlinson, J.S. New model for the study of liquid-
vapor phase transitions. J. Chem. Phys. 1970, 52(4):
1670-1684.

Xie, C., Liu, G., Wang, M. Evaporation flux distribution of
drops on a hydrophilic or hydrophobic flat surface by
molecular simulations. Langmuir 2016, 32(32): 8255-
8264.

Xu, X., Liu, C., Qian, T. Hydrodynamic boundary conditions
for one-component liquid-gas flows on non-isothermal
solid substrates. Commun. Math. Sci. 2012, 10: 1027-
1053.

Xu, X., Qian, T. Thermal singularity and droplet motion in
one-component fluids on solid substrates with thermal
gradients. Phys. Rev. E 2012, 85(6): 061603.


