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Abstract:
Rate of change, second derivative and volatility of gamma-ray (GR) well-log curves provide
useful indicators with which to characterize lithofacies in clastic sedimentary sequences.
Rolling averages of these variables, as they change with depth, are also able to distinguish
certain lithofacies features. These attributes make it possible to accurately distinguish key
facies by using only gamma-ray data, both with formulaic calculations and employing
machine-learning (ML) algorithms. This is useful in the many wellbores for which only
basic logging suites are available. As well as enhancing lithofacies classification more
generally using well-log variables, these GR attributes can be used to forecast facies in
real time based on logging-while-drilling data. The application is demonstrated with simple
formula using synthetic GR logs featuring common clastic lithofacies and their transitions.
Seven widely used ML methods are each trained and validated with a synthetic GR curve
(1450 data points) displaying six distinct facies. The ability of the ML model to distinguish
those facies using seven GR attributes is compared and further tested with an independent
GR data set (800 data points). The random forest algorithm outperforms the other ML
models in this facies prediction task, achieving a mean absolute error of 0.25 (on a facies
class range of 1 to 6) for the independent testing dataset. The results highlight the benefit
of this technique in providing reliable facies analysis based only on GR data. Random
forest, support vector classification and eXtreme Gradient Boost are the ML models that
provide the most reliable facies classification from the GR attributes defined. Annotated
confusion matrices assist in revealing the details of facies class prediction accuracy and
precision achieved by the ML and models and classification formulas.

1. Introduction
Interpreting lithofacies and inferring depositional environ-

ments from the shape of well-log curves has been success-
fully applied in many sedimentary basins around the world,
dating back to the pre-1950’s (Krumbein and Sloss, 1951;
Selley, 1978). Indeed, interpreting the shape of basic well
logs, gamma ray (GR) (Russell, 1944), spontaneous potential,
and acoustic travel time, has contributed to the fundamen-
tal interpretation of sandstone depositional environments for
many decades (Scholle and Spearing, 1982). Well-log shape is
particularly useful for characterizing clastic lithofacies (Rider,
1986), and is also a key feature of sequence stratigraphy

(Emery and Myers, 1996). Cant (1992) defined some generic
well-log-curve shapes associated with sandstones (Fig. 1). GR-
log curves have also been exploited to interpret grain-size
changes with depth (Hurst, 1990; Faga and Oyeneyin, 2000).
This is possible because the radioactive-rich shale contents
tend to be greater in the more finely grained clastic sediments
(Dypvik and Eriksen, 1983). Additionally, as clay/shale con-
tent of clastic sediments decrease the GR curve progressively
deflects towards the left on the log trace as their silt and then
sand contents increase (Rider, 1990; Kessler and Sachs, 1995).
These features make the GR curves highly responsive to facies
changes in clastic sequences. However, in complex lithologies
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Coarsening Upwards 
Facies Class 1

Frequently Occurring, Idealized Gamma Ray Curve Shapes Associated 
with Clastic Lithofacies Characteristics

Blanket Shale 
Facies Class 2

Fining Upwards 
Facies Class 3

Aggradation 
Facies Class 4

Rapid Transitions 
Facies Class 5

Saw-tooth 
Facies Class 6

Notes:
1. Depth increases from top to bottom
2. GR signal increases from left to right in each class diagram
3. These facies classes are linked to grain-size distributions and depositional 

environmental influences

Fig. 1. GR curve shapes versus depth diagrammatically illustrating six commonly encountered lithofacies features in clastic
sequences. The class numbers are those attributed to the GR sequences evaluated in this study.

additional mineralogical information, from cores or additional
logs, is required for detailed lithofacies interpretation from GR
data (Reverdy et al., 1983).

Following earlier computational efforts to predict lithofa-
cies from well log data (Busch et al., 1987), neural networks
have been widely applied since the 1990’s to assist in lithofa-
cies predictions from well log datasets (Rogers et al., 1992).
Using multiple well logs, Dubois et al. (2007) demonstrated
that neural networks could outperform k-nearest neighbor,
Bayesian and fuzzy classifiers when applied to a large dataset
from the Panoma gas field (Kansas, U.S.A.). Bestagini et
al. (2017) achieved improved lithofacies prediction from a
multi-well-log data set by applying feature augmentation,
specifically quadratic expansion and combining information
from adjacent formations, and a gradient boosting algorithm.
Wood (2019, 2020), also with a suites of multiple well logs,
applied an optimized data matching algorithm combined with
data upscaling, to successfully distinguish lithofacies in the
Hassi R’Mel gas field (Algeria) and the Bakken Province
(U.S.A.).

Clustering behavior of GR data, in isolation, was used to

distinguish clean reservoir sands zones with the aid of a multi-
layered neural network (Goncalves et al., 1995), representing
GR’s potential use in machine learning (ML) applications
to characterize sandstone lithofacies. In recent years several
different types of ML methods have been applied for facies
interpretation using well log data incorporating GR curves, but
have met with relatively limited success (Hall, 2016). This has
led many to conclude that geological information from core
analysis and/or biostratigraphy are necessary features to be
included for reliable machine learning lithofacies classification
(Halotel et al., 2020; Tran et al., 2020). Combining supervised
and unsupervised machine learning with clustered GR data
has recently become a popular tool for lithofacies analysis
(Fadokun et al., 2020; Ippolito et al., 2021).

This study explores, in a novel way, the potential of
feature augmentation to GR data for the purpose of automated
lithofacies characterization of clastic sequences, using only
GR curve data as the primary data source. Specifically, first
and second derivatives (i.e., rate of change and rate of rate of
change) and the rolling average of the first derivative of the GR
data are established. The derivative data is used together with
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the volatility attributes of the GR data versus depth as input
variables with which to distinguish and classify commonly
encountered clastic lithofacies features. The method is applied
both in terms of discriminatory formulas and using several
standard ML classification methods and the results compared.

2. Method and materials

2.1 Lithofacies characteristics considered
Six lithofacies characteristics are investigated (Fig. 1).

These include classic GR-log-curve shapes widely described
and studied (e.g., Cant, 1992).

These lithofacies features are assigned class numbers 1 to
6 as follows:

Class 1: A coarsening-upwards sequence, typically re-
sulting in a funnel-shaped GR-log profile. This profile is
commonly associated with prograding depositional environ-
ments, such as those found in river-mouth fronts, delta fronts
and shore faces. The upper parts of such features (low GR
values) often have good porosity and constitute prolific oil/gas
reservoirs. Such features are therefore important to identify
from an exploration perspective. They are typically associated
with a relatively abrupt (steep GR curve) upper boundary.

Class 2: A thick, relatively homogeneous shale layer,
characterized by high and essentially flat GR values. These are
often associated with transgressive depositional environments
in which the shallower water environments of the underlying
sandstones are replaced for a substantial period by deeper
water conditions dominated by persistent shale deposition.

Class 3: A fining-upwards sequence, typically resulting in
a bell- or Christmas-tree shaped GR-log profile. This profile
is commonly associated with retrograding depositional envi-
ronments, such as those found in river bars, delta tributaries
and some proximal marine environments. The lower portion
of such features (low GR values) often have good porosity and
constitute prolific oil/gas reservoirs. Such features are typically
associated with a relatively abrupt (steep GR curve) lower
boundary.

Class 4: A massive, often quite thick, clean sand (low
GR values throughout), typically resulting in a cylindrical- or
barrel-shaped GR profile. This profile is commonly associated
with aggrading depositional environments, such as those found
in fluvial channels, aeolian canyons, and major delta distribu-
tary channels during persistent progradation. Such massive
clean sandstones often have good porosity and can constitute
thick and prolific oil/gas reservoirs. They can be associated
with relatively abrupt (steep GR curve) or gradational (less
inclined GR curves) at their lower and upper boundaries.

Class 5: An abrupt transition zone from one facies to
another occurring over a small, but not insignificant, depth
interval. This is characterized by a very steep GR curve, slop-
ping upwards or downwards. In manual facies analysis such
zones might not be distinguished for separate consideration.
However, in automated ML analysis, it is often helpful to treat
such zones as separate features. They may form upper or lower
boundaries to features described as classes 1 to 4. Additionally,
they may be associated with thin sandstone and/or siltstone
interbeds within a more massive shaly sequence (either class

4 or class 6).
Class 6: A serrated or irregular, saw-tooth rapidly changing

GR profile, typically dominated by high but variable GR
values interspersed erratically with thin low-GR intervals that
each display variable ranges of GR values. Such irregular GR
profiles are typically associated with rapidly fluctuating depo-
sitional environments of interbedded shales, siltstones and thin
sandstones (downward GR spikes), occurring within an overall
aggrading sequence. This facies typically represents neither a
viable, conventional petroleum reservoir nor seal. There are
several depositional environments that give rise to such GR
profiles. For example, fluvial flood plains, tidal flats, onshore
and offshore debris flows, shallow- and deep-water canyon
fills. The thin sandstones tend not to be laterally extensive
and lack substantial porosity and permeability. However, this
class may be of interest in unconventional petroleum systems,
as part of a viable petroleum-rich shale sequence. It is often
important, when screening well logs, to distinguish such zones,
particularly from class 2 shales.

2.2 GR feature augmentation
It is clearly apparent from the lithofacies features illustrated

in Fig. 1 that a changing slope in the GR curve features in
four of the characteristic features described (classes 1, 3, 5
and 6). On the other hand, two of the features (classes 2
and 4) are characterized by relatively flat and constant GR
trends. Consequently, it is logical to consider GR derivatives
as feature augments to use in the definition of the lithofacies
classes described.

Eq. (1) defines the first derivative or rate of change in GR
values (d′GR):

d′GR =
GRd−GRd−1

Abs [d− (d−1)]
(1)

where GRd is the GR value at depth d and GRd−1 is the GR
value at depth d−1.

Eq. (2) defines the second derivative or rate of change in
the rate of change (acceleration) in GR values (d′′GRdn):

d′′GRdn =
d′GRd−d′GRd−n

Abs [d− (d−n)]
(2)

where n represents a depth interval over which the second
derivative d′′GR is calculated. The value of n can be varied
to suit the lithological variations; applying higher n values for
slow formation changes (i.e., thicker intervals for each facies),
and applying lower n values for slow formation changes (i.e.,
thinner interbedded facies intervals). For this study an n value
of 5 depth units is applied. The GR characteristics displayed
by Classes 1, 3 and 5 (Fig. 1) show distinctive d′GR and d′′GR
values.

Another worthwhile GR derivative value to consider as
a GR augmented characteristic is a simple moving average
(SMA) of the first derivative, arithmetically averaged across an
appropriate overlying depth interval. SMAd′GRdn is defined
in Eq. (3):

SMAd′GRdn =

i=n
∑

i=1
d′GRd−i

n
(3)
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For this study, the n value used for the overlying depth
interval is 5 depth units, starting from the immediately pre-
ceding (shallower) depth interval to GRd . This attribute can
be used to overcome short-duration noise in GR depth curve
and still respond to the underlying rate-of-GR-change trend.
Most GR curves include frequent short-duration value blips,
upwards and downwards responding to minor (thin) lithology
anomalies; SMA values can help minimize their influence
on the underlying GR trends. The greater the average depth
interval range covered by such minor anomalies, the higher
the n value applied in Eq. (3) should be.

Another set of GR attribute features worth considering are
those used to define the volatility of the GR depth trend. His-
torical volatility is universally used in finance and economics
when assessing price trend characteristics, specifically risk and
the extent of historical fluctuations, of financial instruments,
stock and options prices (Schwert, 1989; Glantz and Kissell,
2014; Danielsson et al., 2018). Used in its financial context,
volatility (σ ) represents the magnitude of variation of a
publicly quoted (e.g., on a trading exchange) price series over
a specified period of time, typically a number of trading days.
It is commonly calculated as the standard deviation of natural
logarithmic returns. This calculation can be usefully adapted
to consider the historical volatility of a well log curve versus
depth (instead of time). The first attribute to calculate is the
natural logarithm (ln) of the instantaneous fluctuation in the
GR value, as defined by Eq. (4):

lnGRi(d) = ln
GRd

GRd−1
(4)

where i(d) represents the depth interval from d− l to d.
The next step in the volatility (σ ) calculation is to establish

the standard deviation of the lnGNi(d) values over a specified
depth interval. For financial instruments the minimum time
interval used in the σ calculation would typically be about
10 days but the number of trading days per month or quarter
are also frequently used depending on the time horizon of
interest. For well-log curve variations with depth, the depth
interval selected should been meaningful in terms of the depth
scale of the fluctuations observed in the log-curve trends. σ

is calculated by applying Eq. (5).

σi(dn) =

√√√√ n
∑

i=1
(Ld−i−Lidmean)2

n−1
(5)

where σi(dn) is the volatility for the depth interval d− 1 to
d− n; Ld−i is the lnGRi(d) for each overlying depth in the
depth interval d− 1 to d− n; and, Lidmean is the arithmetic
mean of all lnGRi(d) values in the depth interval d−1 to d−n;
and, n is the specified depth interval used. For this study an
n value of 5 depth units is applied in the calculated volatility
values. In practice, with different GR curves it is advisable
to conduct sensitivity analysis to select the most appropriate
n value to suit the dimensions of the lithofacies present. The
GR characteristics displayed by Classes 2 and 4 versus Class
6 (Fig. 1) show distinctive σi(dn) values.

As with the first derivative attribute (Eq. (3)) it is useful
to also consider an SMA to calculate σ trends versus depth.

The SMAσi(dn) is defined in Eq. (6).

SMAσi(dn) =

i=n
∑

i=1
σd−i

n
(6)

For this study, the n value used for the overlying depth in-
terval is 5 depth units, starting from the immediately preceding
(shallower) depth interval to σd . Although, to demonstrate the
technique with synthetic GR curves, the n values used in this
study for Eqs. (2), (3), (5) and (6) are the same (i.e., 5 depth
units) there is no reason why different n values could be used
in each of this equations, as long as they are used consistently
and are meaningful in terms of the scale of the facies variations
encountered in a wellbore.

Hence, for the purpose of distinguishing lithofacies char-
acteristics using only data derived from a GR curve, the
following seven attributes for each depth point are evaluated
as input variables (features):

• GR value (API units recorded),
• d′GR from Eq. (1),
• d′′GRdn from Eq. (2),
• SMAd′GRdn from Eq. (3),
• lnGRi(d) from Eq. (4),
• σi(dn) from Eq. (5),
• SMAσi(dn) from Eq. (6).

2.3 Synthetic GR log curve versus depth to test
extracted features

A synthetic GR curve has been created to display the
six clastic lithofacies shapes described in Fig. 1. It has been
artificially constructed to illustrate a range of GR responses
that are characteristic of clastic sequences. It consists of 2250
GR data points and is displayed with depth units (meters)
on the vertical scale in Fig. 2(a). The lithofacies classes
assigned to specific depth intervals of the synthetic GR log
are displayed in Fig. 2(b). Note that the GR curve shapes
within each lithofacies are not smooth but include occasional
anomalies (“blips”), and in some depth intervals gradient
changes, to make them reflect more closely real GR curves
recorded in wellbore logs. The upper 1450 depth points (0 to
1449, Fig. 2(a)) are used for training and validation of the
ML models evaluated. The trained models are subsequently
applied to predict the assigned facies classes for the lower
800 depth points (1450 to 2249, Fig. 2(a)) as an independent
test. Both training/validation and testing subsets incorporate
sections assigned facies classes 1 to 6.

The six GR feature augmentations (derivatives and volatil-
ity variables) described in section 2.4 are calculated for each
of the 2250 GR data points for the synthetic GR curve (Fig.
2). The distributions of GR, its six calculated features and the
facies classes are statistically summarized in Table 1.

Table 2 displays the Pearson correlation coefficients (R),
in the form of a heat matrix, for the seven input variables and
the facies classification scale (Class 1 to 6). The volatility
related variables show moderate positive R values (∼0.4)
with the facies class number, whereas GR and GR derivative
variables show poor negative R values (-0.14 to -0.8) with
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Fig. 2. (a) Synthetic GR curve versus depth; and (b) facies classes 1 to 6, as illustrated in Fig. 1 allocated to specific depth
intervals in meters.

Table 1. Synthetic GR log variable distributions.

Statistical summary of seven GR attribute-variable and facies distributions for synthetic GR log

2250 Data points GR d′GR SMAd′GR d′′GRdn lnGRi(d) σi(d) SMAσi(dn) Facies class

Minimum 29 -19.224 -5.000 -1.000 -0.382 0.00000 0.00000 1

5th Percentile 31 -4.000 -2.400 -0.480 -0.050 0.00001 0.00002 1

10th Percentile 32 -2.085 -1.200 -0.240 -0.035 0.00004 0.00005 1

25th Percentile 48 -0.905 -0.358 -0.072 -0.012 0.00049 0.00327 1

50th Percentile 84 0.100 0.052 0.010 0.001 0.01152 0.01265 3

75th Percentile 111 0.825 0.395 0.079 0.010 0.02966 0.02960 4

90th Percentile 114 2.342 1.200 0.240 0.035 0.04902 0.04559 6

95th Percentile 117 4.000 2.600 0.520 0.054 0.05638 0.05271 6

Maximum 128 16.220 6.400 1.280 0.148 0.18112 0.17139 6

Average 79.3 0.002 0.002 0.000 0.000 0.01845 0.01847 3.0

Standard deviation 31.6 2.266 1.360 0.272 0.031 0.02051 0.01822 1.8

Standard error 0.666 0.048 0.029 0.006 0.001 0.000 0.000 0.037

Coefficient of variation 0.398 1227 785 781 1819 1.112 0.987 0.577
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Table 2. Synthetic GR log variable distributions.

Correlation matrix (heat map) between seven gamma ray attributes and facies class for synthetic log

R = Pearson correlation coefficient GR d′GR SMAd′GR d′′GRdn lnGRi(d) σi(d) SMAσi(dn) Facies class

GR 1 0.0366 0.1268 0.1088 0.0328 -0.1996 -0.2194 0.1050

d′GR 0.0366 1 0.2520 0.5591 0.9020 0.0820 0.0172 -0.0824

SMAd′GR 0.1268 0.2520 1 0.8976 0.2668 0.0135 0.0784 -0.1413

d′′GRdn 0.1088 0.5591 0.8976 1 0.5324 0.0591 0.0708 -0.1405

lnGRi(d) 0.0328 0.9020 0.2668 0.5324 1 0.1007 0.0426 -0.0797

σi(d) -0.1996 0.0820 0.0135 0.0591 0.1007 1 0.6811 0.3883

SMAσi(dn) -0.2194 0.0172 0.0784 0.0708 0.0426 0.6811 1 0.4231

Facies 0.1050 -0.0824 -0.1413 -0.1405 -0.0797 0.3883 0.4231 1

the facies class number. The contrasting relationships of the
input variables with each other and with facies class suggest
that the GR attributes should complement the GR values in
distinguishing the facies characteristics defined in Fig. 1.

2.4 Machine learning models evaluated
Seven ML classification models are applied to evaluate the

synthetic GR well log dataset (Table 1, Fig. 2). It is necessary
to establish effective training and validation subset divisions of
the data records. The training/validation split was established
using the k-fold cross-validation technique (SciKit Learn,
2021a) and trial-and-error analysis. That analysis established
that a random split of 80% of the data records to the training
subset and the remaining 20% of data records to the validation
subset lead to reliable and repeatable results with each ML
model evaluated. The ML methods applied to the synthetic
GR dataset belong to different types of algorithms. These
models can all be configured to perform supervised learning
based on training and validation subsets. Once successfully
trained and validated, the models can subsequently be applied
to independent testing data sets not previously seen by the
models as part of their training and validation. The ML models
belong to four distinct methodologies.

2.4.1 Tree-based ML models

The tree-based models employed are:

• Decision Tree (DT),
• Random Forest (RF, an ensemble decision tree),
• Adaboost or Adaptive Boosting (ADA; a boosted decision

tree),
• Extreme Gradient Boosting (XGB; a boosted decision

tree).

DT is a simple tree-based models in which data records
are continuously split and assigned to different branches of
the tree. Those branches are configured with nodes and leaves.
The extent to which the tree is branched is controlled by the
depth constraint.

ADA, RF, and XGB are more complex adaptations us-
ing ensembles, or architectures involving multiple trees. RF
constructs multiple independent decisions trees with the train-

ing data, applying a bagging/out-of-bag technique based on
variable distributions. Invariably the forecasts derived from
the combined forest of DTs is of greater accuracy and more
representative of the dataset as a whole than forecasts gener-
ated by individual DTs. ADA (Adaptive Boosting) re-assigns
weights to each DT solution with each training iteration,
focusing high weights on the data records responsible for
the largest prediction errors in the previous iterations. XGB
applies gradient boosting to an ensemble of DTs. The XGB
algorithm is designed to deliver fast computational speeds and
multiple tuning controls to make it as flexible as possible to
suit a wide range of datasets.

2.4.2 Support vector classifier

The Support Vector Classifier (SVC) is a non-probabilistic
binary linear classifier. The algorithm maps the training data
records in multidimensional hyperspace space such that it
maximises the distance between classes. It establishes the
optimum position of a linear boundary (hyperplane) in multi-
dimensional hyperspace, applying a kernel function to map
lower dimensional data points into higher dimensions. The
data records situated close to the optimum hyperplane are
referred to as the “support vectors”, because they essentially
define the position of the hyperplane.

2.4.3 Data-matching model

K-nearest Neighbor (KNN) is a non-parametric data-
matching technique. Its training routine evaluates all the
available training subset data records to establish and rank
how closely they match each other, taking all input variables
into account. KNN applies a similarity metric based on the
magnitude of the collective errors of the input variables.
The error measure is a distance function (typically Euclidian
or Manhattan) with the closest matching records displaying
the minimum error values. KNN predictions are based on
the weighted values of a user-specified number of the best
matching data records.

2.4.4 Multi-layer Perceptron

The Multi-layer Perceptron (MLP) is a widely used shallow
neural network. MLPs involve a fully connected, feed-forward
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Table 3. Hyperparameters values applied to seven ML algorithms configured to lithofacies classification based on a synthetic
GR log.

Machine learning algorithms Control parameter values applied

ADA Number of estimators = 500; learning rate = 0.05; base estimator is DT
with depth = 5; splitter = best

DT Maximum depth = 1000; splitter = best

KNN Neighbours (K) = 5; weighted by Manhattan distance

Multi-layer Perceptron (MLP)
3 hidden layers with 100, 50 and 25 neurons; activation fn. = relu; Solver
= adam; alpha = 0.00005
maximum iterations 500; adaptive learning rate

RF Number of estimators = 750; maximum depth = 150

SVC Kernel = rbf; C = 10; gamma = 1.0

XGB Number of estimators = 2000; maximum depth = 7; eta = 0.01;
subsample = 0.7; columns sampled per tree = 0.5

SNN with an input layer, an output layer separated by one or
more hidden layers. Each of the hidden layers is constructed
with multiple nodes to which weights and biases are applied.
Moreover, activation functions are applied when transferring
information from one hidden layer to the next or to the
output layer. MLP’s are trained using back-propagation or
other algorithms which adjust the weights and biases of
the hidden layers. Through a series of iterations the back-
propagation algorithm strives to minimize the errors in the
collective predictions generated for the training subset data
records. For the synthetic GR dataset, the MLP employs three
fully-connected hidden layers.

2.4.5 ML model configurations

The mentioned ML models applied to classify lithofacies
characteristics in the synthetic GR dataset are customized
configurations in Python code of published packages (SciKit
Learn, 2021b). As input variables to the ML models the seven
GR and GR attribute variable values are all normalized. This
avoids scale biases influencing the performance of the models.
Normalization was configured to scale each variable in a range
of −1 to +1 by applying Eq. (7).

Normxm
i =

2
(
xm

i − xm
min

)
xm

max− xm
min
−1 (7)

where Normxm
i is the normalized variable value, xm

i is the
actual recorded value of the mth variable of ith data record,
xm

min is the minimum value of the mth variable considering all
filtered data records and xm

max is the maximum value of the mth

variable considering all filtered data records.
It is unnecessary to describe here the underlying algorithms

of these ML models as the calculation methodologies are well
described in the literature. However, the ML model config-
urations, in terms of their controlling hyperparameter values
and model architectures applied, need to be tailored to suit the
synthetic GR dataset. That tailoring requires sufficient testing
to justify the hyperparameter values applied. The optimized
hyperparameters applied to each ML model are provided in
Table 3. These values are in part determined by trial-and-error

analysis combined with Bayesian optimization (SciKit Learn,
2021c) and K-fold cross validation. The convergence trends of
the algorithms were observed in multiple runs of the models to
verify the effectiveness and repeatability of each model based
on the optimal hyperparameter values (Table 3).

The ML models considered have been previously evalu-
ated and mathematically described, in conjunction with well
log/lithofacies prediction datasets with a range of dependent
variables. Examples of the published studies relevant to litho-
facies predictions from well-log-derived input variables for
each model evaluated include: ADA (Farzi and Bolandi, 2016;
Wrona et al., 2018); DT and KNN (Wrona et al., 2018;
Merembayev et al., 2021); MLP (Mandal and Rezzaee, 2019;
Hossein et al., 2020); RF (Hossein et al., 2020; Merembayev
et al., 2021); SVR (Mandal and Rezzaee, 2019; Hossein et
al., 2020); and, XGB (Bestagini et al., 2017; Shashank and
Mahapatra, 2018). The mentioned studies apply and compare
the performance of several ML models. Similarly, the evalu-
ations presented here apply multiple ML models to evaluate
the synthetic GR dataset involving GR rate of change and
volatility variables.

2.5 Measures of prediction performance
Three statistical prediction performance measures are used

to assess the results of the ML algorithms applied to the
synthetic GR dataset. These metrics are:

Root Mean Squared Error (RMSE)

RMSE =

[
1
n

n

∑
i=1

(Xi−Yi)
2

] 1
2

(8)

where Xi is actual/measured facies class value for data record
i; Yi is predicted facies class value for data record i in the
subset being considered; n is total number of data records
being predicted.

Mean Absolute Error (MAE)

MAE =
1
n

n

∑
i=1
|Xi−Yi| (9)
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Coefficient of Determination (R2)

R2 =


n
∑

i=1
(Xi−Xmean)(Yi−Ymean)√

n
∑

i=1
(Xi−Xmean)2

n
∑

i=1
(Yi−Ymean)2


2

(10)

The RMSE and MAE values, Eqs. (8) and (9) are expressed
in terms of the facies class number scale of 1 to 6, not in
normalized terms. Expressing the class prediction errors in
this way makes it possible to readily assess their magnitude
in terms of the range of facies class values encountered in the
synthetic GR dataset.

Other important performance metrics for classification
problems assess the absolute number and type of prediction
errors, i.e., those data records for which an ML model predicts
the facies class incorrectly. These measures are:

Absolute number of prediction errors recorded.
Accuracy (A) as determined by Eq. (11):

A =
TP +TN

TP +TN +FP +FN
(11)

where TP = true number of positive predictions, TN = true
number of negative predictions, FP = number of false positive
predictions, and FN = number of false negative predictions.

Precision (P) as determined by Eq. (12):

P =
TP

TP +FP
(12)

Recall (R) as determined by Eq. (13):

R =
TP

TP +FN
(13)

Balanced F-score (F1), the harmonic mean of P and R, as
determined by Eq. (14):

F1 =
2R

R+P
(14)

These classification accuracy measures are most usefully

displayed and interpreted in conjunction with an annotated
confusion matrix.

3. Results

3.1 Formulaic distinction of lithofacies
characteristics

Considering the GR attributes associated with the synthetic
GR dataset, simple rules (formulas) can be empirically estab-
lished by trial and error to distinguish, to a reasonable degree
of accuracy, certain of the lithofacies classes (Fig. 2):

• Class 1 (coarsening upwards) can be distinguished from
other facies classes in cases where 0.01 6 d′GR < 2.0 or
0 < SMAd′GR < 2.0 and GR < 105,

• Class 2 (thick homogeneous shale) can be distinguished
from other facies classes in cases where GR > 105 and
SMAσi(dn) < 0.02,

• Class 3 (fining upwards) can be distinguished from other
facies classes in cases where −2.0 < d′GR < −0.01 or
−2 < SMAd′GR < 0 and GR < 105,

• Class 4 (massive homogeneous sandstone) can be distin-
guished from other facies classes in cases where GR6 35
and −0.11 < d′′GRdn < 0.11,

• Class 5 (rapid transition zones) can be distinguished
from other facies classes in cases where d′GR > 2 or
d′GR 6−2 and 35 < GR < 105,

• Class 6 (saw-tooth erratically interbedded shales and thin
sandstones and silts) is more difficult to distinguish with
a simple formula. An over oversimplistic approach can
be adopted, i.e., to assign all data records not assigned to
Classes 1 to 5 by the preceding formula to Class 6.

Applying these formulas results in 1813 correct classifi-
cations and 437 incorrect (19.4%) classifications for the 2250
data records of the synthetic dataset. The overall error statistics
for this approach are RMSE = 1.323, MAE = 0.523, and R2

= 0.4898. A more comprehensive analysis of the errors and

2250 Formulas 600 410 395 329 168 348

Total Class 1 2 3 4 5 6
436 1 432 0 2 2 0 0
553 2 33 390 23 0 18 89
397 3 51 0 325 17 0 4
318 4 9 0 0 308 1 0
284 5 57 0 42 0 144 41
262 6 18 20 3 2 5 214

Precision: 72.00% 95.12% 82.28% 93.62% 85.71% 61.49%
437 Errors 168 20 70 21 24 134

80.58% Successful Predictions

Class Prediction Performance:

Accuracy 0.9134 0.9083 0.9274 0.9832 0.9170 0.9088
Precision 0.7200 0.9512 0.8228 0.9362 0.8571 0.6149
Recall 0.9908 0.7052 0.8186 0.9686 0.5070 0.8168
F1 Score 0.8340 0.8100 0.8207 0.9521 0.6372 0.7016

Formulaic Classification (2250 Data records)

Fig. 3. Annotated confusion matrix providing error and accuracy analysis for each facies class applying the formulaic
classification system defined in the text to all 2250 data records constituting the synthetic GR dataset displayed in Fig.
2.
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Fig. 4. Cross plots of GR versus: (a) GR rate of change, and (b) GR volatility for the 2250 data records constituting the
synthetic GR dataset displayed in Fig. 2.

accuracy is provided a confusion matrix (Fig. 3).
The formulas perform a relatively good job at distinguish-

ing records of Classes 2 and 4, as recorded by the precision
scores in Fig. 3. However, Class 2 has a relatively low F1
Score (0.81) because a substantial number of data records from
other classes are wrongly assigned to Class 2. The simple
formulas also correctly identify most of the data records in
Classes 1, 3 and 5. However, a number of the data records
in Classes 1 and 3, particularly those associated with the
“blips” and near the boundaries of those classes, are confused
mainly with Classes 5 and 2, but also between Classes 1 and
3 (Fig. 3). Class 5 achieves relatively high precision but has
a low F1 Score, because a substantial number of data records
from other classes are wrongly assigned to Class 5. There
are many erroneous predictions for the Class 6 data records;
sections of Class 6 are confused primarily with Classes 2 and
5. Consequently, Class 6 achieves low precision and F1 Score
with the formulaic classification.

Notwithstanding the mentioned error count, the 80% suc-
cess rate in predicting lithofacies using these simple formulas
is an encouraging result. By writing more complex formulas,
it is possible to bring the error count down below two hundred.
However, for quick-look screening purposes these formula can
be useful for identifying specific lithofacies from a gamma-ray
log, e.g., during real time as an MWD log is recorded.

The simple formulas presented here to distinguish classes
1 to 6 are empirical and established by trial and error. The
objective is to keep them as simple as possible so that they can
be used as quick-look rules of thumb. Clearly, those formulas
relate specifically to the GR dataset evaluated and would likely
need modifications when applied to other datasets. It would be
possible to generate a more complex set of formulas than those
derived empirically using decision trees and other classifica-
tion techniques. However, it is considered more beneficial to
apply a range of machine learning classification methods that
can be executed rapidly (i.e., in a few seconds) than developing
more complex classification formulas that would take time and

need to be modified with each dataset evaluated.

3.2 Graphical distinction of facies characteristics
based on GR attributes

Plotting GR versus GR rate of change (d′GR) (Fig. 4(a))
and GR volatility (σi(dn)) (Fig. 4(b)) highlights the value
of these two GR attributes in distinguishing certain facies
characteristics.

The GR values can themselves easily distinguish facies
Class 2 from Class 4. The main benefit of the rate of change
attribute is that for most data records distinguishes between
Classes 1, 3 and 5. The bulk of Class 1 data records plot to
the right of d′GR = 0 in Fig. 4(a), whereas The bulk of Class
3 data records plot to the right of d′GR = 0 in that figure, with
both classes including some anomalous data records plotting in
the region dominated by the other class. Moreover, the Class 5
data records are concentrated in regions further from d′GR= 0
in Fig. 4(a), making it possible to distinguish those rapid
transition zones as well as their directions of slope. Classes 2
and 6 are not well separated in Fig. 4(a). However, they are
slightly easier to distinguish in Fig. 4(b), albeit with substantial
overlap in the low volatility region.

When the synthetic GR data records of each facies class
are considered as groups they represent distributions with quite
distinctive characteristics. Fig. 5 illustrates this by plotting
mean GR for each class versus the coefficient of variation (CV)
for two selected GR attributes: 1/SMAd′GR and SMAσi(dn).

The CV is calculated by dividing the standard deviation
of a distribution by its mean. A higher CV value typically
reflects a more substantial degree of dispersion about the
mean value of the class distribution. Each facies class plots
in a distinctive area for the two GR attributes considered
in Fig. 5, as they do for the other attributes not displayed.
The distributions for the entire dataset (“All”) also plot in
distinctive areas in Fig. 5. In order to plot the two attribute
distributions on a similar horizontal scale the reciprocal of the
CV of SMAd′GR attribute is plotted in Fig. 5. For SMAσi(dn)
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it is clear from their high CV values that the Class1 and
Class 3 distribution show the greatest dispersion of values
about their means, whereas Classes 2, 4 and 6 show the
least dispersion about their means, and Class 5 and the entire
dataset show intermediate dispersions about their means. For
CV of 1/SMAd′GR, as it is the reciprocal plotted, the classes
plotting closest to zero on the horizontal scale are those
displaying the greatest dispersion about their mean values. For
this attribute it is the entire dataset and Class 6 that show the
greatest dispersion about their means, Classes 1 and 3 show
the least dispersion about their means, and Classes 2, 4, and 5
show intermediate dispersions about their means. The distinct
dispersions of each of the class distributions is something that
ML algorithms can usefully exploit.

Certain ratios are able to discriminate between the facies
classes of the synthetic GR dataset to an extent. For instance,
the ratio of the moving average rate of change to the moving
average volatility (SMAd′GR/SMAσi(dn) ∗ 1000), when plot-
ted versus the GR value (Fig. 6(a)), is able to separate several
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Fig. 5. Cross plot of mean GR versus the reciprocal of GR
moving average rate of change, and the GR moving average
volatility for the six GR facies classes and entire dataset (All)
distinguished in the synthetic GR dataset displayed in Fig. 2.

of the facies classes. In fact, the ratio of volatility attributes
(lnGRi(d)/σi(dn)) does a slightly better job at discriminating
between Classes 1, 3 and 5 (Fig. 6(b)), particularly the differ-
ent steep slopping directions of the Class 5. On the other hand,
a ratio of the first to second GR derivatives (d′GR/d′′GR)
plotted versus GR (Fig. 7) values does not provide useful
segregation of Classes 1, 3, and 5.

Considering collectively the GR attribute characteristics
and relationships displayed in Figs. 4 to 7, it is apparent
that the GR derivative and volatility variables used together
provide more useful discrimination between the clastic facies
distinguished in the synthetic GR dataset. This justifies their
inclusions as input feature for ML analysis.

3.3 ML analysis of clastic facies using GR
derivative and volatility variables

The strategy adopted for applying the seven ML models
to the synthetic GR dataset was to initially justify using the
80%:20% split of data records in the training/validation dataset
(data record numbers 0 to 1449, Fig. 2). This is followed by
comparing of the facies class prediction accuracy achieved by
the training and validation subsets and applying the trained
models to all 1450 data records. The trained models are then
applied to the independent testing subset (data record numbers
1450 to 2249, Fig. 2). The model performances are ranked
and the results of the best performing model are displayed
and evaluated using enhanced confusion matrices.

3.3.1 K-fold cross-validation results

Analysis of each ML model with the data records 0 to 1449
was performed with several different k-folds and different
combinations of the GR attributes as a feature selection
comparison to predict the facies classes for each data record.
5-fold cross validation produced the most consistent results
(Table 4) and its results are shown for the following five feature
combinations:
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Fig. 6. Cross plots with facies classes distinguished of: (a) GR versus the ratio of the moving average rate of change to the
moving average volatility; and, (b) GR versus the ratio of volatility attributes.
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Table 4. Results of 5-fold cross-validation based on 15 cases. σ2 MAE refers to standard deviation of the MAE values
considering all 15 cases run for each model.

5-Fold cross-validation results for ML models applied to data records 0 to 1449 (15 cases run for each model)

Model
7 Input variables 6 Input variables 5 Input variables 4 Input variables 3 Input variables

MAE σ2MAE MAE σ2MAE MAE σ2MAE MAE σ2MAE MAE σ2MAE

ADA 0.1864 0.0467 0.1759 0.0449 0.1903 0.0491 0.2120 0.0499 0.2894 0.0581

DT 0.2607 0.0376 0.2589 0.0441 0.2722 0.0646 0.2754 0.0357 0.3572 0.0430

KNN 0.3113 0.0362 0.3175 0.0322 0.3297 0.0497 0.3322 0.0496 0.4011 0.0654

MLP 0.2506 0.0479 0.2802 0.0678 0.2274 0.0516 0.3133 0.0633 0.3949 0.0574

RF 0.1637 0.0429 0.1775 0.0461 0.1722 0.0513 0.1945 0.0577 0.2972 0.0504

SVC 0.3011 0.0484 0.2982 0.0536 0.3324 0.0586 0.4025 0.0548 0.4671 0.0625

XGB 0.1048 0.0237 0.1159 0.0316 0.1039 0.0296 0.1156 0.0378 0.2545 0.0640
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Fig. 7. Cross plot of GR versus the ratio of first to second GR
derivatives (d′GR/d′′GR) with facies classes distinguished.
Classes 1, 3, and 5 are not as well separated as for the ratios
displayed in Fig. 6.

• 7-variable data: GR, d′GR, SMAd′GR, d′′GR, lnGRi(d),
σi(dn), SMAσi(dn),

• 6-variable data: GR, d′GR, SMAd′GR, d′′GR, σi(dn),
SMAσi(dn),

• 5-variable data: GR, d′GR, SMAd′GR, σi(dn), SMAσi(dn),
• 5-variable data: GR, d′GR, SMAd′GR, SMAσi(dn),
• 4-variable data: GR, SMAd′GR, SMAσi(dn).
Although these variable combinations may not be optimal,

particularly for those combinations with six or less variables,
they identify that even using very few of the available variables
can result in relatively high prediction performance for the
facies classes.

Each 5-fold cross-validation execution was executed three
times, resulting in 15 cases, for which the mean MAE and the
standard deviation (σ2MAE) were calculated. The σ2MAE
values range from 0.0237 (XGB 7-variable model) to 0.678
(MLP 6-variable model) which are low (with reference to the
facies class scale of 1 to 6) indicating high reproducibility of
all the models and feature selections shown in Table 4. The
lowest mean MAE achieved by the 5-fold analysis is 0.1039

for XGB (5-variable model) with models XGB, RF and ADA,
in that order generating the best prediction accuracy in terms of
MAE for each feature selection. On the other hand, the DT,
MLP, KNN and SVC models generated higher mean MAE
values, with the performance of KNN and SVC deteriorating
more than the other models for the 3- and 4-variable feature
selections. Overall, the Table 4 results suggest that the 7-
variable feature selection models outperform the models with
fewer features, confirming that all seven variables are being
used effectively by the models to improve their facies class
prediction performance.

A more rigorous feature selection sensitivity analysis was
conducted applying each of the trained and validated ML
models to the unseen testing subset (data records 1451 to
2250) using different combinations of variables. This analysis
revealed that removing any one of the variables from the
7-variable model resulted in poorer facies class prediction
performance for the testing subset than that achieved by the 7-
variable model for five of the seven ML models. In particular,
for the three best performing models (RF, XGB and SVR),
the 7-variable model outperformed any other combination of
variables. The feature selection analysis therefore indicates
that the 7-variable model offers the best combination of
features.

3.3.2 Training and validation of the ML models

Encouraged by the results of Table 4, the ML models were
trained and validated for each feature selection configuration
evaluated by k-fold cross-validation. The results for the 80:20
data record splits (1160 records for training and 290 for
validation) are displayed for selected high-performing ML
models in Table 5, together with the results for the trained
model applied to all 1450 data records (the “All” case).

Fig. 8 compares the ML model results for the validation
data set in terms of MAE versus number of erroneous data
record classifications.

The trained ML models display a wide range of classifi-
cation accuracies with the validation subset. Overall, the 5-,
6- and 7-variable models tend to outperform 3- and 4-variable
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Table 5. Selected ML model training and validation classification results applied to the first 1450 data records of the
synthetic GR dataset using 80% training: 20% validation splits. The training and validation results for all ML models

evaluated are shown in a supplementary file.

ML training and validation results for clastic facies prediction

RF 7-Var 6-Var 5-Var 4-Var 3-Var

Train R2 1.0000 1.0000 1.0000 1.0000 1.0000

Train RMSE 0.0000 0.0000 0.0000 0.0000 0.0000

Train MAE 0.0000 0.0000 0.0000 0.0000 0.0000

Validation R2 0.7790 0.8070 0.7472 0.7472 0.6605

Validation RMSE 0.7900 0.7381 0.8449 0.8449 0.9791

Validation MAE 0.2172 0.2000 0.2448 0.2586 0.3103

Total error number 28 27 30 34 35

All R2 0.9597 0.9648 0.9539 0.9539 0.9381

All RMSE 0.3533 0.3301 0.3778 0.3778 0.4379

All MAE 0.0434 0.0400 0.0490 0.0517 0.0621

SVC

Train R2 0.7680 0.7631 0.7054 0.6476 0.5651

Train RMSE 0.8570 0.8660 0.9658 1.0562 1.1733

Train MAE 0.2259 0.2345 0.2793 0.3483 0.4284

Validation R2 0.6544 0.6153 0.5982 0.4773 0.4724

Validation RMSE 0.9879 1.0422 1.0651 1.2149 1.2205

Validation MAE 0.3414 0.3759 0.3897 0.4828 0.4759

Total error number 43 46 49 56 55

All R2 0.7474 0.7362 0.6859 0.6167 0.5484

All RMSE 0.8847 0.9040 0.9865 1.0898 1.1829

All MAE 0.2490 0.2628 0.3014 0.3752 0.4379
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Fig. 8. Cross plot of classification errors versus MAE for seven ML models applied to the validation subset of the synthetic
GR dataset. The number label refer to the number of input variables in the models (see text), for example, 7 means seven
input variables are involved.
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Table 6. Selected ML trained model classification results for the unseen testing subset results applied to the last 800 data
records of the synthetic GR dataset.The testing subset results for all ML models evaluated are shown in a supplementary file.

ML unseen testing subset results for clastic facies prediction

RF 7-Var 6-Var 5-Var 4-Var 3-Var

Test R2 0.7355 0.7030 0.6566 0.6347 0.4449

Test RMSE 0.8853 0.9381 1.0087 1.0404 1.2826

Test MAE 0.2513 0.2700 0.3075 0.3425 0.5300

Total error number 82 81 91 109 165

Execution time (seconds) 23.2 25.2 23.5 21.9 21.4

SVC

Test R2 0.7305 0.7237 0.7073 0.6398 0.6140

Test RMSE 0.8937 0.9048 0.9314 1.0332 1.0695

Test MAE 0.2713 0.2763 0.2925 0.3500 0.3938

Total error number 95 96 102 119 138

Execution time (seconds) 5.0 5.7 5.0 5.1 4.9
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Fig. 9. Cross plot of classification errors versus MAE for seven ML models applied to the unseen testing subset of the synthetic
GR dataset. The number label refer to the number of input variables in the models (see text).

models for each ML. However, the 7-variable model is not
always the highest performing (e.g., XGB and RF). The XGB
models achieve the lowest number of errors and lowest MAE
values, some distance ahead of the RF and ADA models in
Fig. 8. On the other hand, the SVC model generates the highest
number of errors and highest MAE values for all of its models
applied to the validation subset. However, the near perfect
fits generated for the training subset and the much lower
accuracies for the validation subset (Table 5) indicates that
several of the models have, to an extent, overfitted the training
dataset. Nevertheless the results of Table 5 are consistent with
those of the 5-fold cross validation analysis (Table 4).

3.3.3 Applying the trained ML models to an unseen testing
sequence

A key test for the reliability of the ML models is applying
the trained models to unseen independent data. The trained

models have therefore been applied to the independent testing
subset (data records 1451 to 2250) with the classification
results displayed in Table 6 and Fig. 9.

It is notable that the RF, SVC and XGB trained models
in that order, generate the most accurate results with the
unseen testing subset. A comparison of Figs. 8 and 9 suggests
that the XGB models have overfitted the training subset to
a greater extent than the other models, whereas the SVC
model has done so to a lesser extent than the other models.
Again, the 5-, 6- and 7-variable models tend to outperform
3- and 4-variable models for each ML algorithm applied to
the testing subset. Indeed, the 3- and 4-variable models tend
to generate substantially less accuracy than the other models.
SVC generates the best results compared to the other 3-
variable models, and the spread of results between the 7-
variable and 3-variable models is least for SVC (Fig. 9). The
DT model generates the poorest classification results for the
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800 RF 153 149 135 149 53 161 800 RF 174 174 105 150 62 135

Total Class 1 2 3 4 5 6 Total Class 1 2 3 4 5 6
153 1 128 1 15 0 1 8 153 1 120 9 14 0 1 9
153 2 0 146 0 0 0 7 153 2 1 147 0 0 0 5
147 3 21 1 119 0 0 6 147 3 48 6 88 0 3 2
150 4 1 0 1 148 0 0 150 4 0 0 0 149 1 0

50 5 2 0 0 1 42 5 50 5 5 2 1 1 40 1
147 6 1 1 0 0 10 135 147 6 0 10 2 0 17 118

Precision: 83.66% 97.99% 88.15% 99.33% 79.25% 83.85% Precision: 68.97% 84.48% 83.81% 99.33% 64.52% 87.41%
82 Errors 25 3 16 1 11 26 138 Errors 54 27 17 1 22 17

89.75% Successful Predictions 82.75% Successful Predictions

Class Prediction Performance: Class Prediction Performance:

Accuracy 0.9349 0.9863 0.9423 0.9958 0.9742 0.9497 Accuracy 0.8838 0.9525 0.8970 0.9970 0.9539 0.9350
Precision 0.8366 0.9799 0.8815 0.9933 0.7925 0.8385 Precision 0.6897 0.8448 0.8381 0.9933 0.6452 0.8741
Recall 0.8366 0.9542 0.8095 0.9867 0.8400 0.9184 Recall 0.7843 0.9608 0.5986 0.9933 0.8000 0.8027
F1 Score 0.8366 0.9669 0.8440 0.9900 0.8155 0.8766 F1 Score 0.7339 0.8991 0.6984 0.9933 0.7143 0.8369

RF  7-Variable Model SVC  3-Variable Model

Expanded Confusion Matrices for Independent Unseen Testing Subset (Data records Numbers 1450 to 2249)

Fig. 10. Annotated confusion matrices providing error and accuracy analysis for each facies class applying the trained RF
7-variable and SVC 3-variable models to the last 800 data records of the synthetic GR dataset displayed in Fig. 2.

testing subset, by some distance.
The execution times for the models are listed in Table 6.

All models were run on a laptop computer with a dual core
processor of 1.8 GHz with a maximum memory speed of 2.2
GHz. The execution times represent the inclusive time taken
to perform 5-k cross validation, test and validate the models
and evaluate the unseen testing subset. The DT, KNN and
SVC models operate the fastest, taking about 5 seconds to
complete. The ADA and RF models take between 20 and 30
seconds to complete, whereas the XGB (∼80 seconds) and
MLP (∼100 seconds) models are slowest. The fast operating
speeds mean that it is feasible to run an ensemble of models
and compare their performances. Based on a comparison of
the results for the testing and validation subsets running an
ensemble of models seems to be an advisable strategy.

Overall, the RF 7-variable model achieves the best results
with the unseen testing subset. Fig. 10 displays an annotated
confusion matrix for the classification results of that model
together with the high performing SVC 3-variable model.

Both models displayed in the Fig. 10 confusion matrices
are highly successful at classifying facies classes 2 and 4, as
shown by their high accuracy and precision values. However,
the RF 7-variable model performs much better than the SVC
3-variable model in correctly classifying facies classes 1, 3 and
5. F1 Scores for those classes are > 0.8 for the RF model but
around 0.7 for the SVC model. Both models perform quite
well at classifying Class 6 (F1 Scores > 0.8), substantially
better than the formulaic approach (Fig. 3). For the RF model
its main problem is confusing 21 Class 1 data records as Class
3 and 15 Class 3 data records as Class 1.

Fig. 11 provides a point by point comparison of actual
facies class with predicted facies class for the best-performing
RF 7-variable model applied to the unseen testing subset. The
cluster of erroneous predictions around the 1650 data record
level, confusing Class 1 with Class 3 and Class 3 with Class 1,
make a substantial contribution to the overall errors associated
with this model. A close inspection of Fig. 2 reveals that
this zone of errors is located around the low-GR apex of the
symmetrical feature comprising of a coarsening upwards fea-

ture turning abruptly into a fining-upwards feature. The errors
occur at low GR values where GR rates of change are low
but oscillating from positive to negative. This abrupt change
from Class 1 to Class 3 is not present in the training/validation
sequence (Fig. 2).

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

1900

1950

2000

2050

2100

2150

2200

2250

2300

0 1 2 3 4 5 6 7

V
er

ti
ca

l 
S

eq
u

en
ce

 N
u

m
b

er

GR Facies (Unseen Test Sequence)

RF 7-Variable Model

Blue circles are

predicted facies

Red/Yellow diamonds

are actual

facies classes

Errors #: 82

Fig. 11. actual versus predicted facies classes for the unseen
testing subset of the synthetic GR dataset achieved by the
RF 7-variable model. Where predictions are correct they are
overlain by the actual values (red/yellow diamonds), so only
the erroneous predictions are revealed by the blue dots.
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The results for the best performing model highlight that,
in order to work effectively, the ML models need to be trained
using sequences that include representative examples of facies
features that occur in the unseen sections to be classified. The
fact that the 5-, 6- and 7-variable ML models are the most
accurate clearly indicates that the ML models are effectively
using most of the derivative and volatility attribute variables
with which they are provided as inputs to improve their
classification accuracy and precision.

4. Discussion
The results of the study demonstrate the value of extracting

GR derivative and volatility attributes to characterize certain
clastic sequence facies characteristics using only GR data as
the input. It is not intended to suggest that GR be used in
isolation to provide comprehensive definitive facies analysis,
which clearly requires additional mineralogical, lithological
and bio-stratigraphy information. However, there are certain
circumstances, where provisional facies analysis derived from
the GR log can be useful and effective. These circumstances
are:

• Quick-look, real-time analysis as well logs are recorded.
By applying the formulaic and/or ML methodologies pro-
posed to measurement-while-drilling (MWD) and wire-
line logs as they are being recorded can quickly and reli-
ably reveal the presence of certain facies characteristics,

• In exploration, screening thousands of meters of GR data
from a wellbore to identify certain features known to be
associated with high quality oil/gas reservoirs in a basins
(e.g., coarsening upward sections) is an important task.
Such analysis can be achieved rapidly with the aid of
the GR derivative and volatility attributes defined in this
study,

• For many wells drilled, cost and time constraints mean
that only very basic logging suites are recorded (e.g.,
GR/sonic/resistivity. In some wells only the GR log
is recorded over some of the shallower sections above
target zones. Moreover, when more comprehensive well
logging suites are run, or those including spectral gamma
ray, shear velocity, etc., they are often only recorded
over limited depth intervals. This leaves large sections
of wellbores poorly logged, from which useful facies
information could be extracted using the GR attribute
analysis proposed,

• For many older wellbores, only limited and poor reso-
lution logging suites are available making it impossible
to apply more sophisticated log-based facies analysis to
those sections,

• Many well-log based facies classification techniques rely-
ing on multiple suites of well log curves tend to overlook
the valuable shape information contained within the GR
curve. Combining GR derivatives and volatility attributes
together with other well logs (e.g., sonic, density, neutron
etc.) has the potential to improve the prediction accuracy
of such models.

This study is designed to introduce and demonstrate the
value of using GR derivative and volatility attributes for clastic

sequence facies analysis. The results presented justify further
work to evaluate the full potential of the method. Such future
research planned includes:

• Applying the proposed techniques to real GR logs
recorded in multiple wellbore sections to test the gener-
alization of the method across a developed oil/gas field,

• Evaluating the potential to extract derivative and volatility
attributes from other well logs, such as compressional
sonic logs, which are also widely available and recorded
in most wellbores, for facies feature analysis. Such at-
tributes could potentially be used in conjunction with the
GR attributes to improve clastic facies predictions (e.g., to
reduce some of the confusion between Class 2 and Class
6 experienced in the dataset evaluated in this study),

• The ML models evaluated are fast to execute but are
not particularly transparent in the details they provide
regarding how each of their specific data record pre-
dictions are made. For detailed data mining purposes,
and to better explore the subtleties of complex facies
more transparent algorithms are required. Optimized data
matching algorithms (e.g., transparent open box, Wood,
2018), specifically configured for data mining facies
predictions, offer potential to improve the facies insight
provided by the proposed GR-attribute technique,

• Evaluating the potential to exploit derivative and volatil-
ity attributes of GR (and other logs) to predict certain
facies characteristics in carbonates and other non-clastic
sequences.

5. Conclusions
Extracting detailed shape attributes from GR log curves

provides effective variables with which to reliably identify-
ing certain clastic sequence facies characteristics. This study
demonstrates that rate of change (d′GR), second derivative
(d′′GR) and volatility (σGR), when used together and in
conjunction with GR values can distinguish and classify six
commonly occurring facies characteristics in clastic sequences
(i.e., coarsening upward, transgression, fining upward, aggra-
dation, rapid transition and sawtooth features). Moving aver-
ages over specified depth intervals, tailored to suit the sections,
help to further refine the usefulness of the GR derivative and
volatility attributes for facies analysis. These attributes can be
used formulaically or as inputs to ML models to effectively
classify the clastic facies in a synthetic GR sequence divided
into training, validation and unseen testing subsets. 5-fold
cross validation models demonstrate the repeatability of the
ML models using an 80%:20% split between training and val-
idation. ML models configured with between three and seven
input variables (GR values plus three derivative attributes and
three volatility components) demonstrate the models with 5-,
6- and 7-variables generate the best facies classifications with
the validation and testing sequences. A random forest model
with seven input variables outperforms the other models and
formulaic classification. That model generates 82 erroneous
classifications from 800 data records in the unseen testing
sequence. It also achieves a mean absolute error of 0.2513 and
a root mean squared error of 0.8853 (in relation to a clastic
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facies class scale of 1 to 6) for that testing sequence. The fact
that the RF model uses all seven input variables to generate
the best classification highlights the value of combining both
derivative and volatility variables, including moving averages,
as input features. Annotated confusion matrices, configured
specifically for this study, offer a useful visual technique for
concisely assessing and comparing the classification accuracy
and precision of the multiple ML and formula models evalu-
ated for facies classification purposes.

The proposed method offers the potential to conduct rapid
screening of measurement while drilling and wireline logs for
clastic facies features as those logs are recorded. Moreover, the
results of this study suggest that derivative and volatility GR
attributes should be further evaluated for use in conjunction
with other well-log and/or core data to assist in more complex
facies characteristics and analysis.
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