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Abstract:
Hydraulic fracturing is a pivotal technology in the development of unconventional tight
reservoirs, in which accurate monitoring of fracture parameters is significant. This paper
proposes an improved differential evolution algorithm (EMDE) to calculate the Effective
Propped Volume (EPV) accurately. The forward simulation results demonstrate that when
the transmitting source plane is in a particular position, the relationship between signals and
a specific parameter is the most obvious, providing a basis for the application of inversion
algorithms. Furthermore, the difference between the population center and the individual
is added to accelerate the convergence of the EMDE algorithm. A simplified selection
strategy of the simulated annealing algorithm is used to enhance the convergence speed
and the ability to find the global optimal value of the objective function simultaneously. The
one-stage and two-stages inversion strategies are designed to calculate the parameters. In
the two-stage inversion, the second-stage is constrained by the forward simulation and the
first-stage results. It indicates that the errors of the two-stages inversion can be controlled
within 5%. Through the inversion simulation proposed in this paper, the feasibility of
the electromagnetic method to monitor the EPV is verified, and it provides a theoretical
guidance for subsequent fracturing construction adjustments.

1. Introduction
Unconventional oil and gas resources have the charac-

teristics of wide distribution and large reserves, which is a
significant candidate for future energy development. Hydraulic
fracturing is an essential stimulation approach to increase
the production of unconventional reservoirs. In the process
of hydraulic fracturing and subsequent development, accurate
measurement of fracture morphology and volume can pro-
vide crucial guidance for subsequent well pattern design, re-
fracturing, the fracturing of new wells, and production scheme
design.

At present, microseismic mapping, clinometer, and down-
hole tiltmeter mapping are widely used measurement methods.
However, some limitations still exist in these methods such as
the lack of ability to monitor fracture width or conductivity
(Basu and Sharma, 2014). Therefore, a cheap, direct, accurate
strategy to measure the morphology of hydraulic fractures,
especially the Effective Propped Volume (EPV) is required.

The idea of using electromagnetic theory for fracture mon-
itoring has drawn attentions. Symington et al. (2010) proposed
an electro fracture method to convert shale oil and gas to
producible. It used a conductor with appropriate electrical
resistivity to heat formations in-situ. LaBrecque et al. (2016)
put detection points on the surface and conducted a small range
of field experiments using the electromagnetic monitoring
method to measure the volume of the fracture. Palisch et al.
(2016) conducted a far-field experiment, a neo-proppant used
for electromagnetic monitoring was tested. They conducted
a far-field experiment, in which a neo-proppant used for
electromagnetic monitoring was tested. Cipolla et al. (2009)
cooperated with Carbo Company conducted a simulation to
study the influence of proppant distribution on production.
Basu et al. (2014) used low-frequency electromagnetic induc-
tion to diagnose fracture geometry, cases of fractures, wellbore
in different relative locations, and the proppant distribution
impact on the monitoring signals.

In the subsequent processing of received signals, appropri-
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ate algorithms must be used to calculate the proper fracture
parameters. The inversion methods for cross-well electromag-
netic tomography (Newman and Alumbaugh, 1997; Liu et al.,
2008) and 3-D imaging from a single wellbore (Alumbaugh,
2001; Mallan and Alumbaugh, 2004; Abubakar and Habashy,
2006) have become increasingly complete.

Scholars have studied various inversion algorithms for
different specific problems. In the wellbore-surface 3-D data
inversion, the approximate iterative method reduces the large
data amount of computation and storage, but due to the low
accuracy, the inversion results are limited to qualitative or
semi-quantitative interpretations. In recent years, based on the
complete solution of the nonlinear inversion methods are pro-
posed, the accuracy of the inversion is promoted without too
much computation. Abubakar et al. (2008) developed a Gauss-
Newton regularization inversion method. The inversion of
cross-well electromagnetic field used the multiple optimization
objective functions combining with the least square method.
The model and radial basis function were used to invert
the surface-wellbore electromagnetic data (Li et al., 2011).
Although the inversion speed and stability were increased, the
inversion process relied heavily on the constraint conditions
and the initial model. Nonlinear conjugate gradient method
was popular for wellhead electromagnetic data inversion.
Wang et al. (2011) used a reweighted regularized conjugate
gradient method for wellhead electromagnetic data inversion.
Zhang et al. (2011) explored the application of the nonlin-
ear conjugate gradient method to invert the borehole-surface
magnetotelluric data. The research of nonlinear conjugate
gradient inversion method in the wellbore electromagnetic
field was at the primary stage of development. Its inversion
iteration process did not depend on the selection of initial
value, program implementation was simple, and it could obtain
the global optima convergence. Further, the dimensionality
of the simulation problem usually had no effect on the rate
of convergence in this strategy, so the problem of high-
dimensional inversion could be solved effectively.

Different from other wellbores electromagnetic data inver-
sions, the electromagnetic observation signal in this paper is
obtained by the monitoring instrument moving and scanning in
the wellbore, providing constraints for the inversion algorithm
according to the simulated forward results. In the accurate
simulation, the peak signal section presents different charac-
teristics. The primary purpose of the inversion algorithm is
to correct the fracture azimuth, length, and height by fitting
the peak area data of the observation signal. The least-square
method can be applied to the solution process. However, it
has some drawbacks due to the non-convergence problems
caused by the partial derivatives solution (Ruan, 1999). In
recent studies, the differential evolution (DE) algorithm has
been widely used in the inversion of electromagnetic wave
signals due to its simplicity, improvable character, and high
adaptability, which will be described specifically in following
sessions.

Section 2 presents the mathematical and physical models,
the sensitivity analysis, the forward results. Section 3 gives
the inverse method. The inversion examples and results are
presented in section 4.

2. Forward modeling method for electromagnetic
monitoring of propping fractures

For the application of Electromagnetic (EM) technology in
the fracture monitoring, conductive proppant will be used in-
stead of traditional proppant to generate conductive fractures.
It will increase the conductive contrast between the fracture
and the background matrix. Subsequently, the electromagnetic
signal transmitter is employed to move along the wellbore and
transmit signals to generate a primary electromagnetic field.
The conductive fractures respond to the primary electromag-
netic field and generate the secondary electromagnetic field.
The receiving tool records the corresponding field strength and
direction of the primary and secondary electromagnetic field.
Therefore, the fracture volume calculated by this method is
the EPV, rather than Stimulated Reservoir Volume (SRV).

The main objective of the forward simulation is to change
each parameter solely. When the transmitting source plane and
the coordinate axis are at different angles, the forward simula-
tion obtain the received signals through numerical simulation,
analyze the difference of the received signals, determine the
parameter corresponding to the signals with the maximum dif-
ference, and provide constraints for the subsequent inversion
algorithm.

2.1 Mathematical and Physical modeling

Fig. 1 illustrates a schematic diagram of the horizontal
well and fractures. The horizontal well extends along the Z
direction. The fracture plane is within the XY plane or at
a certain azimuth with the XY plane. The model assumes
that the diameter of the wellbore is 0.2 m, and the hydraulic
fracture extends outward centered from the wellbore’s outer
diameter. This paper simulates an open hole well which
assumes thatthe electrical characteristics of background space
(reservoir) are homogeneous.

Due to the high computational complexity of the 3-D
model, a reduced model is established. The geometry of the
fracture is rectangular, of which the length and height are less
than 20 m. The thickness is set as 0.2 m, and the reservoir is a
cube model of 100 m × 50 m × 50 m. The electrical param-

Fig. 1. Schematic diagram of the wellbore and fracture parameters.
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Fig.2 Schematic of triaxial transmitting Tx- triaxial receiving Rx instrument 186 

In the actual cases, the monitoring instrument moves and scans along the wellbore, the 187 

fracture, while the reservoir are stationary. In the model, the positions of transmitters and 188 

receivers are relatively static while the fracture is gradually moving along the wellbore. The 189 

purpose of setting up two receivers at each receiving point is to process two different signals by 190 

the linear method so as to eliminate the induced signals of the reservoir background field 191 

(Zhang et al., 2019) 192 

In the simulation process, the initial position of the fracture is set as z=-3.5m; the fracture 193 

moves in the positive direction of the Z-axis (wellbore axis direction), the scanning interval is 194 

0.5m. The specific parameters of the model are shown in the Table. 1. 195 

Table. 1 The simulated parameters 196 

Parameters Value Parameters description 

rou_M 10000[ohm*m] Reservoir rock resistivity 

rou_F 0.001[ohm*m] Fracture resistivity 

sigma_M 1/rou_M Reservoir rock conductivity 

sigma_F 1/rou_F Anomalous body conductivity 

Lx 50[m] The length of the model in the x-direction 

Fig. 2. Schematic of triaxial transmitting Tx- triaxial receiving Rx instrument.

eters, including conductivity and permeability of the reservoir,
are known. In practical applications, these parameters are
measured before signal processing by field engineers.

The model consists of electromagnetic anomalous bodies,
i.e. the fracture filled by the electromagnetic proppant, the
wellbore, the monitoring tools and the reservoir. The fracture
is assumed to be uniformly filled with proppant; hence, the
fracture conductivity is assumed to be homogeneous, and
the boundary layer of the model is assumed to be a perfect
electrical conductor, i.e.:

n×E = 0 (1)

The constitutive equation of electromagnetic wave propa-
gation is Maxwell’s equations. It assumes that a current source
J produces an electric field E and a magnetic field H in
the three-dimensional domain Ω ⊂ R3. J, E, H are all three-
dimensional and complex number vector fields. Maxwell’s
equation describes the relations between these fields by char-
acterizing the constitutive properties of the medium:

∇×H = (σ − iωε)E + J (2)

∇×E = iωµH (3)

∇× εE = ρT (4)

∇×µH = 0 (5)

where σ is the conductivity; ε is the dielectric constant; µ

is the permeability; σE is the inductive reactance current;
−iωεE is the inductive displacement current; J is the im-
pressed current; ρT is the total charge density in the defini-
tional domain.

The difference equation of Eq. (2) is formulate as:

iωρT = ∇ · (J+σE) (6)

So ρT comes from the sum of the difference of J and
∇ ·σE. The charge is taken at the discontinuity of σE, and
the cumulative charge is going to be applied to ρT . Only in
the special case of σ = 0 can we know the initial value of ρT .
This is rare in geophysical problems (essentially only within
the resistance tool), so ρT is not considered in the model.

When the impressed current is DC, ω = 0, maxwell’s
equations applied to this simulation can be simplified as
follows:

∇×H = σE + J (7)

∇×E = 0 (8)

∇×µH = 0 (9)

In Eq. (7), J is the impressed current, that is, the elec-
tromagnetic transmission source in the model, which can be
either non-scattered field or scattered field.

2.2 Monitoring tools for modeling

In Fig. 2, Tx represents the three-axis transmitter, Rx1,
Rx2, Rx3 are three receiving points. Each receiving point
contains two receivers: Rx11, Rx12, Rx21, Rx22, Rx31, Rx32.
The transmitter Tx contains three toroidal coils. Each toroidal
coil plane is perpendicular to the X-axis, Y-axis, Z-axis,
respectively, Tx can be adjusted to be perpendicular to the M-
axis (M-axis is formed when the Z-axis rotates anticlockwise
45 degrees in the XZ plane.) if necessary.

In the actual cases, the monitoring instrument moves and
scans along the wellbore, the fracture, while the reservoir
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Table 1. The simulated parameters.

Parameters Value Parameters description
row M 10000 [ohm·m] Reservoir rock resistivity

row F 0.001 [ohm·m] Fracture resistivity

sigma M 1/rou M Reservoir rock conductivity

sigma F 1/rou F Anomalous body conductivity

Lx 50 [m] The length of the model in the x-direction

Ly 50 [m] The length of the model in the y-direction

Lz 100 [m] Model z-direction length (shaft direction)

Thf 0.2 [m] Thickness of fracture

ellipseA 12 [m] Long semi-axis of fracture (length)

ellipseB 10 [m] Short semi-axis of fracture (height)

AzimuthF 15 [deg] Azimuth

Azimuth 0 [deg] Azimuth of source surface

are stationary. In the model, the positions of transmitters and
receivers are relatively static while the fracture is gradually
moving along the wellbore. The purpose of setting up two
receivers at each receiving point is to process two different
signals by the linear method so as to eliminate the induced
signals of the reservoir background field (Zhang et al., 2019)

In the simulation process, the initial position of the fracture
is set as z = −3.5 m; the fracture moves in the positive
direction of the Z-axis (wellbore axis direction), the scanning
interval is 0.5 m. The specific parameters of the model are
shown in the Table 1.

2.3 Sensitivity analysis

The signals obtained by receivers can be divided into
four types: the real part of the electric field, the real part of
the magnetic field, the imaginary part of the electric field,
the imaginary part of the magnetic field. Through the whole
simulation process, if all the four signals are collected and
analyzed, it will undoubtedly increase the calculation amount.
Therefore, we necessitate determining the most suitable type
of signals through sensitivity analysis. Depending on the
difference between the signal curves in each case, the signal
type with the largest difference is considered to be the most
sensitive to the current parameters.

(1) The existence of the fracture
Simulated conditions: Transmitting frequency is 100 Hz,

the magnetic dipole moment of the toroidal coils is 100 A·m2.
Signals are received respectively when the fracture exists or
not.

Simulated results: The imaginary part of the electric field
and magnetic field signals are sensitive to the existence of
fractures.

(2) Formation conductivity
Simulated conditions: Set the formation conductivity as

1E-2 S/m, 1E-3 S/m, 1E-4 S/m, 1E-5 S/m.
Simulated results: The real part of the electric field sig-

nals is the most sensitive to the deviation of the formation

conductivity and the fracture location. The imaginary part of
the magnetic field signals is sensitive to the location of the
fracture.

(3) Transmitting frequency
Simulated conditions: Set the transmitting frequency as

1E+2 Hz, 1E+3 Hz, 1E+4 Hz, 1E+6 Hz.
Simulated results: The imaginary part of the magnetic field

signals is the most sensitive to the deviation of the frequency
and the location of the fracture.

In conclusion, though the real part of the electric field
signals is the best to distinguish the formation conductivity and
has the most significant strength, it can hardly distinguish the
fracture locations in low-frequency transmitting, under which
the sufficient detection range can be obtained (Huang and
Boyle, 2008). Therefore, the imaginary part of the magnetic
field signals is the most suitable to observe.

2.4 Forward simulation results

The pivotal parameters of the fracture are necessarily
the length, the height, and the azimuth. They are the key
parameters to determine the EPV. Previous simulation found
that when the absolute values of azimuth are the same, the
signals overlapped. Therefore, both the value and the sign
should be taken into the calculation for the azimuth.

This method can be used to calculate the following five
fracture parameters, according to them the three-dimensional
morphology of simple fractures can be diagrammatized.

1) Transmitting frequency;
2) The height of the fracture;
3) Azimuth value;
4) Azimuth sign;
5) Multi-fracture system case.

The overall idea of forward-simulation is to set several
groups of fracture parameters as single variable analysis,
obtaining monitoring signals and the relationship between pa-
rameters and signals through simulation. The authors analyze
all the signals, including signals from R×1, R×2, and R×3.
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In the case of changing only one parameter and changing
two parameters, Rx receives the signals when the transmitting
source plane are perpendicular to the X-axis, the Y-axis, and
the Z-axis. The listed figures represents results with the most
apparent signal differences. In the legend of the attached
figures, ‘L’ on behalf of the ‘Length’, ‘H’ for the ‘Height’,
‘A’ for the ‘Azimuth’, ‘F1’ for the ‘first fracture’, ‘F2’ for the
‘second fracture’. The number after the letter is their value;
the unit is ‘m’ for the length and height, ‘◦’ for the azimuth.

Figs. 3-8 illustrate the distributions of the signals in the
forward simulation, when the transmitting source plane is
in a specific position, the relationship between the signals
and a specific parameter is the most obvious. When the
transmitting source plane is perpendicular to the Z-axis, the
peak area of the signals is sensitive to the length and height,
the value of the azimuth is corresponding to the transmitting
source plane perpendicular to the X-axis, the sign of the
azimuth is corresponding to the transmitting source plane
perpendicular to the M-axis. The forward simulation results
provide constraints for the inversion process, especially the
two-stages inversion and more accurate inversion results.
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Fig. 3. The simulated results of fracture length (The transmitting source plane
perpendicular to the Z-axis).
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Fig. 4. The simulated results of fracture height (The transmitting source plane
perpendicular to the Z-axis).
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Fig. 6. The simulated results of azimuth sign (The transmitting source plane perpendicular to the M-axis). (a) +15 [deg] vs -15 [deg] (b) +30 [deg] vs -30
[deg] (c) +45 [deg] vs -45 [deg] (d) +60 [deg] vs -60 [deg] (e) +75 [deg] vs -75 [deg].
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Fig. 7. The simulated results of multi-fracture system case with a constant
height (The transmitting source plane perpendicular to the Z-axis).
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Fig. 8. The simulated results of multi-fracture system case with a constant
length (The transmitting source plane perpendicular to the Z-axis).
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3. An inversion method for electromagnetic mon-
itoring of the propping fracture

3.1 Electromagnetic inversion and inverse problem
analysis

The primary purpose of the inversion algorithm is to
calibrate the parameters, i.e., fracture azimuth, length, and
height, by fitting the simulation signal values to the observa-
tion signal values. The least-square method can be tentatively
used to solve the inversion problems. However, due to the
non-convergence problems caused by the solution of partial
derivatives and parameters in different dimensions, it has no
advantage. In recent studies, the DE algorithm has the advan-
tage of simplicity, ease of improvement, and high adaptability
which has been widely used in the inversion of electromagnetic
signals.

3.2 Optimized inversion algorithm based on differ-
ential evolution method

DE algorithm performs better when the input variates
are discrete data (Storn and Price, 1997). In general, the
DE algorithm is preferable to a genetic algorithm (GA) and
particle swarm optimization (PSO) (Vesterstrom and Thomsen,
2004). However, the DE algorithm tends to converge to local
optimum and stop searching for the multi-peak problem of
electromagnetic signals. In this regard, various improved DE
algorithms have been proposed, such as DESAP (Teo, 2006),
SADE (Qin and Suganthan, 2005), FADE (Brest et al., 2006),
JDE (Liu and Lampinen, 2005), JADE (Zhang and Sander-
son, 2007). The above algorithms adopt different variation
strategies and adaptively change the control parameters in
the DE to find the global optimal value. Chen et al. (2008)
proposed an improved DE algorithm combining with a local
search algorithm to accelerate the convergence and enhance
the performance.

The improved differential algorithm for antenna optimiza-
tion is applied to the inversion of propping fractures parame-
ters according to the characteristics of electromagnetic signals
(Wang and Zhang, 2009). As used in the field of electromag-
netic fracture monitoring, the algorithm in this paper is called
improved differential evolution algorithm (EMDE). Based
on the JADE variation strategy, the difference between the
population center and the individual is added to accelerate the
convergence of the algorithm. A simplified selection strategy
of the simulated annealing algorithm is used to enhance the
convergence speed and the ability to find the global optimal
value simultaneously.

The EMDE algorithm ameliorates the mutation and se-
lection operators of the tranditional DE algorithm. The four
operators of EMDE are described in detail below.

(1) Generating an initial random population
The independent variable of the objective function O(~M)

is a vector in D-dimensional continuous space RD, ~M =
(m1,m2, · · · ,mD), its optimization goal is to make O(~M)
reach the minimum value. An initial population containing

n individuals is set to distribute randomly and evenly in the
solution space.

(2) Mutation operator
The individual ~Mg

i in the generation g generates the off-
spring individual ~Vg

i through mutation, the following mutation
strategies are usually adopted (Wang and Zhang, 2009):

DE/rand/1 : ~Vg
i =

~Mg
r3 +F · (~Mg

r1− ~Mg
r2) (10)

DE/best/1 : ~Vg
i =

~Mg
best +F · (~Mg

r1− ~Mg
r2) (11)

DE/current− to−best/1 :
~Vg

i =
~Mg

i +F · (~Mg
best − ~Mg

i )+F · (~Mg
r1− ~Mg

r2)
(12)

DE/best/2 :
~Vg

i =
~Mg

best +F · (~Mg
r1− ~Mg

r2)+F · (~Mg
r3− ~Mg

r4)
(13)

DE/best/2 :
~Vg

i =
~Mg

i +F · (~Mg
r1− ~Mg

r2)+F · (~Mg
r3− ~Mg

r4)
(14)

DE/current− to−best/2 :
~Vg

i =
~Mg

r5 +F · (~Mg
best − ~Mg

i )+F · (~Mg
r1− ~Mg

r2)

+F · (~Mg
r3− ~Mg

r4)

(15)

where ~Mg
r1, ~Mg

r2, ~Mg
r3, ~Mg

r4, ~Mg
r5 is the random individual ex-

cept ~Mg
i in the population, respectively; ~Mg

best is the individual
which makes the objective function value minimum; F is the
weight factor or mutation coefficient. Set its value interval as
[0.2, 0.7].

When the individual ~Mg
best of DE/current− to−best/1 is

changed to ~Mg,p
best , ~Mg,p

best is a random selection of the best p
individuals in a population, DE/current− to− p− best/1 is
proposed as:

DE/current− to− p−best/1 :
~Vg

i =
~Mg

i +F · (~Mg,p
best − ~Mg

i )+F · (~Mg
r1− ~Mg

r2)
(16)

Combining with electromagnetic signals, n individuals in
contemporary populations are divided into t subpopulations
according to the fast clustering method in each iteration.
The center of the subpopulation including individual ~Mg

i is
denoted as ~Mg

C, and the monomial with ~Mg
C is added to the

DE/current− to− p−best/1 mutation operator:

DE/current− to− p−best/2 :
~Vg

i =
~Wg

i +F · (~Mg,p
best− ~Mg

i )+F · (~Mg
C− ~Mg

i )

+F · (~Mg
r1− ~Mg

r2)

(17)

Boundary constraints are added to the program to prevent
the mutational individual from crossing the boundary. If the
definitional domain of the parameter is known, the inversion
efficiency can be promoted by adding constraints for optimiza-
tion.

(3) Cross operator



240 Qi, J., et al. Advances in Geo-Energy Research 2020, 4(3): 233-246

Every ~Vg
j,i in the ~Vg

i proceeds the cross operation (CR ∈
[0,1], CR = 0.8 in this paper):

~Wg
j,i =

{
~Vg

j,i , i f (rand j[0,1]≤CR) or ( j = rand(D)+1)
~Mg

j,i , else
(18)

Operates (2) and (3) are repeated n times to generate n
initial individuals and n trained individuals.

(4) Selection operator
The traditional greedy selection operator of DE prone to

resulting in the locally optimal solution, which can be avoided
by the simulated annealing algorithm. Thereby, the EMDE
selects the simplified simulated annealing (SA) as the selection
operator.

~Mg+1
i =


~W,

i f (O(~Wg
i )< O(~Mg

i )) or
(O(~Mg

i )≥ O(~Mg
i ) && rand(1)> P)

~Mg
i , otherwise

(19)
where,

P = exp(−∆O/T ) (20)

When P = 1 , Eq. (19) becomes the greedy selection oper-
ator; T is annealing control temperature, T (g+1) = αT (g), α

is slightly less than 1. The setting of initial temperature T0 is
crucial for global optimal search. If is higher, the search of the
global optima is easier, but it takes more time. On the other
hand, the global optima may not be found, although it takes
less time. Setting P as a constant could simplify the search
algorithm.

Combining with the results of the forward simulation, the
EMDE will be used for inversion optimization. The EMDE
algorithm for electromagnetic fracture monitoring is in the
appendix.

3.3 Objective function

Set the inversion objective function to minimize the vari-
ance of simulated and observed values:

O(~M) =
NS

∑
j=1

[
w j

n j

∑
i=1

(
dobs,i, j−dsim,i, j

dobs,i, j

)2]
(21)

where O(~M) is the optimal objective function of inversion;
~M is the fracture parameters to be corrected, including the
azimuth, length and height of the fracture; NS is the number of
downhole monitoring tool movement steps, i.e. assumed that
one detection is carried out at each pause; n j is the number
of different signals received during a detection process; w j is
the crucial coefficient of the detection signal to the inversion
results in j step; dobs,i, j is the observed (real) signal value;
dsimu,i, j is the simulated signal value obtained through the
simulator.

The population number of each iteration is 10, while each
population contains 10 individuals.

4. Inversion process and results
Through forward modeling, the monitoring signals are not

sensitive to the positive and negative signs of the fracture
azimuth (from the X-axis, the counterclockwise direction is
positive, and the clockwise direction is negative). Therefore,
it is necessary to obtain the signal when the transmitting
source plane is perpendicular to the M-axis in the monitoring
scanning process. In the inversion tests, it assumes that the
fracture sign has been determined.

The observation data used in the inversion are the resultant
magnetic field imaginary part signals. When the transmitting
source plane is perpendicular to the Z-axis, the peak area
signals include the information of the azimuth, length and
height. The EMDE algorithm is employed to fit this set of
observation data, and to observe the inversion effect.

The observation data only include the approximate interval
when the monitoring tool scans the fracture and produces the
peak area signal to reduce the computation during the inversion
iteration. In the actual monitoring process, the fracture location
is imprecise; the signals are recorded from the beginning to the
end without interruption. The forward simulator is employed
to generate the observation data, then the observation data set
and the real data set tend to be the same through iteration, the
objective function value is minimum, the simulated parameter
is the real value.

In this paper, we have carried out inversion examples of
2 types: single fracture and double fractures, first of all, one-
stage inversion of these two fracture structures is carried out.
Every objective function value curve is plotted by the average
data of twenty times running results.

The fracture

The wellbore

8.
0m

45[deg]

Fig. 9. The three views of the real single-fracture model.
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The fracture 1

The wellbore

The fracture 2

9.
0m

8.
0m

55[deg]

Fig. 11. The three views of the real double-fractures model.
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Fig. 10. The average objective function value curve of one-stage/single-
fracture.

4.1 Case 1: One-stage inversion of single-fracture

Firstly, the single fracture model is simulated. The fracture
parameters of the real model are given as: the azimuth is 45
[deg], the length is 14 m, the height is 8 m. The real fracture
morphology is shown in Fig. 9.

After twenty generations of evolution (each generation
contains ten individuals), the objective function value curve
is shown in Fig. 10. The fracture parameters calculated by
the one-stage inversion are: the azimuth is 48.96 [deg], the
length is 12.04 m, the height is 9.85 m. After twenty inversion
iterations of the EMDE, the error of the azimuth, length,
and height all had a range of (5%-15%). It is found that
the objective function value declines slowly, which is due to
the multi-solution of the inversion process. If the value of
the objective function decreases further after more iterative
evolutions, there may still be a significant error.

4.2 Case 2: One-stage inversion of double-fractures

The model of double-fractures is inverted. The fracture
parameters of the real model are given as: the first fracture’s
azimuth is 55 [deg], length is 17 m, height is 9 m. The second
fracture’s azimuth is 25 [deg], length is 13 m, height is 8 m.
The real fracture morphology is shown in Fig. 11.
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Fig. 12. The average objective function value of one-stage/double-fractures.

The objective function value curve is shown in Fig. 12.
After twenty iterations of DE, the fracture parameters are
calculated as: the first fracture’s azimuth is 49.67 [deg], length
is 14.63 m, height is 11.35 m. The second fracture’s azimuth
is 31.24 [deg], length is 11.82 m, height is 10.05 m.

The results of the one-stage inversion process demonstrate
that its rate of convergence and accuracy of the results are
both unsatisfactory. The error is higher than 5%, or even
20%. Thereby, the two-stages inversion process is purposed
to promote the accuracy of the inversion results.

The first stage inversion sets the transmitting source plane
perpendicular to the X-axis, in this position, the forward
simulation finds signals are only sensitive to the azimuth of
fractures, so that the azimuth can be accurately calculated.
Due to the constraints of simulated forward results and the
specific azimuth, the two-stages inversion method can be
used to calculate the objective parameters more accurately;
the difficulty and multi-solution of calculation are greatly
reduced.

4.3 Case 3: Two-stages inversion of single-fracture

The established real model of case 3 is the same as that in
case 1. Due to the inversion of the length and the height in-
volving two parameters, more iterative evolution can get better
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Fig. 13. The average objective function value curve of two-stages/single-fracture. (a) The first stage inversion (b) The second stage inversion.
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Fig. 14. The average objective function value curve of two-stages/single-fracture. (a) The first stage inversion (b) The second stage inversion.

results. Therefore, compared to the ten iterations in one-stage
inversion, the inversion of the length and the height conducts
twenty evolutionary iterations (each generation contains ten
individuals), the objective function value curves of the two-
stages inversion of single fracture are shown in Fig. 13.

The objective function value of the azimuth inversion
decreases obviously in the third iteration, which is close to the
optimal value. The objective function value of the length and
the height inversion decreases obviously in the fourth iteration
and in the 12th iteration, which is close to the optimal value.
The inversion results are: the azimuth is 45.20 [deg], the length
is 13.75 m, the height is 8.34 m.

It can be calculated that after two stages of EMDE inver-
sion of the single fracture model, the errors of the azimuth,
length, and height are all less than 5%. The accuracy of
the two-stages inversion is higher than the one-stage single-
fracture inversion. The reason is that, we only need to calculate
azimuth in the first stage inversion. Therefore, the multi-

solution of the algorithm is reduced, and the global search
ability is improved. The law of the forward model and the ac-
curate azimuth is used to constrain the second stage inversion,
which reduces the uncertainty of the inverse problem.

4.4 Case 4: Two-stages inversion of double-fractures

The given real model is the same as that in case 2. After
twenty iterations of evolution (the population number of each
iteration is 10), the objective function value curves are shown
in Fig. 14.

After twenty iterations of DE, the results are: the first
fracture’s azimuth is 54.46 [deg], length is 16.55 m, height is
9.32 m; The second fracture’s azimuth is 25.37 [deg], length
is 13.68 m, height is 7.65 m.

After two-stages EMDE inversion, the errors of the pa-
rameters, including the azimuth, length, and height of the two
fractures, are all less than 5%. The two-stages inversion pro-
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Table 2. The data of the inversion examples.

Case Parameter Set value (ture value) Inversion revaluevalue (value) Error, %

one-stage/single-fracture
azimuth, deg 45 48.96 8.09

length, m 14 12.04 16.28

height, m 8 9.85 18.78

one-stage/double-fractures

azimuth1, deg 55 49.67 10.73

length1, m 17 14.63 16.2

height1, m 9 11.35 20.7

azimuth2, deg 25 31.24 19.97

length2, m 13 11.82 16.2

height2, m 8 10.05 20.4

two-stages/single-fracture
azimuth, deg 45 45.2 0.44

length, m 14 13.75 1.82

height, m 8 8.34 4.08

two-stages/double-fractures

azimuth1, deg 55 54.46 0.99

length1, m 17 16.55 2.72

height1, m 9 9.32 4.27

azimuth2, deg 25 25.37 1.46

length2, m 13 13.68 3.43

height2, m 8 7.65 4.58
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Fig. 15. The diagram of the average objective function value.

duces higher accuracy than one-stage inversion.
Compared to the one-stage inversion, the accuracy of

both the single-fracture and the double-fractures results after
the two-stage inversion is higher. It demonstrates that using
the law of the forward model and the definite azimuth to
constrain the inversion can well reduce the uncertainty of the
inverse problem and significantly increase the reliability of the
inversion results.

4.5 Inversion conclusion

The specific data for each case are summarized in Table
2.

Fig. 15 illustrates the value of the objective function falls
faster in cases with fewer target parameters. For all cases,
the value of the objective function has decreased significantly,
even the global optima has been found in some cases within
five iterations. Since the calculation of the length, the height
and the azimuth are separated and constrained in the two-
stages inversion, it can be clearly seen in Fig. 15 that the
decline rate of the two-stages inversion is better compared
to the one-stage inversion. According to Table 2, the former
error is within the allowable range for field application (5%);
It demonstrates that using the results of the forward simula-
tion and the specific azimuth to constrain the inversion can
effectively reduce the uncertainty of the inverse problem and
significantly increase the reliability of the inversion results.

5. Conclusion
In this work, an EMDE is innovatively applied in the inver-

sion process, based on an electromagnetic fracture monitoring
method, and the EPV is accurately calculated.

A triaxial transmitting Tx-triaxial receiving Rx instrument
is designed to transmit and receive electromagnetic signals.
The sensitivity analysis found that selecting the imaginary
part of the magnetic field signal as an observation signal is
theoretically more advantageous. When the transmitting source
plane is in a specific position, the relationship between the
signals and a particular parameter is the most obvious. When
the transmitting source plane is perpendicular to the Z-axis, the
peak area of the signals is sensitive to the length and height,
the value of the azimuth is corresponding to the transmitting
source plane perpendicular to the X-axis, the sign of the
azimuth is corresponding to the transmitting source plane
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perpendicular to the M-axis. The forward simulation results
can provide constraints for the inversion process, especially
the two-stages inversion, to obtain more accurate inversion
results.

The mutation and selection operator of the traditional
DE algorithm are modified to make the DE algorithm more
suitable to the fracture monitoring. In the inversion of the
fracture parameters, we set up 4 cases to test the EMDE
algorithm. One-stage and two-stage inversion strategies are
proposed to calculate the parameters. In the second stage
inversion is constrained by forward simulation and the first
stage results. Findings indicate that the final result error of the
two-stages inversion can be controlled within 5%. It is proved
that the EMDE algorithm has high accuracy in the inversion
of fracture parameters.
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Appendix

Algorithm1: The EMDE algorithm for electromagnetic fracture monitoring

INPUT: Fractures to be observed; Horizontal well length; Number of fractures Nm; Instrument moving step; Objective
function O(~Mg

i ).
OUTPUT: The solution of the g th iteration.
Initialize the population M.
For i = 1; Num Pop % Num Pop is the number of individuals in a population;
Calculate the objective function of the i th individual O(~Mg

i );
End
For g = 1:n % g is the iteration number, n is the maximum number of iterations;
Identify the best individual ~Mg,p

best of the p better individuals in the population;
Calculate the center of the current population ~Mg

C;
For i = 1: Num Pop

Variable coefficient F ← [0.2,0.7];
randomly pick two individuals ~Mg

r1, ~Mg
r2, (~Mg

r1 6= ~Mg
i , ~Mg

r2 6= ~Mg
i );

generate the intermediate rand 1 and best 1;
mutate according to Eq. (17), get the mutation individual ~Vg

i of ~Mg
i ;

cross each ~Vg
j,i in ~Vg

i , CR← 0.8, D is the dimension of R;
for j = 1:i

if (rand j[0,1]≤CR) or ( j = rand(D)+1)
new individual ~Wg

j,i = ~Vg
j,i

else ~Wg
j,i = ~Mg

j,i
calculate the objective function value O(~Vg

j,i) of ~Vg
j,i

if (O(~Wg
i )< O(~Mg

i )) or (O(~Wg
i )≥ ~Mg

i ) && rand(1)> P) % P is defined in Eq. (20)
~Mg+1

i = ~Wg
i

Else
~Mg+1

i = ~Mg
i

End
End
End


