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Abstract:
In this work, we present a hydrodynamics coupled phase-field surfactant model with
variable densities. Two scalar auxiliary variables are introduced to transform the original
free energy functional into an equivalent form, and then a new thermodynamically
consistent model can be obtained. In this model, evolutions of two phase-field variables
are described by two Cahn-Hilliard-type equations, and the fluid flow is dominated by
incompressible Navier-Stokes equation. The finite difference method on staggered grid
is used to solve the above model. Then a classical droplet rising case and a droplet
merging case are used to validate our model. Finally, we study the effect of surfactants
on droplet deformation and merging. A more prolate profile of droplet is observed
under a higher surfactant bulk concentration, which verifies the effect of surfactant in
reducing the interfacial tension. Increases in surface Péclet number and initial surfactant
bulk concentration can enhance the non-uniformity of surfactant distribution around the
interface, which will arise the Marangoni force. The Marangoni force acts as an additional
repulsive force to delay the droplet merging.

1. Introduction
Surfactants, interface active agents, are known to lower the

interfacial tension and allow for the formation of emulsion
(Khatri and Tornberg, 2014; Yang, 2018). Commonly-used
surfactants are amphiphilic compounds, meaning they contain
both hydrophilic heads and hydrophobic tails (Liu and Zhang,
2010; Khatri and Tornberg, 2014). This special molecular
composition enables surfactants to selectively absorb on fluid
interfaces. Surfactants play a crucial role in everyday life and
many industrial processes (Liu and Zhang, 2010), such as the
cleanser essence, the crude oil recovery and pharmaceutical
materials, thus having an understanding of their behavior is
a necessity. Numerical simulation is taking an increasingly
significant position in investigating interfacial phenomena, as it
can provide easier access to some quantities such as surfactant
concentration, pressure and velocity, which are difficult to
measure experimentally (Liu et al., 2018; Yang et al., 2019).
However, the computational modeling of interfacial dynamics
with surfactants remains a challenging task.

Numerical methods to simulate the multiphase system
with surfactants based on the Navier-Stokes equation (Zhang
et al., 2019) can be roughly divided into two categories:
sharp interface models and the phase-field model (Wang et
al., 2019). Commonly-used sharp interface models include
the level set method (Xu et al., 2006, 2012), the volume
of fluid (VOF) method (James and Lowengrub, 2004; Alke
and Bothe, 2009) and the front tracking method (Muradoglu
and Tryggvason, 2008). Although sharp interface models have
made great progresses in simulating interfacial flows with
surfactants, they still suffer from several drawbacks, such as
unphysical re-initialization processes in the level set method
and complex interface reconstruction processes in the VOF
method. The phase-field model shows great advantages in
investigating interfacial phenomena and it has been extensively
used with many successes (Shen and Yang, 2015; Van der
Sman, 2016; Kou et al., 2018; Kou and Sun, 2018a, 2018b).
This method introduces a phase-field variable to distinguish
two pure phases, and the interface is treated as a thin layer,
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inside which the phase-field variable varies continuously (Yue
et al., 2004; Chen et al., 2009; Zhu et al., 2017; Kou and
Sun, 2018a). Unlike shape interface models, the phase-field
model does not need to track the interface explicitly, and the
interface can be implicitly and automatically captured by the
evolution of phase-field variable. Therefore, the computations
and analysis of the phase-field model are much easier than
other models (Xu et al., 2018; Zhu et al., 2019a; Wang et al.,
2020).

The phase-field model was first used to study the dynamics
of phase separation with surfactants by Laradji et al. (1992).
Two phase-field variables were introduced to represent volume
fractions of fluids and surfactant concentration, respectively.
The original Ginzburg-Landau potential was modified by intro-
ducing some additional energy terms to account for the effect
of surfactants. Since then, a variety of phase-field surfactant
models have been proposed (Komura and Kodama, 1997;
Fonseca et al., 2007) and reviews of these models can refer to
(Li and Kim, 2012; Van der Sman and Meinders, 2016; Yang
and Ju, 2017; Zhu et al., 2018). Here we only highlight two
representative works. Van der Sman and Van der Graaf (2006)
introduced the logarithmic Floy-Huggins potential to restrict
the range of surfactant concentration. A nonlinear coupling
surface energy potential was used to attract surfactants onto the
fluid interface. An enthalpic term was also adopted to stabilize
the phase-field model and control the surfactant solubility in
the bulk phases. Engblom et al. (2013) analyzed the well-
posedness of the phase-field surfactant model proposed by
Van der Sman and Van der Graaf (2006), and provided strong
evidence that the model was mathematically ill-posed for a
large set of physically relevant parameters. They made critical
modifications to the model and substantially increased the
domain of validity. Their model can describe realistic adsorp-
tion isotherms, e.g., Langmuir isotherm, in thermodynamic
equilibrium. In this study, we will use this modified free energy
functional to describe a binary fluid-surfactant system.

We can directly obtain chemical potentials through varia-
tional derivatives of the free energy functional with respect to
two phase-field variables. Two Cahn-Hilliard-type equations
can be adopted to describe the evolutions of two phase-field
variables (Liu et al., 2018; Zhu et al., 2019c). The hydrody-
namics coupled phase-field surfactant model can be obtained
if two Cahn-Hilliard-type equations are further coupled to the
Navier-Stokes equation. This model allows us to investigate
the interfacial dynamics with soluble surfactants. However,
nonlinear terms in chemical potentials, arising from the double
well potential and Flory-Huggins potential, will bring great
difficulties to the construction of numerical schemes and
solution of the whole governing system (Zhu et al., 2019b).
A strategy is needed to transform the nonlinear potentials in
the free energy functional, then we can get a new model,
which allows us to design efficient schemes to solve the whole
governing system. In this study, we use the scalar auxiliary
variable (SAV) approach (Kou et al., 2018; Shen et al., 2018)
to transform the free energy functional into an equivalent
form. Then a new governing system is obtained by using the
variational approach. In particular, two phases with variable
densities are considered. Using the new model, we investigate

the effect of surfactants on the interfacial flow.
The rest of this paper is organized as follows. In section

2, we present a hydrodynamics coupled phase-field surfactant
model with variable densities. Interfacial dynamics with sol-
uble surfactants are investigated in section 3 and the paper is
finally concluded in section 4.

2. Governing equation
In this section, we consider a typical dimensionless phase-

field surfactant model in (Engblom et al., 2013) for a two-
phase system with soluble surfactants

E f (u, φ , ψ) =
∫ (Cn2

4
|∇φ |2 +F (φ)+PiG(ψ)

)
dΩ

+
∫

(Fs (φ ,ψ)+Fb (φ ,ψ))dΩ

(1)

where two phase-field variables are used in the free energy
functional. The first phase-field variable φ is used to distin-
guish two phases,

φ (x, t) =

{
−1, fluid I
1, fluid II

(2)

and it varies continuously across the interface between -1
and 1. The other phase-field variable ψ is used to represent
the surfactant concentration. The parameter Cn determines the
interfacial thickness and Pi is a time-dependent parameter. The
first two terms in Eq. (1) is the Ginzburg-Landau-type energy
potential. The square gradient term contributes to the two-
phase mixing, while the polynomial part F (φ) =

(
φ 2−1

)2
/4,

the double well potential, promotes the two-phase separation.
The competition between the two terms creates a diffuse
interface. The third term G(ψ)=ψ lnψ + (1−ψ) ln(1−ψ)
in Eq. (1) is the logarithmic Flory-Huggins potential, and it
controls the entropy of mixing soluble surfactants with the bulk
phases. The first term ψ lnψ in G(ψ) models the ideal mixing
of surfactants in the bulk phases and guarantees the value
of ψ to be positive, and the second term (1−ψ) ln(1−ψ)
restricts ψ <1. The special molecular composition of surfac-
tants enables them to selectively absorb on the fluid interface.
A surface energy potential Fs = ψ

(
φ 2−1

)2
/4 is adopted in

the free energy functional to account for the high surfactant
concentration around the interface. Lastly, the nonlinear cou-
pling term Fb = ψφ 2/(4Ex) in Eq. (1) plays an important
role in penalizing free surfactants in the bulk phases and
stabilizing the phase-field model. In contrast to the surface
energy potential Fs, Fb is inactive at the fluid interface where
φ ≈ 0. However, to some extent, Fs and Fb are complementary:
Fs locally attracts surfactants to the fluid interface while Fb
globally counteracts the occurrence of free surfactants. We
can directly obtain chemical potentials using the variational
approach from the free energy functional (Eq. (1)), but these
chemical potentials, arising from the nonlinear double well
potential and Flory potential, will bring great difficulties to the
construction of numerical schemes and solution of the whole
governing system. To solve this problem, a SAV approach is
used to transform the free energy functional into a new form,
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then we can obtain a new phase-filed surfactant model for
two-phase flow with variable densities. The new model allows
us to develop efficient schemes to investigate the interfacial
dynamics with soluble surfactants.

Although both the double well potential F(φ) and the
Flory-Huggins potential G(ψ) are bounded from below, the
latter is not always positive in the whole domain. We add a
zero term PiB−PiB to the free energy functional (Eq. (1)),
and rewrite it into

E f (φ ,ψ) =
∫ (Cn2

4
|∇φ |2 +Pi(G(ψ)+B)

)
dΩ

+
∫ (

F (φ)+
ψφ 2

4Ex
−

ψ
(
φ 2−1

)2

4

)
dΩ−PiB |Ω|

(3)

where the positive constant B ensures G(ψ)+B > 0, and B
= 1 is adopted in this study. Note that the free energy is not
changed due to the introduction of the zero term PiB−PiB.
We now use the SAV approach (Shen et al., 2018; Zhu et al.,
2018) to transform the free energy functional into a new form.
The SAV approach was first proposed to construct numerical
schemes for the Cahn-Hilliard equation, and the developed
scheme is usually energy stable and efficient. Since then the
SAV approach has been applied to a large class of gradient
flows, because it does not restrict to specific forms of nonlinear
parts in the free energy functional (Shen et al., 2019). The idea
of the SAV approach is quite simple but quite different from
the traditional approach. For example, it does not require the
second derivative of F(φ) to be bounded as the stabilization
approach. Through a simple substitution of scalar auxiliary
variables, the nonlinear parts are transformed into quadratic
forms of new scalar variables. More precisely, we define two
scalar variables

U =
√

Eu (φ), V =
√

Ev (ψ) (4)

where

Eu (φ) =
∫

F (φ)dΩ, Ev (ψ) =
∫

(G(ψ)+B)dΩ (5)

In turn, the free energy functional can be transformed into
an equivalent form

E f (φ ,ψ,U,V ) =
∫ (We

2
ρ|u|2 + Cn2

4
|∇φ |2

)
dΩ

+
∫ (

ψφ 2

4Ex
−

ψ
(
φ 2−1

)2

4

)
dΩ

+U2+PiV 2−PiB |Ω|

(6)

Through the functional derivatives of E f with respect
to phase-field variables φ and ψ we can obtain chemical
potentials wφ and wψ

wφ =−Cn2

2
∆φ +

U√
Eu (φ)

F ′ (φ)+
ψφ

2Ex
−ψφW

Ut =
1

2
√

Eu (φ)

∫
F ′ (φ)φtdΩ

(7)

wψ =
V Pi√
Ev (ψ)

G′ (ψ)+
φ 2

4Ex
−W 2

4

Vt =
1

2
√

Ev (ψ)

∫
G′ (ψ)ψtdΩ

(8)

Note that φ 2− 1 are denoted as W in Eqs. (7) and (8).
These two equations allow us to treat nonlinear potentials
semi-explicitly when we construct time-marching schemes.

Evolutions of phase-field variables φ and ψ can be de-
scribed by the conserved Cahn-Hilliard-type equations (Eng-
blom et al., 2013),

φt +∇ · (uφ) =
1

Peφ

∆wφ (9)

ψt +∇ · (uψ) =
1

Peψ

∇ ·Mψ ∇wψ (10)

where Peφ and Peψ are Péclet numbers. A degenerate mobility
Mψ = ψ (1−ψ), which vanishes at the extreme points ψ

= 0 and ψ = 1 adopted to combine with the logarithmic
chemical potential Eqs. (7)-(10), are coupled to the Navier-
Stokes equation in the form (Engblom et al., 2013; Shen and
Yang, 2015)

ρut +ρu ·∇u+J ·∇u− ∇ ·ηD(u)
Re

+

∇p+

(
φ∇wφ +ψ∇wψ

)
Re Ca Cn

= 0
(11)

∇ ·u = 0 (12)

where D(u) =∇u+∇T u and J=
(
λρ −1

)
∇wφ/2Peφ . u is the

velocity field, p is the pressure, Re is the Reynolds number
and Ca is the Capillary number. We usually assume the density
ρ and viscosity η have the following linear relations (Yuan et
al., 2019),

ρ =
1−λρ

2
φ +

1+λρ

2
, η =

1−λη

2
φ +

1+λη

2
(13)

where λρ and λη are density and viscosity ratios, respectively.
In particular, if we consider a body force, e.g., the gravi-

tational force, the dimensionless momentum equation read

ρut +ρu ·∇u+J ·∇u− ∇ ·ηD(u)
Re

+

∇p+

(
φ∇wφ +ψ∇wψ

)
BoCn

−ρg = 0
(14)

where Bo=ReCa is the Bond number, and g is the unit vector
denoting the direction of body force.

Periodic boundary conditions or the following boundary
conditions

∂nφ
n+1 = ∇wn+1

φ
·n = ∇wn+1

ψ ·n
= ∇pn+1 ·n = u = 0, on Γ

(15)

can be used to close the above governing system. Here denotes
boundaries of the domain.

The total energy Etot of the hydrodynamic system Eqs.
(7)-(12) is the sum of kinetic energy Ek and free energy E f
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Etot =
∫ (We

2
ρ|u|2 + Cn2

4
|∇φ |2 + ψφ 2

4Ex
−

ψ
(
φ 2−1

)2

4

)
dΩ

+U2+PiV 2−PiB |Ω|
(16)

where We = ReCaCn, and we can easily derive the following
energy dissipation law

d
dt

Etot=−
1

Peφ

∫ ∣∣∇wφ

∣∣2dΩ− 1
Peψ

∫ ∣∣√Mψ ∇wψ

∣∣2dΩ

− CaCn
2

∫
|
√

ηD(u)|2dΩ≤ 0
(17)

Eq. (16) indicates that the governing Eqs. (7)-(12) is
thermodynamically consistent.

An efficient energy-stable time-marching scheme can be
easily constructed for the above governing equation, and
details can refer to Zhu et al. (2019b); Zhu et al. (2020). Note
that the current work is the extension of matched density case
in (Zhu et al., 2019b). The SAV approach used in this study
is more accurate and efficient than the IEQ approach used in
(Zhu et al., 2019b). Also, the variable density case considered
in this study presents new challenges to the development of
energy stable time-marching scheme, and we can only con-
struct a nonlinearly coupled scheme for the above governing
equation. We use a finite difference method on staggered grids
to discretize space. For simplicity, the computational domain
is divided into uniform rectangular meshes. The phase-field
variables φ and ψ the chemical potentials wφ and wψ the
pressure p, the density ρ and the viscosity η are defined at
cell centers. Velocities in x, y and z directions are defined
at cell face centers. U and V are scalar variables. We pay
special attention to the discretization of the convection terms
in the Cahn-Hilliard and Navier-Stokes equations. A composite
high resolution scheme, known as the MINMOD scheme
(Li et al., 2015; Moukalled et al., 2016), is used to reduce
the undershoot and overshoot around the interface when the
density ratio is large. A BICGSTAB method is used to solve
the above variables (Yan et al., 2019; Zeng et al., 2019; Sheng
et al., 2020). For variable-coefficient equations, matrices for
the corresponding constant-coefficient systems are used as
preconditioners.

3. Results and discussion
In this section, we perform a series of numerical exper-

iments to investigate the interfacial dynamics with soluble
surfactants.

3.1 Model validation

The hydrodynamics coupled phase-field model with sol-
uble surfactants in this study can be divided into two sub-
models: the hydrodynamics coupled phase-field model with
variable densities and the phase-field surfactant model (no
hydrodynamics). At first, a classical bubble rising case is to
validate the hydrodynamics coupled phase-field model. Then

we use the commercial software-COMSOL to validate the
phase-field surfactant model (Comsol, 2012).

The bubble rising process is simulated in a computational
domain ω = [0, 1] × [0, 2]. We consider Neumann boundary
conditions for all variables except the velocity. The no-slip
boundary conditions are imposed on the top and bottom
surfaces, and the full slip boundary conditions are applied on
the left and right sides of the domain. Note that the full slip
boundary condition means that the gradient of vertical velocity
component v is zero in this study. The initial profile of the
phase-field variable φ is set as

φ (x, y) =− tanh


√
(x−0.5)2 +(y−0.5)2−0.25

Cn

 (18)

A grid size of 200 × 400 and time step-size δ t = 2.5×10−4

are used in our simulation. The Reynolds number Re and the
Bond number are 98.99 and 4, respectively. The Péclet number
Peφ is 10, and the Cahn number Cn is 0.01. As in (Hysing et
al., 2009), we calculate the mass center of bubble yc and the
rising velocity Vc,

yc =

∫
φ≥0

yρdΩ∫
φ≥0

ρdΩ

Vc =

∫
φ≥0

ydΩ∫
φ≥0

1dΩ

(19)

Fig. 1 gives droplet profiles at t = 3, and Fig. 2 shows
evolutions of the mass center and rising velocity. Obviously,
our results agree well with the reference solutions from
(Hysing et al., 2009).

Now we validate the phase-field surfactant model. The
“weak form PDE”module in COMSOL is used to realize the
phase-field surfactant model. Note that PDE is an abbreviation
of partial differential equation. The computational domain ω

is set as [0, 4] × [0, 3]. Neumann boundary conditions are
applied for all variables on boundaries. The initial profile of
the phase-field variable φ is set as

φ (x,y) =− tanh


√
(x−1.18)2 +(y−1.5)2−0.8

Cn


− tanh


√
(x−2.82)2 +(y−1.5)2−0.8

Cn

+1

(20)

A grid size of 300 × 150 is used in both COMSOL and
our codes. The initial surfactant bulk concentration ψb is 1 ×
10−2, and other important parameters are as follows:

Peφ = 10, Peψ = 50, Cn = 0.0283, Ex = 1, and Pi = 0.1227

Fig. 3 gives the evolution of two droplets and Fig. 4 shows
the surfactant concentration along a horizontal line from the
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Figure 1. (a) Initial configuration and velocity boundary conditions for the bubble rising case: H =2, W =1 and D = 

0.5. (b)Droplet profiles (ϕ = 0) at t = 3. Black line: our result; blue circle: reference solution.  
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Figure 2. Evolutions of (a) mass center (b) rising velocity of the bubble. Green dot: our results; blue line: reference 

solutions. 
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Figure 3. Droplet profiles  0  at different times. The initial surfactant bulk concentration
b =1×10-2. Black 

dotted line: results obtained by the COMSOL; blue line: our results. 

 

 

Figure 4. Surfactant concentration along a horizontal line from the point (0, 1.5) to the point (4, 1.5). Blue line: 
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Figure 5. Initial profile of the phase-field variable ϕ 

 

Fig. 3. Droplet profiles (φ = 0) at different times. The initial surfactant bulk concentration ψb = 1×10−2. Black dotted line: results obtained by the COMSOL;
blue line: our results.
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point (0, 1.5) to the point (4, 1.5). Both of them demonstrate
that our results agree well with the results obtained by COM-
SOL.

3.2 Couette flow

In the first test, we simulate the Couette flow in a compu-
tational domain Ω = [0, 3] × [0, 1] with periodic boundary
conditions (all variables) applied on the left and right sides, as
sketched in Fig. 5. We specify the red phase as fluid 1 and the
blue phase as fluid 2. Equal but opposite velocities are imposed
on the top and bottom walls, respectively. Neumann bound-
ary conditions are applied for phase-field variables, chemical

potentials and pressure, as shown in Eq. (15). Initially, we set
the initial surfactant bulk concentration ψb = 1×10−3 and the
profile of φ as

φ0 (x,y) = tanh
(

1
Cn

(
Lx

12
−
∣∣∣∣x− Lx

2

∣∣∣∣)) (21)

Other parameters used in simulations are given below:
Peφ = 10, Peψ = 100, Re = 10, Ca = 0.1, Cn = 0.01, Ex
= 1, Pi = 0.1227, λp = 10, and λv = 10.

We first study the evolution of the total free energy Etot .
To ensure no input energy from the outside, wall moving
velocities uw are set to zero. The trend of all four energy
curves in Fig. 6 confirms that our schemes are energy stable.
Considerable differences between different time step-sizes can
also be observed, which mean that the induced numerical
errors with large time step-sizes are higher.

Having demonstrated the energy stability, we investi-
gate the effect of surfactants on fluid deformation under a
shear flow. A 480×160 spatial resolution and time step-
size 2.5×10−4 are used. We consider three different values
(1×10−6, 1.5×10−2, and 5×10−2) in simulations. Fig. 7 gives
the evolutions of two phase-field variables φ and ψ The fluid
1 (red phase) continues to deform until it breaks under a
linear shear flow, and surfactants are always adsorbed onto
the interface. Note that the surfactant concentration along the
fluid interface is non-uniform, and the lowest value appears
near walls. However, the surfactant concentration gradient will
arise the tangential Marangoni stress (Liu and Zhang, 2010;
Liu et al., 2018), which resists the accumulation of surfactants.
Fig. 8 shows the profiles of φ for three different ψb values.
The increase in ψb leads to more obvious deformation, and
this can be attributed to a more obvious reduction of surface
tension under the larger ψb.

3.3 Droplet deformation

We next simulate the droplet deformation under the hor-
izontal body force and a shear flow. We use the same com-
putational domain and settings as the section 4.2. Boundary
conditions are same as section 3.2. A circular droplet with the
radius of r = 0.3 is initially placed at (1, 0.5). Other simulation
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Fig. 7. Evolutions of phase-field variables φ and ψ . For each subfigure, the left is the profile of φ , and the right is the profile of ψ (ψb = 1.5×10−2).
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Figure 7. Evolutions of phase-field variables ϕ and ψ. For each subfigure, the left is the profile of ϕ, and the right is 

the profile of ψ. (ψb=1.5×10-2) 
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parameters are listed as follows: Peφ = 10, Peψ = 100, Re =
10, Bo = 1, Cn = 0.01, Ex = 1, Pi = 0.1227, λp = 10, and λv
= 10.

Fig. 9 shows the time evolution plots of droplet defor-
mation and surfactant concentration. The droplet continuously
deforms and moves forward under the action of the shear flow
and the body force. We can divide the whole process into
two stages based on the droplet deformation and surfactant
migration. At the first stage, the body force has limited effect
on the droplet deformation compared with the shear flow.
Surfactants gradually migrate toward droplet tips, as shown in
Fig. 9(b), resulting in the non-uniformity of interfacial tension
along the interface. As we mentioned before, the surfactant
concentration gradient induces the Marangoni stress, which

will resist the further migration of surfactants. However, the
Marangoni stress is not large enough to balance the effect
of shear flow, and surfactants continue to move toward tips.
In Fig. 9(c), surfactants are swept into the bulk phases when
concentration reaches the maximum at the droplet tips. At
the second stage, the body force plays an important role in
the droplet deformation and surfactant migration. In Fig. 9(d),
surfactants on the tip A are slowly swept towards the ABC
segment under the effect of the body force. Surfactants along
the ADC segment continuously move to the tips under the
combined action of the shear flow and the body force.

Fig. 10 demonstrates the profiles of phase-field variable
φ at three different ψb value. A more prolate profiles of φ

is observed for a higher surfactant bulk concentration, which
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Fig. 9. Evolutions of pressure field (background color), quiver plot of velocity (u, v), phase-field variables φ and ψ . For each subfigure, the right is the
profile of ψ (ψb = 1.5×10−2).
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Fig. 10. Profiles of phase-field variable φ at t = 1 (left) and t = 2 (right) (black dash line: ψb=1×10−6; blue solid line: ψb = 1.5×10−2; red solid line: ψb
= 5×10−2).

confirms the effect of surfactants in reducing the interfacial
tension.

We continue to extend our simulations to a three-
dimensional (3D) domain Ω = [0, 3] × [0, 0.8] × [0, 1].
A shear flow is introduced to this system by moving the top
and bottom walls with equal but opposite velocities. We also
apply a body force along the x direction. A 240 × 64 × 80
grid and time step-size 1×10−3 are used. Here we list other
simulation parameters: Peφ = 100, Peψ = 20, Re = 10, Bo =
1, Cn = 0.018, Ex = 1, Pi = 0.1227, λp = 10, and λv = 10.

Results in Fig. 11 are consistent with the two-dimensional
(2D) results in Fig. 9. Again, the profiles of φ in Fig. 12
demonstrate that the effect of surfactants in reducing the

interfacial tension.

3.4 Two droplets merging

We investigate the merging of droplets (Espath et al., 2016)
under the gravitational effect in a closed domain Ω = [0, 1]
× [0, 3]. Periodic boundary conditions are applied on top and
bottom boundaries. Neumann boundary conditions are applied
for phase-field variables, chemical potentials and pressure.
Initially, two circular droplets (the red phase) with radius of
r1 = 0.25 and r2 = 0.17 locate at (0.5, 0.45) and (0.5, 1),
respectively. The initial surfactant bulk concentration is ψb =
1.5×10−2. We use a spatial resolution 160 × 480 and time
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during this process.  
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Fig. 12. Profiles of phase-field variable φ at t = 1 (left) and t = 2 (right) (gray: ψb = 1×10−6; red: ψb = 1.5×10−2).

step-size δ t = 2.5×10−4. Other parameters are as follows:
Peφ = 10, Peψ = 10, Re = 50, Bo = 8, Cn = 0.01, Ex = 1, Pi
= 0.1227, λp = 8, and λv = 10.

Fig. 13 shows the time evolution plots of streamlines and
profiles of phase-field variables. Two separating droplets with
different sizes gradually approach each other and finally merge
into one droplet under the gravitational effect. Surfactants are
swept towards the bottom of droplets during this process.

The surface Péclet number Peψ has a clear physical
meaning, and it plays an important role on the surfactant
distribution along the interface. To study the effect of Peψ on
the surfactant migration and merging of droplets, we consider
two different values of Peψ (Peψ = 10 and 100) in simulations.
The change of surfactant concentration at points A (the top of
big droplet, ψA) and B (the bottom of small droplet, ψB) are
monitored to quantitatively describe the effect of Peψ . At the
point A, the surfactant concentration at Peψ = 100 is obviously
lower than that at Peψ = 10, while the values of ψB present
the opposite results, as shown in Fig. 14. We can conclude
that the increase in Peψ can enhance the non-uniformity
of surfactant concentration, which will arise the Marangoni

stress. The Marangoni stress acts as an additional repulsive
force to prevent the droplet coalescence, which explains the
delay of droplet merging at a larger Peψ in Fig. 15.

To clearly demonstrate the effect of surfactants on the
droplet merging, Peψ is taken as 100, and two different values
of ψb are chosen (ψb = 1×10−6 and 1.5×10−2). Fig. 16
indicates that the increase in ψb can also delay the merging
of droplets. The Marangoni stress and the enhanced droplet
deformation at the low interfacial tension are the main reasons
for this phenomenon.

4. Conclusion
In this work, we present a hydrodynamics coupled phase-

field surfactant model with variable densities. Two scalar
auxiliary variables are introduced to transform the original
free energy functional into an equivalent form, and then
a new thermodynamically consistent governing system can
be obtained. In this model, evolutions of two phase-field
variables are determined by two Cahn-Hilliard-type equations,
and the fluid flow is dominated by the incompressible Navier-
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Fig. 13. Pressure field (background color), streamlines, contour line of φ = 0, quiver plot of velocity (u, v) and surfactant concentration. For each subfigure,
the right is the surfactant concentration (ψb = 1.5×10−2 and Peψ = 10).
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Figure 14. Evolutions of the surfactant concentration at points A and B at various Peψ 
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Fig. 15. Profiles of phase-field variable φ at various Peψ (ψb = 1.5×10−2).
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Figure 15. Profiles of phase-field variable ϕ at various Peψ. (ψb=1.5×10-2) 
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4 Conclusion 

In this work, we present a hydrodynamics coupled phase-field surfactant model with variable 

densities. Two scalar auxiliary variables are introduced to transform the original free energy 

functional into an equivalent form, and then a new thermodynamically consistent governing 

system can be obtained. In this model, evolutions of two phase-field variables are determined by 

two Cahn–Hilliard–type equations, and the fluid flow is dominated by the incompressible 

Navier–Stokes equation. We also construct some efficient and easy-to-implement schemes to solve 

the above governing system. In these schemes, nonlinear terms in chemical potentials are treated 

semi-explicitly, and a splitting method based on pressure stabilization is used to solve the 

Fig. 16. Evolutions of phase-field variable φ at different ψb (Peψ = 100).

Stokes equation. We also construct some efficient and easy-
to-implement schemes to solve the above governing system.
In these schemes, nonlinear terms in chemical potentials are
treated semi-explicitly, and a splitting method based on pres-
sure stabilization is used to solve the Navier-Stokes equation.
Then a classical droplet rising case and a droplet merging
case are used to validate our model and schemes. Finally,
we study the effect of surfactants on droplet deformation and
merging. A more prolate profile of droplet is observed under a
higher surfactant bulk concentration, which verifies the effect

of surfactants in reducing the interfacial tension. Increases in
surface Péclet number and surfactant bulk concentration can
enhance the non-uniformity of surfactant distribution around
the interface, which will arise the Marangoni force. The
Marangoni force acts as an additional repulsive force to delay
the droplet merging.
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