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Abstract:
Both viscous and capillary forces control the two-phase flow in porous media. The Buckley
Leverett solution for viscous flow in porous media has been proposed for over a half
century. While the corresponding studies of capillary dominated solutions are mainly based
on the capillary tube based models. The continuum solutions are just prevail in recently
years. The analytical solution of the combination of both effects is rarely investigated.
A self-similar analytical solution of spontaneous and forced imbibition in porous media
is proposed in this work and the corresponding concise algorithms are presented. The
proposed solution successfully solves this typical non-linear partial differential equation
by introducing a transformation variable and the capillary fractional flow function analog
to the fractional flow function of Buckley Leverett solution. Finally, the case study is
performed, which demonstrates the feasibility and accuracy of this proposed solution to a
general two-phase flow condition.

1. Introduction
The spontaneous and forced imbibition are widely encoun-

tered in various industries including textile processing, food
processing, drying engineering, petroleum engineering, etc.
Imbibition in porous media refers to the process of increasing
the wetting phase saturation. In this work, we focus on the
water wet porous media and keep the water noted as the
wetting phase. Spontaneous imbibition refers to the process
of wetting phase intake spontaneously by capillary pressure.
When other external forces (additional injection of the wetting
phase) are added within this process, this imbibition process is
called forced imbibition. For example, hydraulic fracturing in
development of unconventional reservoirs (Shen et al., 2018).
There are two types of spontaneous imbibition: countercurrent
and cocurrent spontaneous imbibition. The former refers to
that the total velocity equals to zero and that the flow directions
of wetting and non-wetting phases are on the opposite. The
latter refers to that the total velocity equals to the wetting
phase intake velocity at the inlet and that the flow directions
of wetting and non-wetting phases are the same. For forced
imbibition, there is only cocurrent flow and we ignore it and

only call it forced imbibition.
For spontaneous imbibition, lots of models have been

proposed based on the early works by Lucas (1918) and
Washburn (1921) (i.e., LW model). They used momentum
balance and neglected gravity and inertial effects to derive an
analytical solution for meniscus height as a function of time in
a vertical capillary tube. The viscosity ratio, tortuosity, variable
shaped pores and the fractal theory are further combined
within this type of capillary tube based models (Handy, 1960;
Li and Horne, 2000; Cai and Yu, 2011; Cai et al., 2014; Li et
al., 2016; Xiao et al., 2018). However, these models still cannot
consider some essential properties of porous media such as:
variable wettability, the difference between countercurrent and
cocurrent imbibition, etc. Apart from capillary tube based
models, Schmid et al. (2011, 2013) proposed an analytical
solution of spontaneous imbibition based on the continuum
dynamics using capillary pressure and relative permeability
curves of the porous media. This model can be understood as
the capillary analog to the classical Buckley-Leverett solution
(Buckley and Leverett, 1942) for viscous force dominated
flow. Most affecting factors can be considered within this
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model given the corresponding capillary pressure and relative
permeability curves. Recently Schmid et al. (2016) compared
their calculated results with the experimental measurements
of saturation profiles for a water-wet medium, which yielded
some good matches. Further reviews can be found in the work
by Meng et al. (2017).

For forced imbibition, the related studies are mainly nu-
merical methods (Fayers and Sheldon, 1959; Yokoyama and
Lake, 1981). Chen et al. (1990) and McWhorter and Sunada
(1990) did some primary works for the corresponding analyt-
ical solutions. Actually the spontaneous imbibition model by
Schmid et al. (2011, 2013) is also derived from McWhorter
and Sunada (1990)’s work. Analog to the fractional flow
function, they introduced the concept of capillary fractional
flow function defined as the ratio of wetting phase flow rate
for various wetting phase saturation to that at inlet with the
highest wetting phase saturation as shown in Eq. (6). Their
derived solution of forced imbibition is only applicable to
piston-like displacement as noted by Chen et al. (1990) and
the analytical solution involves the implicit integration, which
costs thousands of iterations before the convergence. Recently,
Bjørnarå and Mathias (2013) improved the solution using a
pseudospectral Chebyshev differentiation matrix. Schmid et al.
(2011, 2013, 2016) only focused on spontaneous imbibition
and the forced imbibition was not presented in their works.

In this work, we propose a self-similar analytical solution
of spontaneous and forced imbibition by introducing the cap-
illary fractional flow function (Chen et al., 1990; McWhorter
and Sunada, 1990; Schmid et al., 2016). Corresponding con-
cise algorithms for solving the analytical solution are also
proposed using the combination of Runge-Kutta and Bisection
methods. Finally, a case study is conducted to validate our
solution and algorithm.

2. A general analytical solution of spontaneous
and forced imbibition

The incompressible linear oil-water two-phase flow in
porous media is considered in this work. Water is set as the
wetting phase and oil as the non-wetting phase. Based on water
phase mass conservation, the following equation is obtained
as (Chen et al., 1990):

φ
∂Sw

∂ t
+

∂uw

∂x
= 0 (1)

where uw, Sw and φ are the Darcy velocity for the water phase,
water phase saturation and the porosity of a porous medium,
respectively.

Ignoring the gravity effect, the water phase Darcy flow
velocity is expressed by (Dake, 1978):

uw =
1

1+ kro(Sw)µw
krw(Sw)µo

(
ut + k

kro(Sw)

µo

∂ pc

∂x

)
(2)

where µ , k, kr and pc are the fluid viscosity, absolute per-
meability, relative permeability and capillary pressure, respec-
tively; Subscript o, w and t refer to the oil phase, the water
phase and the total two-phase, respectively.

Conventionally, the factional flow function is defined as
(Buckley and Leverett, 1942; Dake, 1978):

fw(Sw) =
1

1+ kro(Sw)µw
krw(Sw)µo

(3)

Defining D(Sw) = −k kro(Sw)krw(Sw)
µokrw(Sw)+µwkro(Sw)

∂ pc
∂Sw

, the Eq. (2) is
expressed in a concise form in Eq. (4).

uw = ut fw(Sw)−D(Sw)
∂Sw

∂x
(4)

The mathematical problem is to solve Eqs. (1) and (4) with
the following initial and boundary conditions in Eq. (5).

Sw(x, t = 0) = Swc (5a)

Sw(x = ∞, t > 0) = Swc (5b)

Sw(x = 0, t > 0) = S∗w (5c)

where Swc and S∗w are the water phase saturation for the
initial condition (connate water saturation) and at the inlet,
respectively. Note that the inlet water saturation S∗w is the
maximum saturation, which equals to 1-Sor for water wet
porous media, where the Sor is the residual oil saturation.

Analog to the Buckley and Leverett theory, a capillary
fractional flow function F(Sw)is introduced (Chen et al., 1990;
McWhorter and Sunada, 1990; Schmid et al., 2011) as:

uw = u0
wF(Sw) (6)

where u0
w is the water injection velocity at the inlet, which

implies that F(S∗w) =1.
Substituting Eq. (6) into Eq. (1), the following formula

is obtained after introducing a transformation variable ω =
x/
√

t.

φ
dSw

dω

(
−ω

2t

)
+u0

w
dF
dSw

dSw

dω

(
1√
t

)
= 0 (7)

To simplify Eq. (7), the water injection velocity at the inlet
is set as u0

w = A/
√

t, where A is a constant parameter. We can
get:

φ
dSw

dω

ω

2
= A

dF
dSw

dSw

dω
(8)

Then

ω =
2A
φ

dF
dSw

=
2A
φ

F ′ (9)

Then

dSw

dω
=

φ

2AF ′′
(10)

Substituting Eq. (10) into Eq. (4), the following equation
is obtained:

uw = ut fw−D
φ

2AF ′′
1√
t

(11)
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Set the initial range of A as [A1, A2] = [0, max]. Am = (A1+A2)/2.

Calculate the 𝐹(𝑆𝑤𝑐) from Runge-Kutta method by integrating

Eq. 13 from 𝑆𝑤
∗ to 𝑆𝑤𝑐 using A=Am.

If 𝐹 𝑆𝑤𝑐 = 0?

Stop, A=Am, 

output F(Sw)

If 𝐹 𝑆𝑤𝑐 > 0?
YES

NO

A2=Am, A1=A1;

Am=(A1+A2)/2

A1=Am, A2=A2

Am=(A1+A2)/2

YES

NO

𝐴1 − 𝐴2 < 𝑇𝑂𝐿?

YES

NO

Fig. 1. Flow chart of the algorithm for spontaneous imbibition calculation: Scenario #1 & #2.

The combination of Eqs. (6) and (11) yields:

A√
t
F = ut fw−D

φ

2AF ′′
1√
t

(12)

The total velocity is set as ut = B/
√

t (B is another
constant parameter) in order to eliminate the variable t. Finally,
the self-similar analytical solution of spontaneous and forced
imbibition is formulated as:

(AF−B fw)F ′′ =−
Dφ

2A
(13)

Once the capillary fractional flow function F(Sw) is cal-
culated from Eq. (13), the corresponding water saturation
propagation profile is obtained from Eq. (9).

Three scenarios exist in this proposed general solution: #1
Countercurrent spontaneous imbibition; #2 Cocurrent sponta-
neous imbibition; and #3 Cocurrent forced imbibition. For
the first scenario, the total flow velocity ut = 0, i.e., B = 0
and A is unknown; For the second scenario, the total flow
velocity equals to the injection velocity at the inlet, i,e., ut =
u0

w, therefore, A = B which is unknown. For both Scenario #1
& #2, the mathematical problem is to solve Eq. (13) with the
boundary conditions from Eq. (5) and an unknown A, however,

it is not solvable until the additional boundary condition
(F ′(Sw)

∗ = 0) is added to make sure that the spontaneous
imbibition velocity is zero given Sw = S∗w. For Scenario #3,
the total flow velocity equals to the injection velocity at the
inlet, i.e., ut = u0

w. Therefore, A = B, however, it is a given
value unlike the second scenario. The mathematical problem
is to solve Eq. (13) with the boundary conditions from Eq.
(5) and a given A and no additional boundary condition is
needed. Note that the value of A is larger than that in Scenario
#2 to make sure the forced imbibition happens. All the above
statements are summarized in Table 1.

3. Algorithms

3.1 Algorithm for spontaneous imbibition

For Scenario #1 & #2, the algorithm is identical except
for the different forms of Eq. (13) as shown in Table 1. We
propose a new algorithm based on Runge-Kutta and Bisection
methods (Chapra and Canale, 1988). Since the value of A is
within a range of 0 to a positive maximum. Initially we present
a large enough range for A, then use Runge-Kutta method to
get F(Swc) by integrating Eq. (13) from S∗w to Swc assigning
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Table 1. Three scenarios for the self-similar analytical solution from Eq. (13).

Scenarios Simplified forms of Eq. (13) To be solved Additional conditions besides Eq. (5)

#1 Countercurrent spontaneous imbibition FF ′′ =− Dφ

2A2 F(Sw), A F ′(S∗w) = 0

#2 Cocurrent spontaneous imbibition (F− fw)F ′′ =− Dφ

2A2 F(Sw), A F ′(S∗w) = 0

#3 Forced imbibition (F− fw)F ′′ =− Dφ

2A2 F(Sw) A

n1 3
n2 2 Fig. 5

k1 0.8
k2 0.2

sw kro krw fw
0.2 0.8 0 0
0.25 0.616204 0.001389 0.002249
0.3 0.462963 0.005556 0.011858
0.35 0.3375 0.0125 0.035714
0.4 0.237037 0.022222 0.085714
0.45 0.158796 0.034722 0.179426
0.5 0.1 0.05 0.333333
0.55 0.05787 0.068056 0.540441
0.6 0.02963 0.088889 0.75
0.65 0.0125 0.1125 0.9
0.7 0.003704 0.138889 0.974026
0.75 0.000463 0.168056 0.997253
0.8 0 0.2 1

Fig. 2
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Fig. 2. Schematic of F(Sw) with respect to different values of A.

F ′(S∗w) = 0. If F(Sw) = 0, then the value of A is what we want
to get, otherwise, using the Bisection method to shorten the
possible range of A. The details of this algorithm is shown
in Fig. 1. In the end, A and F(Sw) will be calculated and the
corresponding water imbibition profile and oil recovery factor
will be obtained. The numerical Runge-Kutta integral of Eq.
(13) can be implemented using the “ode45” function in the
Matlab environment (Shampine and Reichelt, 1997).

3.2 Algorithm for forced imbibition

For Scenario #3: forced imbibition, the value of A is
given, which is larger than that Asp obtained from cocurrent
spontaneous imbibition since additional water is injected.
Therefore, F(Sw) should always be no less than fw(Sw) as
noted by Chen et al. (1990). A schematic of F(Sw) with respect
to different values of A is shown in Fig. 2. When f

′
w(S
∗
w) = 0, A

= Asp which corresponds to cocurrent spontaneous imbibition
as shown in the blue curve. When A = ∞, F(Sw) becomes the
red curve, which consists of two parts: the linear part (Swc to
Sw f ) and the fw(Sw) part (Sw f to S∗w). Sw f refers to the frontal
water saturation obtained from Buckley Leverett theory (Dake,
1978). When A = ∞, the flow is dominated by the viscous
forces and the capillary effect becomes negligible, which
demonstrates the compatibility of our proposed analytical
model. Given A > Asp, the corresponding F(Sw) function is

between these two curves as shown in Fig. 2. Therfore, firstly
we need to check the value of f

′
w(S
∗
w). If f

′
w(S
∗
w)> 0, the initial

guess for F
′
(S∗w) is f

′
w(S
∗
w). Given a value of A, we use Runge-

Kutta method to get F(Swc) by integrating Eq.(13) from S∗w to
Swc. If F(Swc) > 0, the Bisection method is used to decrease

the guess for F ′(S∗w) as f
′
w(S
∗
w)+0
2 and do the iteration to get

F(Sw) = 0; If F(Swc) < 0, the Bisection method is used in
another way by changing the integral range from S∗w to Swc

to S∗w+Sw f
2 to Swc. Still the Runge-Kutta method is used to get

F(Swc) assigning F
′
(

S∗w+Sw f
2

)
= f

′
w(

S∗w+Sw f
2 ). The process is

also iterated until F(Swc) = 0. If initially f
′
w(S
∗
w) = 0 (actually

this situation is more common and general), the algorithm is
identical to the above by shortening the integral range from
S∗w to Swc to S∗w+Sw f

2 to Swc and do the iteration to get F(Swc)
= 0 and the detail of the corresponding algorithm is shown in
Fig. 3. Finally, the solution of F(Sw) and the corresponding
water imbibition profile are calculated.

4. Case study
Before proceeding the calculation, the capillary pressure is

expressed in a dimensionless from by:

pc(Sw) = pmax
c J(Sw) = pmax

c

(
S∗w−Sw

S∗w−Swc

)a

(14)
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Set the initial integral range of Eq. 13 as [S1, S2] = 

[𝑆𝑤
∗ , 𝑆𝑤𝑐]. 𝑆𝑚 = (S1+S2)/2.

Calculate the 𝐹(𝑆𝑤𝑐) from Runge-Kutta method by integrating 

Eq. 13 from 𝑆𝑚 to 𝑆𝑤𝑐 using 𝐹′ 𝑆𝑚 = 𝑓𝑤
′ (𝑆𝑚).

If 𝐹 𝑆𝑤𝑐 = 0?

Stop, output F(Sw)

If 𝐹 𝑆𝑤𝑐 > 0?
YES

NO

S2=Sm, S1=S1;

Sm=(S1+S2)/2

S1=Sm, S2=S2

Sm=(S1+S2)/2

YES

NO

𝑆1 − 𝑆2 < 𝑇𝑂𝐿?

YES

NO

Fig. 3. Flow chart of the algorithm for forced imbibition.

Table 2. Parameters for case studies.

pmax
c (kPa) k (D) µo (cP) µw (cP) φ a b1 b2 c1 c2 Swc S∗w

30 1 1 1 0.25 4 0.8 0.2 3 2 0.2 0.8

where pmax
c is the maximum capillary pressure; a and J(Sw) are

a positive parameter and the dimensionless capillary pressure
function, respectively.

Recall the definition of D(Sw), we can get the flowing
expression from Eq. (14).

D(Sw) = k
kro(Sw)krw(Sw)

µokrw(Sw)+µwkro(Sw)

apmax
c (S∗w−Sw)

a−1

(S∗w−Swc)a (15)

The Brook-Corey’s correlations (Peters, 2012) for relative
permeability curves are used as shown in Eq. (16):

kro = b1

(
1− Sw−Swc

S∗w−Swc

)c1

(16a)

krw = b2

(
Sw−Swc

S∗w−Swc

)c2

(16b)

where b1, b2, c1 and c2 are all positive parameters.

The parameters used in the case study is presented in
Table 2 and corresponding dimensionless pressure and relative
permeability curves are shown in Figs. 4 and 5.

Firstly, the spontaneous countercurrent and cocurrent im-
bibition are calculated using the algorithm from Fig. 1. The
calculated F(Sw) functions are presented along with fw(Sw)
in Fig. 6 and the water spontaneous imbibition profiles are
shown in Fig. 7 at the scale of the transformation variable ω

= x/
√

t. According to the figures, the F(Sw) of countercurrent
spontaneous imbibition is slightly higher than that of cocurrent
spontaneous imbibition. Since the velocity of a certain satu-
ration is proportional to the derivative of F(Sw) at the axis
of ω = x/

√
t, the saturation profile of cocurrent spontaneous

imbibition moves slightly faster than that of countercurrent
spontaneous imbibition as shown in Fig. 7. The larger the
water saturation, the faster does the profile propagate. For Sw
= S∗w, the profile doesn’t move. Besides, the calculated As for
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Fig. 4. Dimensionless capillary pressure vs. water saturation.
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Fig. 5. Relative permeability vs. water saturation.

countercurrent and concurrent imbibition are 9.67 × 10−5

m/
√

s and 1.27 × 10−4 m/
√

s and the recovery factors can
be calculated using RF =

∫ t
0

ut
φ

dt =
∫ t

0
A

φ
√

t dt = 2A
√

t
φ

assuming
a unit characteristic length, as shown in Fig. 8. The cocurrent
spontaneous imbibition yields a higher recovery given the
same time.

Secondly, the forced imbibition process is calculated using
the parameters from Table 2 and the algorithm from Fig. 3.
Given different injection velocities (different values of A),
the corresponding capillary fractional flow function F(Sw) are
presented in Fig. 9. Asp refers to the condition of cocurrent
spontaneous imbibition. And the conditions of 2 and 5 times
of the Asp are used to study the forced imbibition process. The
propagation profiles of water saturation are shown in Fig. 10
and the corresponding Buckley Leverett solutions (Dake, 1978;
Peters, 2012) are also presented, which ignore the capillary
pressure between the oil and water phases. According to the
figures, the curvature of F(Sw) decreases when the injection
velocity increases (A increases). The F(Sw) consists of two
parts: one is identical to a part of fw(Sw); the other is a less
tortuous curve connecting the transition point from the first
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Fig. 6. Calculated F(Sw) of countercurrent and cocurrent spontaneous
imbibition for the parameters given in Table 2.
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part to the point of (Swc, 0). When A = 5Asp, the second part
become quite close to a straight line and the connecting satura-
tion is approaching water frontal saturation Sw f . The saturation
propagation profiles present a more practical point of views
as shown in Fig. 10. When the injection velocity (value of A)
increases, the saturation propagates faster for the scale of ω =
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x/
√

t. The distance of the propagation is proportional to the
injection velocity for both Buckley Leverett solution and our
proposed solution of forced imbibition. The capillary effect
disperses the sharp front of water saturation. As the injection
velocity (value of A) increases, the difference between them
decreases and the upper part of the saturation profile coincides
with the Buckley Leverett solution. The capillary pressure
effect is alleviated at a higher velocity. In this case study,
when A = 5Asp, the difference between Buckley Leverett
solution and the forced imbibition is just near the frontal water
saturation. Supposing this conclusion is general, for example,
in some low permeability oil reservoirs, the increase of water
injection rate (probably no less than 5 times of the spontaneous
rate is better) will relieve the capillary effect and form a more
Buckley Leverett like front and increase the oil recovery given
the same injection pore volume. To further investigate the
effect of capillary pressure magnitude on the two-phase flow
characteristic in the reservoirs, using A = 2Asp as the basic
case, we multiply the capillary pressure curves by 3 and 1/3,
the corresponding water phase profiles are shown in Fig. 11.
The result is also compatible with the conclusion drawn in
Fig. 10. Higher capillary pressure tends to smooth the sharp
front of Buckley Leverett solution.

5. Summary and conclusions
A self-similar analytical solution of spontaneous and forced

imbibition is proposed in this work and the corresponding
concise algorithms (using a series of Runge-Kutta and Bisec-
tion methods) for solving the analytical solution are presented.
This work is essential supplementary to the Buckley Leverett
theory. The solution is applicable to general two-phase flow
conditions. The case study validates the solution and the
algorithms for both spontaneous and forced imbibition pro-
cesses. The capillary effect disperses the sharp front of water
saturation while a higher injection velocity can alleviate this
effect and restore the solution from Buckley Leverett theory.
Besides, this proposed analytical solution can be extended for
other similar nonlinear partial differential equations like the
form of ∂ s

∂ t +
∂

∂x

[
g(s) ∂ s

∂x = 0
]
, where s is the variable and g(s)

is a general expression of s with several constants.

Nomenclatures
Asp = Coefficient for cocurrent spontaneous imbibition
S∗w = Maximum water saturation
Swc = Connate water saturation
Sw f = Frontal water saturation
fw = Fractional flow function
kr = Relative permeability
pc = Capillary pressure
A = Coefficient for injection velocity
B = Coefficient for total velocity
F = Capillary fractional flow function
J = Dimensionless capillary pressure
RF = Recovery factor
S = Phase saturation
a = Coefficient for capillary pressure

b = Coefficient for relative permeability curve
c = Coefficient for relative permeability curve
k = Permeability
p = Pressure
t = Time
u = Darcy velocity
x = X direction
µ = Viscosity
ω = Transformation variable
φ = Porosity

Subscripts
w = Water phase
o = Oil phase
t = Total phases

Superscripts
′ = First order derivative
′′ = Second order derivative
max = Maximum value
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