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Abstract:

Accurate estimated ultimate recovery prediction of fractured horizontal wells in tight
reservoirs is crucial to economic evaluation and oil field development plan formulation.
Advances in artificial intelligence and big data have provided a new tool for rapid
production prediction of unconventional reservoirs. In this study, the estimated ultimate
recovery prediction model based on deep neural networks was established using the data
of 58 horizontal wells in Mahu tight oil reservoirs. First, the estimated ultimate recovery
of oil wells was calculated based on the stretched exponential production decline model
and a five-region flow model. Then, the calculated estimated ultimate recovery, geological
attributes, engineering parameters, and production data of each well were used to build
a machine learning database. Before the model training, the number of input parameters
was reduced from 14 to 9 by feature selection. The prediction accuracy of the model was
improved by data normalization, the early stopping technique, and 10-fold cross validation.
The optimal activation function, hidden layers, number of neurons in each layer, and
learning rate of the deep neural network model were obtained through hyperparameter
optimization. The average determination coefficient on the testing set was 0.73. The results
indicate that compared with the traditional estimated ultimate recovery prediction methods,
the established deep neural network model has the strengths of a simple procedure and low
time consumption, and the deep neural network model can be easily updated to improve
prediction accuracy when new well information is obtained.

1. Introduction

Horizontal well drilling and stimulation technology pro-

empirical decline curve analysis (Liang et al., 2020), modern
production decline analysis (Boogar et al., 2011), analytical
model method (Brown et al., 2009; Stalgorova et al., 2013),

mote the development of unconventional oil and gas resources
such as tight oil (Hughes, 2013; Aguilera, 2014; Meng et al.,
2020; Li et al., 2020). However, owing to tight oil’s inherent
properties of low porosity, low permeability, and strong het-
erogeneity, along with the complexity of the hydraulic fracture
network (Dontsov et al., 2020; Qin et al., 2020), production
prediction in tight reservoirs is still a challenge. As shown
in Table 1, the estimated ultimate recovery (EUR) prediction
methods of a single well in a tight reservoir mainly include the

and numerical simulation method (Khamidullin et al., 2017;
Ji et al., 2020; Luo et al., 2021). The empirical decline curve
analysis method uses an empirical mathematical model to fit
the production data. Common empirical decline curve analysis
methods include Arps’s model (Arps, 1945), the stretched
exponential production decline (SEPD) model (Valko, 2009),
Duong’s model (Duong, 2010), Wang’s model (Wang et al.,
2017), the logistic growth model (LGM) (Clark et al., 2011),
and Hsieh’s model (Hsieh et al., 2001). Common modern
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Table 1. EUR prediction method for fractured horizontal wells.

EUR prediction method Function

Applicable flow pattern Data needed

Arps’s model

SEPD model

Empirical production

decline model Duong’s model

Wang’s model
LGM

Hsieh’s model

Blasingame EUR prediction
Modern production
decline analysis Fetkovich EUR prediction
FMB EUR prediction

A three-region

model prediction

Analytical model .
A five-region

model prediction

Numerical simulation / .
prediction

Production/EUR prediction

Production/EUR prediction

Production/EUR prediction
Production/EUR prediction
Production/EUR prediction

Production/EUR prediction

Production/pressure/EUR

Production/pressure/EUR

Production/pressure/EUR

Boundary-dominated flow

Linear flow/boundary-
dominated flow

Linear flow Production data

Linear flow
Linear flow

Linear flow

Transient flow/boundary- ) )
dominated flow Fluid properties,
geological parameters,

Boundary-dominated flow production data.

Boundary-dominated flow

All flow patterns

Fluid properties,
geological parameters,
construction parameters,
production data.

All flow patterns

All flow patterns

production decline analysis methods include the Blasingame
type curve method, Fetkovich type curve method, and flowing
material balance (FMB) method (Fetkovich, 1980; Mattar et
al., 1998; Cui et al, 2021). Combined with the unsteady
seepage theory and empirical decline method, according to
oil well production data, the relationship between pressure
and production is analyzed using modern production decline
typical curve fitting. Then, reservoir parameters and well
control reserves are obtained by typical curve fitting, and
the EUR is calculated. Both analytical model method and
numerical simulation are based on reservoir seepage theory,
which can describe the complex seepage process. However,
these approaches require many physical parameters, and it is
difficult to establish and solve them.

Over the past few years, with the application and ex-
pansion of artificial intelligence in the petroleum industry
(Broni-Bediako et al., 2019; Kuang et al., 2021; Yavari et
al., 2021; Wood, 2022), it has become possible to set up
a fast and accurate oil well production forecasting method
based on machine learning. Mohaghegh (2011) considered
that reservoir simulation and the production prediction method
based on machine learning can be split into the top-down
model and surrogate reservoir model according to the data
sources during model development. Bansal et al. (2013) used
an artificial neural network (ANN) to describe the complicated
relationship between the logging curve, seismic data, com-
pletion parameters, and production dynamic characteristics.
Then, they predicted the cumulative oil and gas production
of wells in tight reservoirs within 2 years. Cao et al. (2016)
used ANN to forecast the future production performance of
Eagle Ford shale wells. They believed that the data-driven

production prediction method is more comprehensive than the
decline curve analysis and takes much less time than the
numerical simulation method. Lee et al. (2019) used long
short-term memory to forecast the production change of shale
gas wells in the coming month. They found that the prediction
accuracy of the two-feature case considering production data
and SI cycle was higher than that of the single-feature case
considering production data only. Wang et al. (2019) used
a deep neural network (DNN) to forecast the cumulative oil
production of shale oil horizontal wells at 6 and 18 months,
and believed that the amount of proppant would have the
greatest influence on production. Chen et al. (2020) predicted
the test output of shale gas horizontal wells on the basis of
the genetic algorithm—back propagation neural network, and its
prediction accuracy was significantly higher than that of the
multiple linear regression model. Liu et al. (2021) designed a
shale gas well EUR prediction algorithm on the basis of deep
learning in light of geological data, fracturing stimulation data,
production data, and EUR calculation results. They found that
the change and number of input parameters, network structure,
and hyperparameters had an impact on the prediction accuracy
of EUR. Niu et al. (2022) predicted the shale gas well EUR
based on a variety of machine learning algorithms using early
data. The research results show that the early production data
had the greatest impact on the EUR. In addition, because the
support vector machine is applicable for small data sets, it is
the most trustworthy model.

In sum, recent research on yield prediction in machine
learning has mainly focused on early yield and production
dynamics prediction. However, EUR prediction for uncon-
ventional reservoirs based on machine learning has only
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emerged in recent years. Therefore, combined with the reser-
voir engineering method and deep learning, we established
an EUR prediction model of fractured horizontal wells in
tight oil reservoirs on the basis of the DNN. In the process
of model development, feature selection, data normalization,
early stopping technology, and 10-fold cross validation method
were adopted to improve the computational efficiency and
prediction accuracy of the DNN model. On this basis, the
impact of hyperparameters on the performance of DNN model
was examined.

2. Database establishment

2.1 EUR calculation based on empirical decline
model

The empirical decline method and analytical model method
were first used to calculate the EUR to provide the initial
EUR for database establishment. The well spacing of fractured
horizontal wells in well block Mal8 of the Mahu oil field is
mainly 300 to 350 m. Microseismic monitoring shows that
the hydraulic fracture length is between 61 and 236 m. In
addition, the phenomenon of frac hits in adjacent horizontal
wells occasionally occurs during the fracturing operation.
Meanwhile, the production dynamic of wells shows that the
stable production stage in the well area is short, and the decline
rate of production is fast. All these indicate that the oil wells
in well block Mal8 will quickly reach a boundary flow state.
The oil wells used in this study have a production time of
about 1 year, which meets the conditions of the empirical
decline model to predict the EUR. Empirical decline curve
analysis is a common method of production prediction in an
oil field. However, owing to the variety of decline models
and the diversity of Mahu tight conglomerate reservoirs, the
optimization of decline models is essential. We divided the
actual production data of the oil well into a fitting data section
and production prediction verification section. The root mean
square error (RMSE) of the actual value and predicted value
was used as the evaluation index:

1 n
RMSE = - Y (Gi—ai)° )
\ n =

where ¢; is the actual production data, §; is the predicted
production data, and #n is the number of data points that were
effectively decremented.

Based on the literature review mentioned above, this study
mainly evaluated five empirical decline models (Fig. 1). Taking
horizontal well MO1 in well block Mal8 of the Mahu oil field
as an example, when the effective fitting time of production
data was 100 days, the production prediction of various decline
models was not ideal. In other words, when the fitting stage
was short, all models would have obvious deviations in the
prediction stage. This may mean that the well had not yet
reached the boundary flow stage. As the effective fitting time
increased, however, the predicted RMSE of each decline model
decreased (Fig. 2). When the fitting stage reached 200 days,
the SEPD model showed the best prediction effect and high
stability. Therefore, the SEPD model was used to calculate the
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Fig. 1. Schematic of production fitting and prediction valida-
tion for different decline models of well MO1 (*the prediction
curves of the two models almost coincide).
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Fig. 2. Relationship curves between the RMSE of prediction
data of different decline models and the effective fitting time
of well MO1.

EUR among various decline models. In the calculation of
the EUR based on the fitted decline model, when the daily
oil production was reduced to 0.5 m3/d, the cumulative oil
production volume was considered as the EUR of each well.

2.2 EUR calculation based on analytical model

When the production data met the prediction conditions of
empirical decline model, the SEPD model was used to predict
EUR. However, when there was no obvious decline stage of
fractured horizontal wells or the decline law was damaged,
the five-region linear flow model of fractured horizontal wells
was used to calculate the EUR. This model was first proposed
by Stalgorova and Mattar (2013). In their research, a detailed
formula derivation and solving process were given, so this
study only gives a brief introduction to the five-region model.
As shown in Fig. 3, because of the symmetry of the system,
only one quarter of the space between the fractures needs to be
computed. Flow in this model is regarded as a combination of
five linear flows within contiguous regions. Regions 2, 3, and
4 represent the original reservoir rocks, which have identical
properties. Region 1 represents the branching fracture region
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Fig. 3. Schematic diagram of the five-region physical model of fractured horizontal well in tight reservoir.
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Fig. 4. Production history fitting curve of analytical model of
well MO2.

adjacent to the hydraulic fracture. Therefore, region 1 is a
higher-permeability zone, which is the stimulated reservoir
volume (SRV) zone. Region 5 represents the hydraulic fracture
region. One-dimensional flow solutions for each region are
formulated and then coupled by applying flux and pressure
continuity across the boundaries between regions. As shown
in Fig. 3, the horizontal well is along the x-direction, the
hydraulic fracture is along the y-direction, x| is half of the
width of the SRV zone, x, is half the distance between
fractures, y; is half of the hydraulic fracture length, and y,
is half of the well spacing.

In the practical application, parameters such as the model
boundary, horizontal well length, initial pressure, initial water
saturation, porosity, fluid properties, and number of hydraulic
fractures were first input according to the actual data of
horizontal well. Then, the production history fitting was
realized by adjusting the hydraulic fracture length, fracture
conductivity, permeability of SRV area, net pay, and other
parameters (Fig. 4). Based on the fitted analytical model, the
production system of the first fixed daily oil production and
then the fixed bottom hole pressure was used to continue the
prediction. As with the empirical decline model, when the
daily oil production was reduced to 0.5 m>/d, the cumulative

oil production volume was considered as the EUR of the
fractured horizontal well.

2.3 Machine learning database

The data of this study come from the fractured horizontal
wells in well block Mal8 of the Mahu oil field. The production
of oil wells in tight reservoirs is affected by geological
properties, engineering parameters, and the production sys-
tem. Therefore, the porosity, matrix permeability (measured
with gas), oil saturation, brittleness index, Young’s modulus,
Poisson’s ratio, length of horizontal section, thickness of
the class I reservoir, number of fracturing stages, cluster
spacing, fracturing fluid volume per stage, sand volume per
stage, soaking time, production rate in the first year, and
the EUR of 58 horizontal wells were counted. The statistical
characteristics of each parameter are shown in Table 2. As
shown in Fig. 5, except for the soaking time and Poisson’s
ratio, other parameters showed a certain normal distribution
characteristic. Normal distribution is the theoretical basis of
many statistical analysis methods. For example, correlation
analysis and regression analysis require that the analysis index
obey normal distribution or approximate normal distribution.
Therefore, the parameters selected in this study had a high
analytical value. These data were used to establish the DNN
model.

3. Establishment of the DNN model
3.1 DNN

The DNN is an important branch in the field of artificial
intelligence. Hinton et al. (2006) adopted the scheme of unsu-
pervised pre-training to initialize the weights and supervised
training to fine-tune the whole network, which solved the
problem of gradient disappearance in deep network training.
Then, the DNN entered a period of rapid development. As
shown in Fig. 6, both the DNN and traditional neural network
system are composed of the input layer, the hidden layer, and
the output layer. The DNN contains multiple hidden layers,
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Table 2. Statistical characteristics of each parameter of fractured horizontal wells in well block Mal8.

Parameter type Parameter Range Mean Standard deviation
Porosity (%) 8.49-14.13 10.85 1.16
Matrix permeability (measured with gas) (mD) 0.72-5.19 2.4 0.97
Geological property Oil saturation (%) 53.96-60.07 56.85 1.52
Poisson’s ratio 0.2-0.3 0.28 0.024
Young’s modulus (Gpa) 10.23-37.9 22.39 4.19
Brittleness index 32.53-85.55 55.28 8.84
Length of horizontal section (m) 904-1926 1302 243.63
Number of fracturing stages 11-28 19 3.66
Engineering parameter Thickness of the class I reservoir (m) 80.63-576.5 316.53 117.89
Cluster spacing (m) 29.27-50.9 36.56 4.08
Fracturing fluid volume per stage (m>) 878.3-1426.3 1169.3 110.98
Sand volume per stage (m3) 52.11-78.25 67.67 5.81
Soaking time (day) 1-16 3.74 4.02
Production Production rate in the first year (m3/d) 14.1-63.09 33.56 1042
EUR (10* m3) 2.46-8.01 4.9 1.52

and the learning ability of the model is greatly improved.
In addition, more complicated network structures and better
learning algorithms promote the development of deep learning
(Bouwmans et al., 2019). In this study, we developed DNN
models based on MATLAB to forecast the EUR of oil wells
in tight oil reservoirs. At the same time, feature selection, data
normalization, early stopping, cross-validation, and the Adam
optimizer were used to improve the forecasting accuracy and
convergence speed.

3.2 Feature selection

Feature selection in machine learning can promote data
visualization and understanding as well as reduce redundant
input dimensions to enhance the prediction performance of
the ANN model (Guyon et al., 2003). Based on the es-
tablished database, the main control factors analysis of the
EUR and feature selection were conducted. To compare the
correlation of each feature parameter, the Pearson correlation
coefficient, shown in Eq. (2), was used to realize feature
selection. According to the calculation results (Fig. 7), the
DNN model includes nine characteristic input parameters
(matrix permeability, production rate in the first year, porosity,
oil saturation, thickness of class I reservoir, cluster spacing,
sand volume per stage, fluid volume per stage, and soaking
time) with the strongest correlation with the EUR. At the same
time, it was found that among the nine parameters, EUR was
negatively correlated with cluster spacing and Poisson’s ratio,
and positively correlated with other parameters. In addition,
the factors with higher correlation coefficients were mostly
geological parameters, which indicates that geological factors
have a greater impact on the EUR than engineering factors.

n
L (Xi—X)(Yi-Y)
r= i=1 (2)

4 2 & 512

Y (6% X (-7

= 1=
where r is the Pearson correlation coefficient between input
parameters and output parameters; X; is the i value of
parameter X; X is the average value of parameter X; Y; is the
i" value of parameter Y; Y is the average value of parameter
Y.

3.3 Data normalization

As shown in Table 1, the dimensions and value ranges of
input parameters were considerably different, leading to the
decrease of convergence speed or even failure of convergence
when using the gradient descent method. For the purpose of
improving the training efficiency of the neural network model,
the Min-Max normalization method was used to standardize
all input and output parameters so that the value range of each
parameter was mapped to [0,1]:

Xp = X7 Xmin (3)
Xmax — Xmin
where x, is the normalization parameter; x is the actual
parameter; Xpi, is the minimum value of variable x; xpax 1S
the maximum value of variable x.

3.4 Regularization technique

When there is little training sample data or the model is
too complex, the overfitting problem of the model can occur.
Therefore, regularization technology is often used in machine
learning to avoid overfitting. The regularization method is a
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general term for a class of methods to avert overfitting and
enhance the generalization performance of the DNN model
by introducing additional information into the original loss
function. Regularization techniques commonly used in deep
learning include early stopping, data augmentation, L1 and
L2 regularization, and dropout (Srivastava et al., 2014). This
study used early stopping to solve the overfitting problem. As
shown in Fig. 8, the validation error is reduced at the initial
stage of the training process. When the model is overfitted, the
training error decreases continuously, but the validation error
starts to increase. Once the validation error begins to increase
after several iterations, the training procedure stops. Then, the
model returns to the weight and deviation with the smallest
validation error.

3.5 K-fold cross validation

K-fold cross validation is an effective method to evalu-
ate the generalization performance of the model in machine
learning (Arlot et al., 2010). When there is little sample data,

cross validation can make the best of the whole sample data
set to train the model. Cross-validation is used to randomly
separate the whole data set into k mutually exclusive subsets
of the equal size, and each subset should hold the uniformity
of data distribution as far as possible. After that, the k-1
subset is selected as the training set, and the residual 1 subset
is treated as the testing set to evaluate the performance of
the model. After traversing K subsets, K training and testing
are conducted. The final return is the average of these K
test results. Although this method increases the amount of
calculation, it makes full use of the whole data set, and the
model is more reliable. Obviously, the stability and fidelity
of the evaluation results of cross-validation method largely
depend on the value of K (Zhou, 2016). Generally, the value
of K is 5, 10, and 20. As shown in Fig. 9, we selected the
most commonly used 10-fold cross validation method to avoid
the overfitting problem in the learning process of small sample
data.

3.6 Adam optimizer

Machine learning is a process of constantly updating a
set of parameters. The objective function is optimized by
updating the parameters using the optimization algorithm.
Gradient descent algorithm is a commonly used algorithm.
It optimizes the objective function by following the steepest
descent direction. At present, mainstream optimizers based
on gradient descent include stochastic gradient descent with
momentum and Adam. Other algorithms are mostly aimed at
the improvement of these two kinds of algorithms. Among
them, Adam is a first-order adaptive momentum stochastic
optimization algorithm, which can iteratively update the neural
network weight based on the training data (Khan et al., 2021).
The Adam algorithm is the combination of the Momentum
and RMSProp algorithms. It has the advantages of easy
implementation, high computing efficiency, and low memory
demand. We used the Adam algorithm to update the weight
and deviation of the DNN model, and its update rules are
described as follows:
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Testing set -

i=1

Table 3. Value table of hyperparameter optimization.

Optimization parameters Value

Type of activation function  purelin, logsig, tansig

Number of hidden layers 1,2,3,4,5
Number of neurons

Learning rate

5, 10, 15, 20, 30, 40, 50, 100, 200, 300, 400
0.00001, 0.00005, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5

6 =61 \/%’Jrgm, @)

"= ®
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vi=PBavi 1+ (1—B2) gy (8)

where ¢ is number of steps updated; 1 is learning rate; 6
represents the parameters to be updated; g is gradient of loss
function to 0; m; is the first-order matrix of gradient; v; is the
second-order matrix of gradient g; i, is the offset correction
of my; ¥, is the offset correction of v;; By, B, and € are the
hyperparameter of the algorithm. Generally, B is 0.9, B, is
0.999, and € is 10e~8.

4. Results and discussion

4.1 Hyperparameter optimization of the DNN
model

Two kinds of parameters are often involved in machine
learning. One is the parameters of the algorithm, also known
as hyperparameters, which are usually less than 10. The other
is the parameters of the model, which are usually large. Hyper-
parameters are usually generated by manually setting multiple
parameter candidate values. The parameters of the model auto-
matically generate multiple candidate models through learning,
which is completed by the Adam optimizer mentioned earlier.

Owing to the 10-fold cross validation, the average mean square
error of 10 neural network models established in the training
process was taken as the loss function. The data set after
feature selection was used to optimize the network structure
and hyperparameters of the DNN model. Table 3 lists the
parameter values. Given the hyperparameters, it took less than
1 second for a computer with 12 CPUs to train a model.

The box plot contains statistical information such as the
average value and distribution range of the objective function,
which is convenient to compare the performance and stability
of the model. Optimization results show that for the DNN
model, the performance of purelin activation function was very
poor, and the performance of logsig activation function was
slightly better than tansig activation function (Fig. 10). As
shown in Fig. 11, with the increase in the number of hidden
layers, the objective function first diminished rapidly. When
the number of layers was greater than 3, the objective function
fluctuated slightly. Then, based on the three hidden layers,
the number of neurons in each layer was further optimized.
The objective function was first diminished with the increase
in the number of neurons (Fig. 12). When the number of
neurons was greater than 20, the objective function fluctuated
slightly. When the number of neurons was 50, the prediction
accuracy was the highest. The learning rate is also an important
hyperparameter of the DNN model. The objective function
first diminished slowly with the increase in the learning rate.
However, when the learning rate was greater than (0.0005,
the objective function was augmented rapidly (Fig. 13). The
results show that 0.0005 was the best learning rate. Based
on above analysis, the optimal hyperparameters of the DNN
model are shown in Table 4.
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Table 4. Hyperparameter optimization results of DNN model.

Hyperparameter The optimal value
Type of activation function Logsig
Number of hidden layers 3

Number of neurons per layer 50

Learning rate 0.0005

4.2 EUR prediction based on the model

First, 10% of the total data set was stochastically selected
as the testing set. The remaining 90% data were randomly
divided into 10 copies, and the EUR prediction model was es-
tablished by 10-fold cross validation technology. The optimal
DNN models were established by using the hyperparameters
shown in Table 4. The result for one of these models is shown
in Fig. 14. The average determination coefficient of the 10
DNN models on the testing set was 0.73, showing that the
EUR prediction model based on DNN had strong prediction
performance. As shown in Table 5, the average mean square
error of the testing set on the DNN model was 0.51, while the
average mean square error on the multiple linear regression
model was 1.09. The prediction accuracy of EUR based on
DNN model was significantly higher than that of the simple
multiple linear regression model.

5. Conclusions

This study established a EUR prediction model of fractured
horizontal wells in tight oil reservoirs on the basis of the DNN.
Through research, the following conclusions were drawn:

1) The combination of traditional EUR prediction methods
and machine learning method to establish the DNN model
is an effective means to achieve rapid EUR forecasting
of fractured horizontal wells. In the Mahu tight reservoir,
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Fig. 14. Comparison between the normalized EUR predicted value and actual EUR.

Table 5. Comparison of prediction results in DNN and multiple linear regression model.

Number Actual EUR  DNN prediction

Mean square error

Linear regression model prediction
g p Mean square error

(10* m%) (10* m%) (10* m%)

1 3.92 332 0.36 4.27 0.12
2 7.86 7.11 0.56 6.64 1.49
3 4.16 4.48 0.1 5.15 0.98
4 5.48 4.94 0.29 441 1.14
5 3.66 4.87 1.46 5.24 2.5

6 4.28 3.73 0.3 4.82 0.29
Average value 4.89 4.74 0.51 5.09 1.09

2)

the SEPD model and five-region linear flow model are re-
liable methods for EUR prediction among the traditional
methods.

Feature selection shows that the EUR of horizontal wells
in tight oil reservoirs is mainly affected by nine char-
acteristic parameters. These include matrix permeability,
daily oil production in the first year, porosity, oil satu-
ration, thickness of the class I reservoir, cluster spacing,
fracturing fluid volume per stage, sand volume per stage,

3)

and soaking time. At the same time, the EUR is negatively
correlated with cluster spacing and Poisson’s ratio, and
positively correlated with other parameters.

For small sample data learning, using early stopping
and 10-fold cross validation technology can effectively
avoid the overfitting problem of EUR prediction model.
The continuous tracking and import of oil field data and
the expansion of the sample size of the database can
significantly increase the prediction accuracy of the DNN
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model.

4) The activation function, the number of hidden layers
and neurons per layer, and the learning rate all affect
the performance of the DNN model. The best DNN
model obtained by hyperparameter optimization requires
a logsig activation function, 3 hidden layers, 50 neurons
per layer, and a learning rate of 0.0005. Compared with
multiple linear regression model, the prediction accuracy
of the DNN model is twice that of the linear regression
model.
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