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Abstract:
The well pattern optimization in the oilfield is challenging and intricate work due to the
heterogeneity of the permeability and viscosity. Traditionally, the well pattern optimization
is conducted by comparing the results of several plans manually designed by the reservoir
engineer, which is difficult to obtain the optimal well pattern. To address these challenges,
a framework that integrates a reservoir simulator into the StoSAG algorithm is proposed.
The well pattern operators proposed by Onwunalu and Durlofsy are applied to obtain
the variations of the well pattern and used as the optimization variables. During the
framework, the optimization variables are continuously adjusted by the StoSAG algorithm
in order to obtain the optimal one which maximize the objective function value. The
framework is applied to a synthetic reservoir. The results show that the StoSAG algorithm
can be successfully applied in the well pattern optimization and remarkably improve the
development effect. This method can be widely used in new oilfield development plan and
offer reference for well pattern deployment.

1. Introduction
The deployment of the well pattern is one of the most

important problems in the oilfield development. The optimal
well pattern is necessary for high recovery efficiency and
satisfactory economics while the poor well pattern will lead
to the low oil production and economic benefits (Feng et al.,
2012).

Most of the oilfields in China are clastic rock deposition
with strong heterogeneity. The reservoir heterogeneity has an
important influence on the productivity and recovery efficiency
(Wang et al., 2017). Therefore, the reservoir heterogeneity
should be taken into the consideration to obtain the optimal
well pattern. Many literatures are concerned with this specific
topic. Basically, methods applied in the well pattern optimiza-
tion can be divided into two categories: the conventional well
pattern optimization method and the well pattern optimization
method based on optimization theory.

The conventional well pattern optimization method mainly
includes two types: the method based on the experience of
petroleum engineer and the method based on the reservoir
theory.

For the first method, well pattern optimization is conducted
by comparing several well pattern plans manually designed

by petroleum engineer (Zhou et al., 2002). An et al. (2013)
took the BZ oilfield as an example and developed several well
pattern plans according to the distribution of the oil-bearing
sand and the permeability. The optimal well pattern was
obtained by comparing the results of the reservoir numerical
simulation corresponding to the plan. Xu et al. (2014) studied
the optimization of fracturing parameters in the well pattern
with horizontal and vertical wells combined. Similarly, several
plans were designed to obtain the optimal one.

As for the second method, many analytic expressions were
developed according to the reservoir engineering theory. Zhou
et al. (2008) derived the design formula of well space for
reservoir with permeability heterogeneity based on porous flow
theory. The validity of the formula is verified by the water
flooding experiments.

In the majority of the research mentioned above, the
method mainly depends on the experience of petroleum en-
gineers and focused on the parametric analysis, so the appli-
cation of this method is limited in a specific geology case.

With the development and application of the computer, the
well pattern optimization is transformed into the optimization
problem based on the optimization theory. With the aid of the
reservoir numerical simulation, the well pattern optimization
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is to adjust the location of the producer and injector by the
optimization algorithm to maximize the objective function
value. The objective function value used in the well pattern
optimization is the NPV (net present value) or the cumulative
oil production (Brouwer and Jansen, 2004; Zhao et al., 2011;
Do et al., 2012; Yao et al., 2012; Zhao et al., 2013; Awotunde,
2014; Oliveira and Reynolds, 2014; Fonseca, 2015). Yao
et al. (2012) maximized the NPV to solve the constrained
reservoir production optimization. Awotunde (2014) tried to
obtain the optimal locations of wells and the optimal controls
by maximizing the NPV.

The optimization algorithm can be divided into the gradient
algorithm (Sarma and Chen, 2008; Essen et al., 2009, 2011;
Zhang et al., 2010; Montleau et al., 2014) and gradient free
algorithm (Spall, 1992, 1998, 2000; Beckner and Song, 1995;
Guyaguler, 2002; Bangerth et al., 2006; Chen et al., 2008,
2010; Emerick et al., 2009; Wang, 2009; Onwunalu and
Durlofsky, 2010; Feng et al., 2012; Li et al., 2013; Isebor et al.,
2014; Zhang et al., 2015). Beckner and Song (1995) applied
the simulated annealing algorithm (SA) to maximize the NPV
and Emerick et al. (2009) tried the genetic algorithm (GA)
to solve the well placement optimization with nonlinear con-
straints. Onwunalu and Durlofsky (2010), Feng et al. (2012)
applied the particle swarm optimization algorithm (PSO) to
the well pattern optimization. Spall (1992) developed the
simultaneous perturbation stochastic approximation algorithm
(SPSA). The gradient is obtained by disturbing the control
vector and only the computation of objective function value
is involved. Although the gradient here is stochastic, it can be
guaranteed that the search direction is always uphill and the
expectation is the true gradient for the maximization problem.
Chen and Oliver (2008, 2010) proposed the EnOpt algorithm
which proved to be applied successfully to solve reservoir
production optimization. The EnOpt can not only be used
to optimize the production of a single reservoir model, but
also can be used for robust production optimization based
on multiple models. Many control vectors obeying the Gauss
distribution are firstly obtained based on the current optimal
control vector and then the covariance of the control vectors
and the objective function value corresponding to the control
vectors are computed to determine the search direction.

The StoSAG algorithm is proposed by Fonseca et al.
(2016), which has been widely applied to solve the optimiza-
tion problem. In this paper, the StoSAG is applied to the well
patter optimization. Firstly, the well pattern establishment and
the well pattern optimization model are given, and then the
StoSAG is applied to a synthetic reservoir example in order
to check the validity of the method.

2. Well pattern establishment
The general well patterns in oilfield include five-spot

pattern, seven-spot pattern and nine-spot pattern. Onwunalu
and Durlofsky (2010) have put forward the solution of trans-
forming the well pattern question into the optimization ques-
tion. Firstly select a well pattern unit, then do a series of
transforming operation to get the new well pattern, lastly
expand the new well pattern on the whole reservoir.
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Fig. 1. Sketch of scaling transformation.

2.1 Well pattern operators

The well pattern operators raised by Onwunalu include the
scaling, shift, shear and rotation. The five-spot well pattern is
taken as example to illustrate the transformation process.

(1) Scaling
Scaling operator increases or decreases the size of a well

pattern, thus the well pattern can change, as shown in Fig. 1.
(2) Shift
A well pattern unit can be moved by the shift operator

without changing the original geometric shape, as shown in
Fig. 2, while the well pattern unit moves horizontally and
vertically by ∆x and ∆y, respectively.

(3) Shear
Through the shear operation on well pattern, the lateral

deformation has been accomplished. As shown in Fig. 3, the
well pattern changes the shape by shearing a specific angle γ .

(4) Rotation
Set one peak of well pattern as the center point and rotate

a certain angle clockwise, the well pattern rotation will be
accomplished. As shown in Fig. 4, set point A as the center
point and rotate θ degrees, then the well pattern has changed.

After the scaling, shift, shear and rotation transformation,
the new well pattern is transformed from the initial well pattern
ABCD to the final well pattern A*B*C*D* shown in Fig. 5.

The four operators are set as the well pattern vector
u= {as f , bs f , ∆x, ∆y, γ, θ}, where as f , bs f are the scaling
factor, ∆x, ∆y are the length of shift, γ is the shear angle and
θ is the rotating angle. The component of the well pattern
vector has the certain limits:

as f ∈
[

0,max
(

RS− xRe f
a0

,
LS− xRe f

a0

)]
(1)
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Fig. 2. Sketch of shift transformation.
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Fig. 3. Sketch of shear transformation.
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Fig. 4. Sketch of rotation transformation.

bs f ∈
[

0,max
(

US− yRe f
b0

,
DS− yRe f

b0

)]
(2)

∆x ∈ [LS− xRe f ,RS− xRe f ] (3)

∆y ∈ [DS− yRe f ,US− yRe f ] (4)

γ ∈
[
−π

3
,

π

3

]
(5)

θ ∈
[
−π

2
,

π

2

]
(6)

where RS represents the reservoir right boundary, LS represents
the reservoir left boundary, DS represents the reservoir down
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Fig. 5. Transformation sketches of well pattern.
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Fig. 6. Sketch of well pattern expansion.

boundary, US represents the reservoir up boundary, xRe f rep-
resents the x-coordinate of the reference point, yRe f represents
the y-coordinate of the reference point, a0 represents the
horizontal length of the well pattern, b0 represents the vertical
length of the well pattern.

2.2 Generation of well pattern

Through the above four operators, the new well pattern
unit is obtained and then expanded on the whole reservoir to
establish the well pattern for the reservoir. Generally, set the
reservoir center as the base point, firstly expand the new well
pattern in the first quadrant, then the residual quadrants. As

shown in Fig. 6, the left graph is the well pattern expansion
based on the normal five-spot well pattern unit, while the right
one is that based on the new well pattern unit created by the
above operators.

3. Well pattern optimization model

3.1 Objective function

The well pattern optimization is to find the maximum
or the minimum objective function value over its domain.
The optimization problem here is to maximize the NPV by
adjusting the well pattern. The NPV is defined by:

J (u)=
Nt

∑
n=1

{
∆t

(1+b)
tn

365

[
No

∑
i=1

(
roQn

o,i− cpwQn
pw,i
)
−

Nw

∑
j=1

ciwQn
iw, j

]}
− (NoCo +NwCw) (7)

where u is the well pattern vector; Nt denotes the total number
of time steps; n denotes the nth time step; ∆tn is the nth time
step size, d; the time at the end of nth time step is denoted by
tn; b is the annual discount rate; No and Nw denote the number
of producers and injectors, repectively; ro is the oil revenue,

RMB/m3; cpw is the water disposal cost, RMB/m3; ciw is the
water injection cost, RMB/m3; Qn

o,i and Qn
pw,i, respectively,

denote the average oil production rate and water production
rate at the ith producer for the nth time step, m3/d; Qn

iw, j is
the average injection rate at the jth producer for the nth time
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Fig. 7. The reservoir permeability distribution.

Table 1. The cumulative oil production and NPV of different well pattern types.

Type Cumulative oil production (m3) NPV (104 RMB)
Initial well pattern Optimized well pattern Initial well pattern Optimized well pattern

Five-spot 152,393 185,238 15,474 19,147

Seven-spot 200,250 200,126 14,462 18,188

Nine-spot 152,078 163,187 14,313 17,980

step, m3/d; Co and Cw denote the cost of drilling a producer
and a injector, respectively, RMB.

3.2 Bound constraints

The value of well pattern vector is limited to a certain
extent. The component of well pattern vector should be
satisfied with the following condition:

ulow
i ≤ ui ≤ uup

i , i = 1,2, · · · ,Nu (8)

where ui denotes the ith component of the well pattern vector;
ulow

i and uup
i denote the minimum and maximum value of the

ith component; Nu denotes the dimension number of the well
pattern vector.

The methods dealing with bound constraints include trun-
cation method and the log-transformation method. Here the
log-transformation is applied to each element of the well
pattern vector. The bound constrained optimization problem
can be converted to an unconstrained constrained problem by
applying the log-transformation. The ith component of the
transformed well pattern vector x corresponding to u is given
by:

xi = ln
(

ui−ulow
i

uup
i −ui

)
(9)

The optimization is done in terms of the transformed
well pattern vector, but at each iteration the inversion of
the transformed well pattern vector to the original domain is
required in order to calculate the objective function value. The
well pattern vector u can be obtained by applying the inverse
log-transformation to the transformed pattern vector x through
the following formula:

ui =
exp(xi)uup

i +ulow
i

1+ exp(xi)
=

uup
i + exp(−xi)ulow

i
1+ exp(−xi)

(10)

Taking the bound constraints into consideration, the well
pattern optimization model can be expressed by:

Maximize J(u) (11)

s.t.

ulow
i ≤ u≤ uup

i , i = 1,2, · · · ,Nu (12)

4. Optimization algorithm
The StoSAG has been successfully applied to the pro-

duction optimization. The detailed description and derivation
of StoSAG was given by Fonseca et al. (2016), so only the
calculation procedure is given here. The key to optimization
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Table 2. The number of producers and injectors of different well pattern types.

Type Initial well pattern Optimized well pattern
Producers Injectors Producers Injectors

Five-spot 9 4 6 6

Seven-spot 17 10 14 7

Nine-spot 21 4 9 3

图8
Fig. 8. The initial and optimized well pattern for five-spot (left: initial well pattern; right: optimized well pattern).

(a) (b)

Fig. 9. The oil saturation of initial and optimized well pattern for five-spot (left: initial well pattern; right: optimized well pattern).
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图10Fig. 10. The initial and optimized well pattern for seven-spot (left: initial well pattern; right: optimized well pattern).

(a) (b)

Fig. 11. The oil saturation of initial and optimized well pattern for seven-spot (left: initial well pattern; right: optimized well pattern).

method is to generate next well pattern vector. For StoSAG,
the next well pattern vector is defined as follow:

uk+1 = uk +α
kdk (13)

where uk is the estimate of the optimal well pattern vector at
the kth iteration; αk is the step size obtained by one dimension
search method; dk is the search direction.

The search direction can be determined by the following
steps.

Step 1 Generate the covariance matrix Cu by using a
spherical covariance function (Oilver et al., 2008). For the
element in covariance matrix Ci, j.

Ci, j = σ
2

{
1− 3|i− j|

2a + |i− j|3
2a3 , |i− j| ≤ a

0, |i− j|> a
(14)

where i and j denote the control step i and j, respectively; σ

refers to the standard deviation; a is the number of correlated
control steps.

Step 2 Generate Ne random samples ui, where ui∼
N
(
uk,Cu

)
. These samples can be obtained by

uk
i = uk +C1/2

u Zi, i = 1,2, · · · ,Ne (15)

where C1/2
u is the lower triangular matrix obtained by the

Cholesky decomposition of Cu; Zi is the distribution vector,
where Zi∼ N (0, I). I is Nu×Nu dimension identity matrix.

Step 3 Compute the search direction dk:

dk =
1

Ne

Ne

∑
i=1

(
uk

i −uk
)(

J
(

uk
i

)
− J
(

uk
))

(16)
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图12
Fig. 12. The initial and optimized well pattern for nine-spot (left: initial well pattern; right: optimized well pattern).

(a) (b)

Fig. 13. The oil saturation of initial and optimized well pattern for nine-spot (left: initial well pattern; right: optimized well pattern).

Step 4 Generate the next well pattern vector uk+1:

uk+1 = uk +α
k dk

‖dk‖
∞

(17)

5. Field application
The method is applied to a simple heterogeneous reservoir

to analyze the well placement optimization. The reservoir
model contains 51× 51× 3 grids. The grid size is 1 0m×
10 m× 3 m. The permeability heterogeneity is serious with
a high permeability zone in the middle. The permeability
distribution is shown is Fig. 7. The porosity is 0.25 and
the initial reservoir pressure is 21 MPa. The bottom flowing
pressure of the producers is set as 5 MPa. The injectors work
at the rate of 80 m3/d while the maximum injection pressure

is not more than 27 MPa. The injection-production rate of
the reservoir is 1:1. The total production cycle is 3,600 days.
The drilling cost of the producer and injector is 1 million
RMB. The oil price is set equal to 2,000 RMB/m3. The water
treatment cost and water injection rate are all 50 RMB/m3.
The annual discount rate is set equal to 12%.

The five-spot, seven-spot and nine-spot well pattern are
optimized by the method proposed in this paper. The results
are listed in the Tables 1 and 2.

As shown in the Table 1, for the five-spot well pattern, the
NPV increases from 154 million RMB to 191 million RMB, an
increase of 24%. The cumulative oil production increases from
15.23×104 to 18.52×104 m3. The oil saturation of initial and
optimized well pattern is shown in the Fig. 9. The development
effect is significantly improved. There are 9 producers and 4
injectors in the initial well pattern while there are 6 producers
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and 6 injectors in the optimized well pattern.
For the seven-spot well pattern, the NPV increases from

144 million RMB to 181 million RMB, an increase of 26%,
while the cumulative oil production keeps at the 20× 104

m3. The oil saturation of initial and optimized well pattern is
shown in the Fig. 11. There are 17 producers and 10 injectors
in the initial well pattern while there are 14 producers and 7
injectors in the optimized well pattern. It is obvious that the
same cumulative oil production can be obtained by adjusting
the location and number of the producers and injector further
to improve the economic performance by the optimization.

The NPV of nine-spot well pattern increases from 143
million RMB to 179 million RMB, an increase of 25%.
The cumulative oil production increases from 15.21×104 to
16.31×104 m3. The oil saturation of initial and optimized well
pattern is shown in the Fig. 13. There are 21 producers and 4
injectors in the initial well pattern while there are 9 producers
and 3 injectors in the optimized well pattern. By comparison,
it can be found that the optimized five-spot well pattern has
the best effect. For the development of this oilfield, it is
recommended to adopt the optimized five-spot well pattern.

6. Conclusion
The well pattern operators including scaling, shift, shear

and rotation are used as the optimization varialbes. Through
these well pattern operators, different variations of the well
pattern can be obtained. The well pattern optimization is con-
ducted by integrating a numerical simulator with the StoSAG
algorithm. The optimal well pattern is obtained by contin-
uously adjusted the well pattern operators by the StoSAG
algorithm. The five-spot, seven-spot and nine-spot well pattern
are applied in a synthetic reservoir model. The optimization
results for the synthetic reservoir model indicates a satisfactory
performance of the StoSAG algorithm and the higher NPV
value can be obtained by the five-spot well pattern. This
method can be applied to the development of new oilfield to
provide reference for the construction and adjustment of the
well pattern.
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