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Abstract:

A new approach to determine the transient period towards steady state pore flow velocity
for fluids propagating through porous media under constant pressure condition is presented.
The transient expression relates to the mean pore velocity rather than the fluid pressure
conventional considered when characterizing transient behavior in porous media. It is based
on the general, resistance force-velocity relationship, and is therefore analogous to the
approach used when calculating transient periods for objects falling through resisting liquid
fluids and for the increase in electric currents towards respective steady state values. The
transient is caused by inertia forces and characterized by a relaxation time comprising fluid
density and viscosity together with porous medium properties as porosity and absolute
permeability. Results show that the transient period increases with decreasing medium
porosity and fluid viscosity and with increasing fluid density and absolute permeability
of the medium. The transient period is negligibly small for typical fluid/medium property
values characterizing typical subterrain sandstone reservoirs. Significant transient periods,
occasionally observed during laboratory fluid injection tests, are therefore caused by other
time-dependent processes not captured by the transient expression presented herein, e.g.,
fines migration or electrokinetic phenomena.

1. Introduction

length, p is the fluid viscosity, v is the fluid flux (Darcy
velocity) and up is the mean linear velocity or mean pore

Darcy’s law (Darcy, 1856; Bear, 1972; Dullien, 1975)
describes the relationship between applied pressure and fluid
flux for single-phase flow through porous media when steady
state occurs. It is extensively used in many applied sciences,
e.g., soil and material sciences and chemical- and petroleum
engineering. The law was formulated based on empirical
observations related to vertical water flow through sandpacks.
Darcy’s law solved for the external pressure (—AP), required
to force fluids through homogenous porous media at low rates
under steady laminar flow conditions reads,

—AP:“—LV:MM (N
K

where K is the absolute permeability of the medium (referred
herein to as permeability only), ¢ is the porosity, L is the
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velocity. The relationship between the Darcy- and the mean
pore velocity is v = ¢up. Darcy’s law can be derived from
the Navier-Stokes equation via Stokes flow for slow laminar
flow as shown in several works (Foster et al., 1967; Slattery,
1969; Neuman, 1977; Whitaker, 1986), by assuming incom-
pressible medium and fluids and by neglecting the non-linear
velocity term as well as the inertia term. Since Darcy’s law
only is valid under steady state flow condition, a transient
period will therefore occur where the instantaneous pore fluid
velocity will increase from zero to its steady value given by
Darcy’s law. Initial periods characterized by instabilities are
occasionally experienced upon when injecting water through
porous media (Brace et al., 1968; Yang et al., 2019). A new
phenomenological approach to derive an expression for the
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transient pore velocity build-up period is the subject of the
current paper. It is based on the same approach applied when
describing e.g., the transient build-up of an electrical current
in circuits (Smith, 1984) or the increase in velocity of falling
objects towards a steady terminal velocity (Alonso and Finn,
1983). In these cases, the steady state condition is described
by Ohm’s law and by applying Newton’s second law to a
falling object including liquid fluid resistance, respectively.
The common physical characteristics of the processes are that
a step value (Heaviside function) of the external potential
is initiated at time zero. The resulting force, constant for
all subsequent times, is then balanced by a resistance force
assumed proportional to the velocity of the electrical charge
carriers or the object, plus an additional inertia term. The latter
therefore decreases as a function of time due to the increase in
velocity and vanishes at steady state condition. The principle
which connects the description of all these cases is referred
to as the resistance force-velocity relationship described in
the next section and exemplified considering the falling object
case.

The aim of the paper is therefore to determine a relax-
ation time expression, which characterizes the transient period
towards a steady state pore velocity value given by Darcy’s
law. It is important to emphasize that the transient period
discussed is related to the pore fluid velocity developed under
constant external pressures conditions on the inlet and outlet
boundaries. The approach differs from the conventional way
transient behavior in porous media have been reported in
the literature, which focuses on the propagation of pressure
pulses through the fluid-saturated medium (Foster et al., 1967;
Odeh and McMillen, 1972; Taherkhani and Pourafshary, 2012;
Zimmerman, 2018). The transient pressure pulse period is
described by a diffusion equation in the limiting case of an
infinite pressure pulse speed (Zimmerman, 2018) or by a
modified diffusion equation, referred to as the telegrapher’s
equation (Foster et al., 1967; Taherkhani and Pourafshary,
2012) originally developed by Heaviside for transmission
of electrical signals, for finite pressure pulse propagation.
Differences between the pressure pulse approach and the one
presented herein will appear if some of the quantities which
relate pressure to pore fluid velocity happen to be velocity
or shear-rate dependent. Hence, an advantage of the current
approach is therefore that it potentially also can capture such
effects, e.g., if the fluid at hand is viscoelastic. Background for
the analogue description outlined above is presented in the next
section, before presenting the expression, which characterizes
the transient pore velocity build-up period for single-phase
fluid flow in porous media. It should finally be mentioned
that the approach presented is phenomenological since no
detailed description of the underlying mechanisms determining
the permeability of the medium is considered. A more detailed
discussion regarding these issues will, however, be provided
in the Discussion section.

1.1 The resistance force-velocity relationship

The applicability of the falling object description to single-
phase fluid flow in porous media is based on the observation
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that only relative velocities between the object and the fluid
is important when calculating resistance forces. The famous
Stokes’ law for the viscous resistance force on fluids flowing
slowly around spherical particles (Fsiores = OTURsVR, Rs is
the radius of the sphere and vg is the relative velocity) can
e.g., be derived from the reference frame where a fluid is
passing a stagnant sphere (Stokes, 1851; Dey et al., 2019)
or where a spherical particle is moving through a stagnant
fluid (Landau and Lifshitz, 1987; Batchelor, 2000). Resisting
frictional forces can therefore always be determined by an
expression on the form,

Resistance force = y- relative velocity )

where Y is a friction coefficient, regardless of whether the
object is moving, and the fluid is stagnant, or vice versa. The
validity of Eq. (2) is of course based on the assumption of
a direct proportionality between resistance force and relative
velocity, i.e., for low relative motions. This important and
powerful expression will be referred to as the resistance force-
velocity relationship. It allows for analysis of transient periods
for both cases mentioned above using the same approach. The
only difference is that a force balance on the fluid must be
considered for porous media flow whereas a force balance
on the object is considered for the falling object case. The
calculation of the resistance force, however, remains the same
in both reference frames since it is proportional to the relative
velocity. The resistance force-velocity relationship therefore
connects the description of transient fluid flow in porous
media to any other phenomenon where frictional forces are
determined by relative velocities. It is general and therefore
powerful as additional resistance terms easily can be included
to obtain a total flow resistance comprising several different
contributions as discussed in Standnes (2022).

Consider first the description of a spherical object with net
mass M (mass of the object corrected for the buoyancy of
the fluid) falling towards earth accounting for fluid resistance.
Choosing positive direction downwards and assuming the
acceleration due to gravity to be constant, Newton’s 2" law
gives by considering the force balance on the object (Alonso
and Finn, 1983),

Mg —yu(t) :Mdzi(tt) 3)

The body force on the object is represented by the Mg

term, where g is the acceleration of gravity and the resistance
force caused by the surrounding fluid given by the term yu(t).
The development towards a steady state terminal velocity is
then given by the well-known expression,

u(t) = % (1-ei) @)

The steady state terminal velocity, Mg/y, occurs when
the contribution from the acceleration term, du(t)/dt, has
vanished. That is, for times so large that the exponential
term inside the bracket in Eq. (4) is negligible, typically for
(y/M)t > 4, at which 98.2% of the steady state velocity value
has been obtained. The situation is illustrated in Fig. 1, where
the transient velocity of the object towards steady state termin-
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Fig. 1. Transient period towards a steady state terminal ve-
locity for a 5 cm spherical particle falling through water and
oil, respectively. The vertical lines indicate time, t = 4M /y for
both cases, at which time 98.2% of the steady state velocity
value has been obtained. The difference between the vertical
lines is in the order of 1 hour.

al velocity in water and oil is shown.
2. Results and discussion

2.1 Application of the resistance force-velocity
relationship for pore velocity transients

Consider now injection of fluids through porous media. The
main assumptions used in the derivation are: (1) The inlet pres-
sure increases sharply at time equal zero (Heaviside function)
and remains constant for the rest of the time-period considered.
Its magnitude is below the pressure difference which may
induce turbulence, excluding flow in the Forchheimer regime.
(2) The fluid and porous medium are incompressible. (3) The
resistance or frictional force is proportional to the instanta-
neous average pore velocity, up(t), and the friction coefficient
is assumed constant independent of velocity. Since the level
of description is phenomenological, the mean pore velocity is
used, although a distribution of velocities is occurring during
flow (Bijeljic et al., 2013; Berg and van Wunnik, 2017). (4)
The porous medium is homogenous and inert to the fluid.
Medium surface properties, i.e., the wettability may, however,
impact the transient and will be briefly discussed later. (5)
Steady state pore velocity is described by Darcy’s law and is
equal, up. Possible offset effects between pressure and pore
velocity sometimes reported as deviations from Darcy’s law
are not considered (Bear, 1972). (6) The system is isothermal.
(7) The size of the system is assumed “short”, so the finite
propagation of the pressure wave is neglected.

The relationship between the applied pressure difference
acting on the fluid and the mean pore velocity, up, is under
steady state conditions given by Darcy’s law corrected for the
porosity of the medium. Hence,

K AP
MP:—@T ®)

Net force on the fluid is related to the difference in
pressure between the outlet and inlet faces, AP = Poyt — P »
respectively, where P, > Po, . Both pressures are assumed
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constant from the start of fluid injection (# = 0) where the inlet
pressure, P, is a step-function and remains constant for all
subsequent times. P, is delivered by a pump run in constant
pressure mode. Eq. (5) can be written,

L
—ap= L, ©®)

The instantaneous pressure reduction associated with the
instantaneous resistance force is Fg(t)/(A¢), where Fg(z) is
the instantaneous flow resistance force and A is the cross-
sectional area. Fg(t) is time-dependent due to a time-dependent
pore velocity, up(t), and therefore given as,

2
Felt) = A2 I?Lup(t) — Youp(r) @)

Eq. (7) is on the general, resistance force-velocity form,
given by Eq. (2). Hence, the friction coefficient for porous
media flow is, yp = AQ>uL/K = u¢Vpy /K, where Vpy is
the pore volume of the sample given as, Vpy = V¢ = ALY,
where Vp is the bulk volume. Due to the assumptions used, the
friction coefficient }p, can be considered constant independent
of velocity. An expression for the time-dependent pore velocity
during the transient build-up period can now be derived by
considering a force balance on the fluid in the medium. Hence,

— APAY — Youp(t) = mp du;(t) (8)

where mp is the mass of the fluid. The inertia term on the
right-hand side is significant initially but decreases due to
the increasing frictional force term and approaches zero at
which time steady state pore velocity is established. Solving
Eq. (8) for the pore velocity, up(t), gives the same type of
expression for the transient period as Eq. (4) for the falling
object case. Hence,

APA _m
up(t) = _Ar49 (1 —e mF’)
)i}
= PP ()
ou L
The magnitude of the transient period is therefore specified

by the relaxation term, Tg = mp /¥, in the exponent. The
friction coefficient follows from Eq. (7), Yo = u¢Vpy /K, and
the mass of the fluid in the medium is, mr = prVpd = prVpy,
where pr is the fluid density. Hence, the relaxation time, 7,
is given as,

€))

mp _ prVpy  ppK
Te=""= wovpy )
.’)4) . K . “ .
The system relaxation time, Tg, is therefore characterized
solely by intrinsic variables, i.e., variables which are indepen-
dent of system size. Pore velocity as a function of time, up(t),

from time equal zero is then given from Eq. (9) as,

K AP BES
uP(t):_ﬁT 1—e on

Normalized pore velocity, u,y(t) = up(t)/up, as a function
of time can likewise be written,

(10)

(an

e
upy(t) =1—e o8 (12)
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Table 1. Medium and fluid properties for the Basecase with
medium values typical for naturally occurring subterrain
reservoirs.

Quantity Value
Water density, py 1000 kg/m?
Water viscosity, @ 0.001 Pa-s
Medium fractional porosity, ¢ 0.20

Medium absolute permeability, K 9.87 x 10713 m?

—-K =9.87E-11 m?
-+-K = 9.87E-7 m2

. . — - o T

——K = 9.87E-13 m? (Basecase)
-=--K = 9.87E-9 m?

1 o o oy
S o © o

Normalized pore velocity, upy (t)
o
o

et

0.0
1.0E-06

1.0E-04 1.0E-02 1.0E+02

Time, seconds

1.0E+00

Fig. 2. The impact of varying permeability on the relaxation
time to reach steady state pore velocity using Eq. (12) com-
pared to Basecase values from Table 1.

Egs. (11) and (12) specify how fast the velocities, up(?)
and u,y(t), approach the steady state pore velocity value,
up, described by Darcy’s law. The quantities influencing the
transient period are the fluid properties, viscosity and density,
and the medium properties, porosity, and permeability. The
transient period increases with increasing fluid density and
medium permeability and with decreasing fluid viscosity and
medium porosity. These predictions are all in line with ex-
pectations as increased fluid density and medium permeability
causes larger inertia forces and less impact of frictional forces
(permeability is proportional to fluid conductivity, i.e., the
reciprocal of resistance), respectively. Likewise, decreasing
fluid viscosity and medium porosity imply less damping and
impact of frictional forces, respectively. As mentioned previ-
ously, steady state conditions may for all practical purposes be
considered established when r = 4Tg. At this time, the transient
pore velocity, u,y(t), has obtained 98.2% of the steady state
terminal pore velocity value obtained from Darcy’s law, up.
Typical values and dimensions for laboratory medium samples
when water is the injected fluid are given in Table 1, referred to
as Basecase values. Calculated transient periods for variations
in permeability, viscosity and porosity using Eq. (12) are illus-
trated in Figs. 2-4, respectively. It should finally be mentioned
that the friction coefficient in Eq. (7) should be modified if
energy calculations are to be performed. The reason is that
the Darcy laws should be written, —AP = uLq/(AK), to be
completely analogous to Ohm’s law. If Z = uL/(AK) is defin-
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Fig. 3. The impact of varying fluid viscosity on the relaxation
time to reach steady state pore velocity using Eq. (12) com-
pared to Basecase values from Table 1.
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Fig. 4. The impact of varying medium fractional porosity on
the relaxation time to reach steady state pore velocity using
Eq. (12) compared to Basecase values from Table 1.

ed as the resistance or impedance term, all the conventional en-
ergy expressions can be adapted from circuits theory valid for
linear dissipative systems (Callen and Welton, 1951), i.e., the
power dissipated will be, Power = (—AP)?/Z = Z¢> = —APq
(Smith, 1984). The friction factor in Eq. (7) is, however,
used herein to emphasize the direct similarity between the
movement of spheres falling through fluids and liquid flow
through porous media cases.

Fig. 2 shows that the transient period increases with
medium permeability and is in general negligible for typical
values found for subterrain sandstone reservoir, typically in
the range from 1 mD to 10 D. Extremely high permeabilities
are required to see any significant relaxation time. The same
trend can be seen with respect to fluid viscosity in Fig. 3. Even
a viscosity value a factor 1,000 less than viscosity of water (1
mPa-s) at ambient conditions gives negligible transient periods.
Fig. 4 confirms that the transient period does not become
significant within normal porosity values either. A very small
porosity value of 0.1% gives a transient period less than 0.1 s.
Since permeability and porosity normally also are positively
correlated, the analysis indicates that transient periods towards
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steady state pore velocity during laboratory injection tests
should occur relatively rarely considering typical fluid and
naturally porous media property values. All the transient value
results presented in Figs. 2-4 are in the same range as the
values obtained by Taherkhani and Pourafshary (2012) using
similar input values when comparing propagation of pressure
pulses through porous media using the conventional diffusion
and telegrapher’s equation, respectively.

The results presented therefore support that transient peri-
ods occasionally observed in laboratory flooding tests are not
caused by inertia effects as they decay away very quickly for
typical value ranges for fluid and porous media properties. If
transient periods on the other hand, however, are observed,
they are therefore originating from either more extreme flu-
id/medium property values than considered or other time-
dependent fluid-medium interactions not accounted for by the
relaxation time presented, e.g., fines migration (Rosenbrand et
al., 2015), electrokinetic phenomena (Delgado et al., 2007), or
other effects.

2.2 Discussion

The results support the applicability of the resistance force-
velocity relationship to various transient challenges including
fluid flow through porous media. Since the transient relates to
the pore velocity rather than the pressure, the approach can in
principle also be extended to account for velocity or shear-rate
dependency if the fluid at hand is non-Newtonian. Polymers
are typical examples of such fluids and used e.g., extensively
for enhanced oil recovery purposes.

It is known that the properties of the medium surface will
impact the local fluid flow profile. Hence, a surface wetted by
the fluid may experience a slightly different transient compared
to a non-wetting fluid which will have a considerable slip
length and therefore flow more as a unit as no fluid molecules
stick to the medium surface walls (see also below regarding the
magnitude of the coefficient of restitution, €). Whether such
effects are measurable must be investigated experimentally.

The relaxation time for the basecase is in the order of
107® s. This value can be compared to other typical time
scales in the system. On the microscopic level, the time
scale between molecular collisions in liquid water is of the
order of 10712 ¢ (Zwanzig, 1965). Time scales associated
with the macroscopic description of viscous dissipation is
characterized by the local velocity gradient, which typically
gives momentum transfer fluxes in the range 1-100 s, see
e.g., Berg and van Wunnik (2017). The values were estimated
based on variation in individual pore scale fluxes for mean
fluxes in the order of um/s (0.3 m/day), typically occurring
in laboratory fluid injection tests. Hence, the time scales for
the inertia transients fall in between the molecular and the
viscous dissipation time scales, in line with expectations.

The phenomenological approach used can also easily be
extended if a more detailed description of the quantities
impacting the permeability of the medium is required as
discussed by Standnes (2022). A generalized form of Darcy’s
law was presented therein based on a more detailed description
of the total frictional coefficient, which also accounts for
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thermal resistance in addition to the conventional viscous
resistance. The former is in fact the flow resistance Knudsen
flow generates when fluids driven by external pressure sources
encounter objects in the flow path. It can be shown that
Knudsen flow will occur in very low-permeable formations
where the diameter of the pores approaches nm size containing
gas of low density (Kuila et al., 2013; Lin et al., 2017). Hence,
the mean free path of the molecules becomes larger than
the pore diameter meaning that they will collide much more
frequently with the pore walls than adjacent fluid molecules
(Knudsen number, K, > 10) (Kuila et al., 2013). Viscous
resistance therefore disappears and Kuila et al. (2013) showed
that the permeability, Kx, of the molecules in a tube with
radius, r, in that limit can be expressed as,

2rp [8My  r¢

Ke=37\ 2rr ™ RT 13
where 7 is the tourtosity, My is the molar mass of the
gas molecules, R is the gas constant and 7 is absolute
temperature. Kg is basically the “self-conductivity” of the
molecules accounting for mass transport along the tube caused
by local density gradients i.e., gradients in the chemical
potential (Kittel and Kroemer, 1980). Using Egs. (12) and
(13) in Standnes (2022), with W =0, i.e., in absence of viscous
resistance, thermal “conductivity” or permeability called K7,
which is equal to the reciprocal of thermal resistance (here
expressed in seconds since the flux in Kuila et al. (2013) is
mass flux), can be shown to equal (using the same quantities

Sn\f Ly

as in Eq. (13) for convenience),
[Mw [ Mw
1+¢ SVB RT ~ l+¢ SVB RT a4

Here ¢ is the coefﬁc1ent of restitution durlng a gas-matrix
collision (&€ =1 for elastic collisions), S and Vp are the specific
surfa/c\e area and bulk volume of the medium, respectively,
and A is a unit area. Hence, Eqgs. (13) and (14) are similar
in nature except that the radius r and the tortuosity factor 7
in Eq. (13) have been replaced by the length of the medium
L and the product of the factors, (1 + €), and SVg/ (22),
in Eq. (14), respectively. The similarity is expected since
both expressions concerns the same physical phenomenon,
i.e., exchange of energy and momentum in molecular-matrix
collisions on the microscopic level. The differences are caused
by the physical processes they aim to describe. As noted
above, Knudsen flow in Eq. (13) describes the conductivity
of free molecular flow along a tube. Eq. (14), however, is
aimed to quantify the fluid conductivity under forced flow
conditions when the fluid is moving through a porous medium
with a total cross-sectional area, SVp/ 522), perpendicular
to the macroscopic flow direction. K7 is therefore inversely
proportional to the total surface area the molecules will
experience upon propagating through the medium, represented
by the term, 2A/ (SVp). Since Eq. (14) is derived from more
fundamental principles, it can also account for the efficiency
of the momentum transfer in the collisions by the (14 €)
term. This shows that the thermal resistance term in fact
represents and quantifies the flow resistance generated by

T —



Standnes, D. C. Advances in Geo-Energy Research, 2022, 6(2): 104-110

Knudsen flow, i.e., free molecular flow, when the flow is driven
by external pressure sources. This is completely in line with
the fluctuation-dissipation theorem (Callen and Welton, 1951;
Kubo, 1966), i.e., molecular fluctuations responsible for the
irregular Brownian motion phenomenon are also responsible
for the flow resistance the Brownian particle experiences upon
moving through the fluid. The grains in the porous medium are
here interpreted as a collection of large Brownian particles and
the effect of viscous resistance is excluded (Grassia, 2001). It
was showed in Standnes (2018) that thermal resistance also
is significant for flow through media having “conventional
properties”, because it amounted to approximately 25%-30%
of the energy dissipated in conventional sandstone samples
at ambient conditions. That fraction increased significantly
with temperature since the thermal resistance increases with
square root of temperature while the viscous resistance at the
same time decreases almost exponentially with temperature for
liquids. The two contributions became of equal magnitude at
60 °C already. It should finally be mentioned that thermal
resistance is totally dominated when fluids are in relative
motion to single macroscopic objects larger than nm size as
demonstrated in Standnes (2021), relevant if a more detailed
description of the resistance terms for the falling objects shown
in Fig. 1 is required.

3. Conclusions

A new approach to determine the transient period towards
steady state pore flow velocity for fluids propagating through
porous media under constant pressure condition has been
developed. The following conclusions are drawn:

o The methodology uses the general, resistance force-
velocity relationship, conventionally used to determine
transient build-up behavior of electric currents in circuits
and for the velocity of falling objects experiencing liquid
fluid resistance.

o The transient period caused by inertia effects is charac-
terized by a relaxation time comprising fluid density and
viscosity together with medium properties as porosity and
absolute permeability.

o The period increases with decreasing porosity and fluid
viscosity and with increasing fluid density and absolute
permeability of the medium.

— The transient period is negligibly small for typical
fluid/medium property values characterizing typical
subterrain sandstone reservoirs.

— Observation of transient velocity instabilities in labo-
ratory tests is therefore caused by other effects, e.g.,
fines migration and electrokinetic phenomena.
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