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Abstract: Due to abundant nanoscale pores developed in shale, gas flow in shale presents a complex dynamic process. This
paper summarized the effects from effective stress increase, shale matrix shrinkage, gas slippage and Knudsen diffusion on the
gas permeability change in shale during shale gas recovery. With the reduce in gas pressure, effective stress increase leads to the
decline of the permeability in an exponential form; the permeability increases due to the shale matrix shrinkage induced by gas
desorption; appearances of gas slippage and Knudsen diffusion cause an additional increase in the gas permeability particularly
in small pores at low pressures. In addition, some reported models evaluating the shale permeability were reviewed preliminarily.
Models considering these four effects may be potentially effective to evaluate the gas permeability change in shale.
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1. Introduction

Shale gas (CHy), primarily in adsorbed, free and dissolve
states, accumulates in carbon-rich mudstone and shale reser-
voirs (Curtis, 2002). During the shale gas recovery, free gas
was extracted at the early stage. With continuous decrease in
gas pressure, absorbed gas will be released gradually from
the adsorption layer, and then transports into the natural
pore-fractures. Subsequently, the desorbed gas moves into
macroscopic fractures induced by hydraulic fracturing and
eventually flows into well borehole. Multi-scale flow of shale
gas from matrix pore to the borehole shows different flow
regimes (Javadpour et al., 2007).

Intrinsic permeability of shale is extremely low due to
a small seepage space developed in shale. Javadpour et
al. (2007) analyzed 152 cores from North America and
presented that 90% shales have permeability of less than
150 x 10~® um? and pore diameter of shales mainly ranges
from 4-200 nm. Other researches (Ambrose et al., 2010; Son-
dergeld et al., 2010) reported that shale pore diameter is mainly
of 8-100 nm in North America. Gas-bearing shales from China
have pore diameter of 5-300 nm, mainly ranging from 80-200
nm (Zou et al., 2010, 2011). Because that the mean free path of
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gas molecules is close to pore size, the nanoscale effect cannot
be ignored as gas flows in nanopores. Therefore, the Darcy law
reflecting continuum flow is no longer applicable for shale gas
due to the significant influence of molecular diffusion and gas
slippage. To date, it has been generally accepted that gas flow
regimes can be subdivided into continuum flow (K, < 0.001),
slip flow (0.001 < K, < 0.1), transition flow (0.1 < K,, < 10)
and free molecular flow (K, > 10) based on the Knudsen
number (K, i.e., the ratio of the mean free path of molecule to
pore diameter) (Yao et al., 2013; Kazemi and Takbiri-Borujeni,
2015; Kim et al., 2015), as shown in Fig. 1. As K, > 1.0,
Knudsen diffusion was not negligible. Theoretical analyses
(Yao et al., 2013; Wu et al., 2016) showed that shale gas flow
in the nanometer (1-1000 nm) pores is mainly characterized
by slip and transition flows at the pressures of 0-10 MPa; and
it occurs free molecular flow at low pressures of < 1 MPa in
micropores (<2 nm diameter).

Resulting from abundant nanopores, varied mineralogical
compositions, low porosity and permeability, complex mi-
crostructure and rich organics (Li et al., 2017a), it is very
difficult in understanding the permeability change in shale
during the gas recovery. Rock deformation and changes of
temperature and stress fields appear in shale reservoir and cau-
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Fig. 1. Variation of Knudsen number (K,,) with gas pressure at different pore
radius (r) (after Yao et al. (2013)).

se a remarkable permeability change with the gas pressure
depletion, which will significantly influences the recovery
of shale gas. In recent years, gas flow in porous shale has
been studied intensively, and has becoming an importantly
scientific issue (Javadpour, 2009; Cai et al., 2012, 2017; Peng
et al, 2015; Zhang et al., 2015a). In this paper, several
possible factors impacting the gas permeability change in
shales were summarized. Further, reported models evaluating
the permeability change were reviewed preliminarily.

2. Influence factors of gas permeability change

Microscopic seepage of shale gas are influenced by gas
pressure, and pore-fracture system (pore structure, pore size
distribution) etc. (Guo et al., 2015; Naraghi and Javadpour,
2015; Peng et al., 2015). During the shale gas exploitation,
there is a change in the gas pressure and shale pore structure,
which causing the gas permeability change. Moreover, a
series of geological phenomena impacting on the permeability
change occur in shale reservoir, which including the effective
stress, gas slippage, matrix shrinkage, Knudsen diffusion and
surface diffusion etc. (Reyes and Osisanya, 2002; Javadpour,
2009; Mehmani et al., 2013; Yao et al.,, 2013; Singh and
Javadpour, 2016). The effective stress (i.e., the stress acting
on the rock framework, and is approximately equal to the
confining stress minus fluid pressure) increase leads to the
decline of the permeability. The permeability increases due to
the matrix shrinkage induced by gas desorption. Appearance
of gas slippage and Knudsen diffusion causes an additional
increase in the gas permeability. For the effect of surface
diffusion of adsorbed gas on the gas permeability, it has not
been determined today. Zhang et al. (2015a) reported that
surface diffusion cannot be ignored; while Wang et al. (2015)
thought that a weak effect of the surface diffusion can be
negligible in reservoir conditions.

2.1 Effective stress

The increase in effective stress causes the compression
and even closure of shale pore-fractures, which inducing a
decrease in inherent permeability of shale. Previous experi-

ments showed that the permeability decrease in an exponential
form with the increase in the effective stress (Mckee et al.,
1988; Reyes et al., 2002; Chalmers et al., 2012; Ghanizadeh
et al., 2014a, 2014b; Chen et al., 2015; Zhang et al., 2015a,
2015b, 2016). Change of rock effective stress can be caused
by internal pressure (i.e., gas pressure) and external pressure
(i.e., confining stress) variations. The effect of effective stress
on shale permeability is closely related to shale pore-fracture
system (Chalmers et al., 2012). In the study by Li et al. (2014),
they reported that the coal with a lower permeability will have
a stronger sensitivity of the permeability to the effective stress.
Zhang et al. (2015b) investigated the impacts of nanopore
structure and elastic properties on shale permeability, and
showed that: (a) pore compressibility increased with a decreas-
ing pore aspect ratio and Youngs modulus; (b) the permeability
of micro-fractures in shale were more sensitive to effective
stress than hydraulic fractures. Zhang et al. (2016) reported the
negative effect of effective stress on shale permeability, and
indicated that shale has higher stress sensitive coefficients and
lower porosity sensitive exponents than those of sandstone.

2.2 Matrix shrinkage

Gas absorbed content accounts for 20%-85% in shale
(Curtis, 2002). During gas pressure depletion, inherent per-
meability of shale also changes due to the matrix shrinkage
induced by gas desorption (Peng et al., 2015). The matrix
swelling/shrinkage induced by gas adsorption/desorption is a
complex process. Experiments on coals have been conducted
by many researchers (Levine, 1996; Karacan, 2007; Day et al.,
2008; Pan et al., 2010). The strains occur in coals as the matrix
swelling or shrinkage (Harpalani and Chen, 1995; Gilman and
Beckie, 2000; Cui et al., 2004; Shi and Durucan, 2004). The
Langmuir-like equation, which proposed by Levine (1996),
was often used to describe the coal volume strain. Chen et
al. (2015) researched the CHy4 adsorption swelling of shale,
showing that swelling deformation is a function of gas pressure
and can be described by the Langmuir-like equation. Lyu et al.
(2015) summarized the H,O adsorption swelling of shale, and
presented the volume swelling of shale is negatively related to
the initial water content and the logarithm of confining stress,
but is positively proportional to clay content. Lu et al. (2016)
tested the shale swelling in supercritical CO;, and found that
the swelling initially increases but subsequently decreases with
increasing pressure; maximum swelling decreases with the
increase in measured temperature.

2.3 QGas slippage and Knudsen diffusion

Gas slippage impacts gas flow behavior in lowly permeable
porous media, such as shale, and causes a gas permeability
increment compared to liquid. Previous research has shown
that gas slippage is associated with the mean free path of
gas molecules and the mean radius of pores within porous
media (Klinkenberg, 1941). Commonly, a linear relationship
between the gas permeability and the reciprocal of the mean
gas pressure is considered to be a response to the gas slippage
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Fig. 2. Gas (CO,) permeability changes at different experimental tempera-
tures (Li et al., 2015).

and is mathematically expressed by the Klinkenberg equation.
Gas slippage causes that the apparent gas permeability is
greater than liquid permeability (Klinkenberg, 1941; Firouzi
et al., 2014; Li et al., 2014). The slippage effect is mainly
affected by pore size and gas pressure but is not obviously
influenced by the temperature (Fig. 2). Generally, the smaller
(lower) the pore diameter (gas pressure and density) is, the
more obvious the gas slippage occurs. As the diameter of
porous media is smaller up to a level of the free path of
gas molecule, Knudsen diffusion appears in pores due to the
frequent collision of gas molecule with pore wall.

During shale gas recovery, effects of gas slippage and
Knudsen diffusion enhanced the gas permeability of shale.
The effects of gas slippage and Knudsen diffusion on the
permeability are remarkable in small pores at low pressures.
Javadpour (2009) reported that the effects of gas slippage and
Knudsen diffusion on the permeability are gradually significant
during the decreasing processes of gas pressure (10-0 MPa)
and pore diameter (100-0 nm).

3. Evaluation models of gas permeability change
in shale

Models about the shale gas flow are mainly focused on
numerical simulations considering various transmission mech-
anisms of gas. Beskok and Karniadakis (1999) derived a gas
flow equation (classic permeability model) which considers
continuum, slip, transition and diffusion flows, but ignored
the influences of effective stress and matrix shrinkage on the
permeability. Based on the study by Beskok and Karniadakis
(1999), Xiong et al. (2012) considered the effect of gas
adsorption and surface diffusion. Javadpour (2009) established
an apparent permeability model by a linear superposition of
Knudsen diffusion and gas slippage. But this model did not
consider the influence of effective stress and gas adsorption.
On the basis of Javadpour (2009), Azom and Javadpour
(2012) took the effect of real gas on the permeability into
consideration; Darabi et al. (2012) thought over the impact
of pore wall roughness on Knudsen diffusion. Subsequently
Wau et al. (2015) defined the weighting coefficient of Knudsen
diffusion and slip flows based on the molecular collision theo-
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Fig. 3. General model of changes in the permeability (a) and flow rate (b)
(Li et al., 2017b). In this figure, the negative (positive) AS value reflects the
increase (decrease) in the cumulative gas flow rate compared to the condition
of kgi/keo =1 during the depressurization process. Overall, AS varies from
-0.5 to 0.5. During pressure decrease, as AS = —0.5, the gas flow rate is
always the highest; as AS = 0, the gas permeability is constant; AS = 0.5,
reservoir is impermeable.

ry. Mehmani et al. (2013) established a gas permeability
model for micro-nanometer pore of shale matrix. This model
considered gas slippage and Knudsen diffusion, but ignored
the influences of effective stress and matrix shrinkage on the
permeability. Wu et al. (2016) built a gas transport model in the
organic nano-pore of shale by comprehensively considering
the influences of gas slippage, Knudsen diffusion, effective
stress and surface diffusion except for the matrix shrinkage.
Recently, Li et al. (2013, 2014, 2015, 2017b) analyzed the
effects of effective stress, gas slippage, matrix shrinkage and
Knudsen diffusion on the gas permeability change in coals.
They also proposed a prediction model of gas permeability
change based on the effects of effective stress, gas slippage
and matrix shrinkage (Li et al., 2013). And then, the model
was improved by comprehensively considering the effects of
effective stress, gas slippage, matrix shrinkage and Knudsen
diffusion (Li et al., 2015), which has a good match with
experimental data. A new method was presented to evaluate
the dynamic gas flow process (Li et al., 2017b), as shown in
Fig. 3. Moreover, there is a certain relationship between the
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gas permeability changes and material composition, pore-crack
system of coals (Li et al., 2017b). However, the prediction of
gas permeability change in shale and the coupling relationship
of the permeability change with shale reservoir characteristics
have been not studied systematically. These results may be
potentially useful to analyze shale.

4. Conclusions

In this paper, we presented several possible factors im-
pacting the gas permeability change in shale. Further, some
reported models evaluating the permeability were reviewed
preliminarily. The gas permeability of shale varies due to
the comprehensive effects of effective stress increase, matrix
shrinkage, gas slippage, Knudsen diffusion and surface dif-
fusion etc. during shale gas recovery. According to recent
studies, it is concluded that gas permeability change is the
comprehensive result of the effective stress increase, shale ma-
trix shrinkage, gas slippage and Knudson diffusion as the gas
pressure decreases. First, with the pressure decrease, increased
effective stress and matrix shrinkage occur in shale, causing
shale deformation accompanied with varied shale permeability.
Second, the effects of gas slippage and Knudsen diffusion
on the permeability change gradually become significant. In
addition, model established considering these four effects may
be potentially effective to evaluate the gas permeability change
in shale.
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