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Abstract:
Generative Adversarial Networks (GANs), as most popular artificial intelligence models
in the current image generation field, have excellent image generation capabilities. Based
on Wasserstein GANs with gradient penalty, this paper proposes a novel digital core
reconstruction method. First, a convolutional neural network is used as a generative network
to learn the distribution of real shale samples, and then a convolutional neural network is
constructed as a discriminative network to distinguish reconstructed shale samples from real
ones. Through this confrontation training method, realistic digital core samples of shale
can be reconstructed. The paper uses two-point covariance function, Fréchet Inception
Distance and Kernel Inception Distance, to evaluate the quality of digital core samples
of shale reconstructed by GANs. The results show that the covariance function can test
the similarity between generated and real shale samples, and that GANs can efficiently
reconstruct digital core samples of shale with high-quality. Compared with multiple point
statistics, the new method does not require prior inference of the probability distribution
of the training data, and directly uses noise vector to generate digital core samples of shale
without using constraints of “hard data” in advance. It is easy to produce an unlimited
number of new samples. Furthermore, the training time is also shorter, only 4 hours in this
paper. Therefore, the new method has some good points compared with current methods.

1. Introduction
As a major component of natural gas supply, shale con-

tains a multi-scale pore structure, ranging from micrometer
to nanometer scale. Its pore size directly affects the flow
mechanism of shale gas such as adsorption, diffusion and
slippage (Li et al., 2016). Because it is expensive to obtain
the high-resolution shale digital rock, researchers usually use
the reconstructed pore structure to evaluate shale gas-bearing
properties (Zhang et al., 2017).

There are three kinds of methods for reconstructing digital
cores: physical experiment methods, numerical reconstruction
methods, and hybrid modeling methods. In physical experi-
ment methods, various imaging tools are used to reconstruct
the digital core, and these tools include scanning electron
microscope (SEM) (Scott et al., 2019), focused ion beam
scanning electron microscope (FIB-SEM) (Liu et al., 2017),
and Nano-CT (Zuluaga et al., 2014). SEM is mainly used
to capture a large number of two-dimensional images. The

limitation of this method is that only two-dimensional surfaces
of the sample can be observed at a time. FIB-SEM grinds
the surface of the sample. During the grinding process, the
physical form of the sample may be lost, resulting in impaired
observation accuracy. Nano-CT scan (Lin et al., 2015) is the
most widely used method, which has the advantage of high
accuracy, but the disadvantage is that there is a trade-off
between the volume and resolution of the imaging.

Different from physical experiment methods, the numerical
reconstruction methods use digital microscope scanning or
Nano-CT scanning pictures to perform digital core reconstruc-
tion. The common methods include the process-based method
(PBM) (Yao et al., 2005; Ji et al., 2018), simulated annealing
method (SAM) (Jiao et al., 2008), Markov chain Monte Carlo
method (MCMCM) (Zhang et al., 2014), truncated Gaussian
random field method (TGRFM) (Lin et al., 2018), multiple
point statistics (MPS) (Okabe and Blunt, 2007; Zhang et
al., 2010; Tahmasebi et al., 2012), superposition coupling
algorithm (Yang et al., 2015).
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The advantage of PBM is that it can reconstruct a more
ideal pore structure. The disadvantage is that the method is
complicated, the calculation cost is high, and the implemen-
tation is difficult. MPS mainly uses training samples instead
of variograms to represent the spatial structure of geological
variables, thereby randomly reconstructing images similar to
the training images. Its advantage is that it uses less CPU
and memory load during the reconstruction of rock samples.
The disadvantage is that the structural characteristics of the
reconstructed core in the vertical directions are similar to
horizontal directions. It is possible to obtain isotropic recon-
struction results, and it cannot reflect the characteristics of
the true pore structure. In addition, “hard data” need to be
given in advance when reconstructing digital cores, and is the
result of measuring and observing something or phenomenon
that exists objectively. To overcome the limitation of a single
method, Lin et al. (2017) proposed a hybrid modeling method
combining numerical reconstruction and physical experiment.
This method retains important microstructure information of
microfracture images. In general, hybrid methods not only
improve the accuracy and efficiency of modeling to a cer-
tain extent, but also overcome many limitations of separate
modeling method.

With the development of high-performance computing and
deep learning, learning reproducible feature representations
from the original unlabeled data set has attracted wide atten-
tion in computer vision (Radford et al., 2015). In recent years,
the most popular unsupervised models for learning feature
representations are Generative Adversarial Networks (GANs),
which use unique adversarial training ideas to generate high-
quality samples. Currently, GANs have achieved remarkable
success in the field of image generation. Progressive Growing
of GANs (PG-GANs) (Karras et al., 2017), as a major break-
through in the development history of GANs, achieved a leap-
forward improvement in the quality of image generation and
successfully generated realistic high-definition images with a
resolution 1024 × 1024. The fingerprints generated by GANs
pose a certain threat to the security of fingerprint unlocking.
They are used to attack the fingerprint unlocking of mobile
phones, and the cracking success rate is up to 78% (Bontrager
et al., 2017). It can be seen that GANs have excellent image
generation capabilities.

To this end, this paper proposes a new method to recon-
struct digital core of shale based on deep learning. The new
model directly learns from real shale images and captures the
feature statistics of the original image set without needing
any manual feature extraction. Digital core images can be
reconstructed by sampling and decoding noise vectors in the
latent space.

2. Generative Adversarial Networks
GANs (Goodfellow et al., 2014) are a class of unsupervised

methods that directly learn the probability distribution of
data without generating prior inferences about the probability
distribution related with training data, and then use them to
generate samples. GANs are mainly composed of a generative
network and a discriminative network. The generative network

takes noise vectors as input and generates samples similar to
real samples, i.e., generated ones. The discriminative network
is mainly used to distinguish whether the input samples are
from real or generated samples. In the confrontation between
the two, they have continuously improved their respective
generation and discrimination capabilities. Although GANs
can generate attractive samples, it is difficult to train due to
fact that GANs are prone to mode collapse or irregular textures
problems in the generated samples.

In recent years, various variants of GANs have appeared,
such as Deep Convolutional GANs (DCGANs) (Radford et
al., 2015), Least Square GANs (LSGANs) (Mao et al., 2017),
Wasserstein GANs (WGANs) (Arjovsky et al., 2017). They try
to make GANs train stably and generate high-quality samples.
But these GANs variants still suffer from instability during
training. As one of the important variants of GANs, Wasser-
stein GANs with gradient penalty (WGAN-GP) follows the
convolutional architecture of DCGANs. Their main difference
is the loss function. DCGANs uses a Cross Entropy loss
function, while WGAN-GP uses a Wasserstein loss function.
Based on the latter’s convolution properties and improvement
of the loss function, WGAN-GP (Gulrajani et al., 2017) greatly
improves the stability of training and the quality of generated
samples.

In the process of constructing the WGAN-GP model, shale
image x is defined as a sample that obeys a real probability
density function Pr. Two differentiable functions with param-
eters θ and ϕ are used to represent the generative network
Gθ (z) and discriminative network Dϕ(x) , and backpropaga-
tion and batch gradient descent are used to optimize generative
network G and discriminative network D according to the
function:

VWGAN−GP
(
Dϕ ,Gθ

)
= max

Dϕ

{
Ex∼pr

[
Dϕ (x)

]
−Ex∼pg

[
Dϕ (x)

]
−λEx∼pm

(∥∥∇xDϕ (x)
∥∥−1

)2

}
(1)

where Pr in Eq. (1) represents the distribution of real samples,
Pg in Eq. (1) represents the distribution of generated samples,
Pm in Eq. (1) is implicitly defined along straight lines between
pairs of points sampled from Pr and Pg.

The training of WGAN-GP is mainly performed in two
steps: the first step is to train the discriminative network
to maximize its ability to distinguish between real and fake
shale samples, and the second step is to train the generative
network to maximize its ability to deceive the discriminative
network, so that the shale samples generated by the generative
network are misclassified as real ones. WGAN-GP will suffer
from training instability during training, and it takes a lot
of experiments to find the best set of parameters for stable
training.

3. Digital core image reconstruction method
based on Generative Adversarial Networks

3.1 GANs model training flowchart

Fig. 1 shows the training flow of the GANs model.
As shown in figure, the generative network takes the noise
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Fig. 1. The training flowchart of GANs model.

vector as input, and its output is the generated shale sample.
The discriminative network takes the real shale sample and
the generated one as input, and its output is a scalar value
P, which represents the probability that the input sample
is from the real shale sample rather than generated one.
Through training feedback, the generative network and the
discriminative network compete with each other in the training
process, and continuously improve their own generating and
discriminating capabilities, respectively, until the discrimina-
tive network cannot judge whether the input sample is from a
real shale sample or a generated one.

3.2 WGAN-GP algorithm

WGAN-GP, like GANs, is also composed of a generative
network and a discriminative network. The generative network
is mainly responsible for generating samples with a probability
density of Pr. The discriminative network is mainly used
to distinguish whether the input samples are from real or
generated shale samples. The generative network G defined
by its parameters θ is a mapping from the prior noise z of the
latent space to the shale image domain:

z∼ N(0,1)n×d (2)

Gθ : z∼ R256×256 (3)

where N(0,1) in Eq. (2) represents a Gaussian distribution
with a mean of 0 and a standard deviation of 1, n×d in Eq.
(2) is the dimension of the prior noise, and 256 × 256 in Eq.
(3) is the size of shale samples.

The discriminative network D defined by its parameters
ϕ is a function that maps samples of shale image domain to
intervals [0,1]:

Dϕ : R256×256 ∼ [0,1] (4)

where interval [0,1] in Eq. (4) represents the probability that
the input sample is from the real shale sample rather than
generated one.

Requirements: The number of discriminative network D
iterations ND, the batch size n, the gradient penalty coefficient
λ , the learning rate η . Randomly initialize the parameters of
D and G.
1): while generative network G has not converged do;
2): for k = 1, 2,. . . , ND do;
3): Sample n real shale samples x(i) from Pr(x), sample n noise
vector z(i) from N(0,1)n×d , thereby obtaining n generated
shale samples

∼
x(i) = G(z(i)), sample a random weighted

number α from the uniform distribution, thereby obtaining
n weighted average samples

∧
x(i) = αx(i)+(1−α)

∼
x(i), where

i = 1, 2,. . . , n;
4): The parameters ϕ of D are updated by the batch gradient
ascent method to maximize the following formula:

V =
1
n

n

∑
i=1
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D
(

x(i)
)
− D

(
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x
(i)
)
−λ
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(
∧
x
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)2
]
,

ϕ ← ϕ + η∇V (ϕ)
(5)

5): end for;
6): Sample n noise vector z(i) from N(0,1)n×d , thereby ob-
taining n generated shale samples

∼
x(i) = G(z(i));
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7): The parameters θ of G are updated by the batch gradient
descent method to minimize the following formula:

∼
V = − 1

n

n

∑
i=1

D(
∼
x
(i)
), θ ← θ − η∇

∼
V (θ) (6)

8): end while.

4. Model evaluation method
Evaluating the performance of GANs models is inherently

challenging. This paper selects two-point covariance function
and the similarity indexes of measuring difference of GANs-
generated and real shale samples, namely Fréchet Inception
Distance (FID) (Heusel et al., 2017) and Kernel Inception
Distance (KID) (Bińkowski et al., 2018) to evaluate the final
WGAN-GP model.

4.1 Two-point covariance function

The second-order moment of the microstructure can be
characterized by a two-point probability function (Mosser et
al., 2017). By the assumption of stationarity, it is equivalent
to the two-point covariance function S2(r):

S2(r) = P(x ∈ P,x+ r ∈ P), f or x,r ∈ Rh (7)

Arbitrary two points separated by the separation lag dis-
tance r are located in the same phase, which is the void phase
or grain phase of the microstructure, although S2(r) can be
defined for the two phases of a porous medium, the two-
point covariance function relative to the pore phase P only
is computed. Eq. (7) represents the probability that two points
x and x + r separated by the separation distance r are located
in the pore phase P. To estimate the two-point covariance
function, the Ostu thresholding method (Ostu, 1979) is used
to segment all images. For the WGAN-GP model, we use the
training image and the generated image of WGAN-GP model
to estimate the two-point covariance function S2(r).

4.2 Fréchet Inception Distance and Kernel Inception
Distance

Heusel et al. (2017) proposed the FID to calculate the
distance between the real samples and the generated ones in
the feature space to evaluate the model’s ability to generate real
samples. For feature functions ϕ (by default, the convolutional
features of the Inception network), ϕ(Pr) and ϕ(Pg) are
modeled as Gaussian random variables with empirical means
µr, µg and empirical covariance Σr, Σg. The Fréchet distance
between Pr and Pg can be calculated using the following
formula,

FID(Pr,Pg) =
∥∥µr−µg

∥∥+Tr(Σr +Σg−2(ΣrΣg)
1/2) (8)

where Pr, Pg in Eq. (8) are probability distributions obeyed by
real samples and generated ones, respectively; Tr in Eq. (8) is
the trace of covariance matrix. A lower FID value means that
the Gaussian distribution distance between the real samples

and the generated ones is smaller, and the quality of the
generated ones is higher.

Bińkowski et al. (2018) proposed the KID to evaluate
the model’s ability to generate real samples, which is the
square of the Maximum Mean Discrepancy (MMD) between
two Inception representations. The Kernel Inception Distance
between and can be computed using the following formula:

KID(Pr,Pg) =E
x,
∧
x∼Pr

[k(x,
∧
x)]+E

y,
∧
y∼Pg

[k(y,
∧
y)]

−2Ex∼Pr ,y∼Pg [k(x,y)]
(9)

where Pr, Pg in Eq. (9) are probability distributions obeyed by
real samples and generated ones, respectively; a polynomial
kernel is represented by k(x,y) = ((1/d)xTy+1)3, d is the
dimension, and the purpose of using a polynomial kernel is to
avoid adjusting any kernel parameters (Pedregosa et al., 2011).
Eq. (9) measures the difference in the distribution of visual
features between real samples and generated ones. The lower
the KID value, the smaller the Gaussian distribution distance
between the generated samples and the real ones. In other
words, the quality of the generated samples is higher. Different
from FID, to make the estimation between comparison models
more intuitive, the formula calculates asymptotic and unbiased
normal estimates.

5. Experiment and result analysis

5.1 Shale datasets

Nano-CT technology has been widely used in shale reser-
voir research (Tahmasebi et al., 2015). In this experiment,
the sample comes from Wufeng, Jiaoshiba Block. It was
collected by Nano-CT technology, and cracks and white ores
are main characteristics it contains. Fig. 2 shows a slice of
the shale sample CT image with a resolution of 60 nm/pixel.
The original shale image is randomly cropped into 10,000
training samples of size 256 × 256. Before using the original
image as a training samples, except for random cropping,
there is no other preprocessing such as denoising, threshold
segmentation.

Fig. 2. Two-dimensional gray-scale cross-section of a Nano-CT image of a
raw shale sample from an experimental study.
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Table 1. Main architecture configuration of WGAN-GP.

Layer Filter Stride Batch normalization Activation function
Generative network Conv2D (3,3,128,128) 2 yes relu

Conv2D (3,3,128,64) 2 yes relu

Conv2D (3,3,64,1) 2 no tanh

Ddiscriminative network Conv2D (5,5,1,64) 2 no leakyrelu

Conv2D (5,5,64,128) 2 yes leakyrelu

Conv2D (5,5,128,256) 2 yes leakyrelu

5.2 Experimental parameters

The training samples used in this study are 10,000 shale
images with a resolution of 60 nm/pixel and a size of 256
× 256. A three-layer convolution is used on the generative
network, the Tanh activation function is applied to the output
layer, all other layers use the Rectified Linear Unit (ReLU)
activation function. Another three-layer convolution is used on
the discriminative network, and all layers of the discriminative
network use the LeakyReLU activation function, and after
the convolutional layer, a Dropout layer is added; batch
normalization is added in both convolutional layers of the
generative network and the discriminative network. The model
uses a small batch gradient descent method to network training
on a single NVIDIA 1080TI GPU, the optimizer used by the
model is the RMSProp optimizer. Because only three layers
of convolution are used in the two networks respectively, and
the Dropout layer is added to the discriminative network, the
network architecture is simplified, and the network parameters
are greatly reduced. Therefore the network training speed is
greatly accelerated. The total time spent on training only takes
about 4 hours. Table 1 shows the architecture configuration of
WGAN-GP.

5.3 Experimental results
5.3.1 Generation method of digital core images of shale

GANs have a strong stochastic reconstruction capability
for gray-scale shale samples, and new shale samples can be
reconstructed using noise. During the generation of new shale,

only the noise vector is needed. However,when reconstructing
digital cores using MPS, constraints of “hard data” need to
be given in advance. Compared with the MPS, GANs can
generate new digital cores without any human intervention.
Therefore, they are simpler and faster.

This experiment uses 10,000 shale samples of size 256
× 256 as training ones, and generated shale samples are the
same size as the training ones. Fig. 3 shows the original
training samples and reconstructed ones based on the WGAN-
GP model. It shows that WGAN-GP successfully learned the
probability distribution of real shale samples: the shape of the
generated fractures are similar to that of real fractures.

5.3.2 Diversity of digital core images of shale

As shown in Fig. 3, the real and generated shale have
similar characteristic of fractures and white ores. Compared
with the real shale samples, the generated ones have different
structural morphology of the fractures, which can be seen from
the second column of shale samples marked by red boxes. It
can also be observed from the third column of generated sam-
ples marked by red oval frames that the structural morphology
and location of the white ores have changed to varying degrees.
The reason for these phenomena is that GANs successfully
learned the fractures and white ores characteristics of real
shale samples, so these characteristics will be reproduced in
the generated ones.

5.3.3 Structure consistency of digital core images of shale

As shown in Fig. 4, the two-point covariance functions

(a) Real shale samples
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(b) Generated shale samples1

(c) Generated shale samples2

Fig. 3. Comparison between real shales and generated ones of WGAN-GP model.

Fig. 4. Comparison of radial average covariance functions of real shale samples and 100 generated shale samples of WGAN-GP model.
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Table 2. FID and KID values of real shale samples and generated shale
samples.

Models FID Score KID Score
Real samples 16.63 5.11±0.19

WGAN-GP 91.12 6.38±0.57

DCGAN 136.51 11.73±0.84

S2(r) show an approximate exponential decay state for both
real shale samples and generated ones. The obtained covari-
ance functions are stable at almost all pixels. The covariance
function measured on the generated shale samples shows ex-
cellent agreement with the real ones, indicating that generated
and real shale samples are very close on the fracture structure.
Where φ is the ratio of organic matter components in real
shale samples, and 0.079 is the standard deviation of the ratio
of organic matter components in generated ones.

5.3.4 Gaussian consistency of digital core images of shale

In the experiment, the FID and KID algorithms are used
to compute FID and KID values on 100 real shale samples,
100 ones generated by WGAN-GP, and 100 ones generated by
DCGANs. As shown in Table 2, the FID and KID values of
the shale samples generated by WGAN-GP model are higher
than those of the real shale samples, but lower than those of
the ones generated by DCGANs model. Therefore, the quality
of shale samples generated by WGAN-GP model is closer to
that of real ones, which shows that generated and real shale
samples have better consistency in the Gaussian distribution
they obey.

6. Discussion
Although GANs can generate visually attractive high-

quality samples, GANs also have some potential drawbacks.
For example, GANs are very sensitive to parameters. Even if
the parameters change slightly, the gradient may disappear eas-
ily, and the model would not converge. Although WGAN-GP
alleviates the phenomenon, it does not completely eliminate
it, so it takes a lot of time to adjust the parameters. Moreover,
similar to other neural networks, GANs also have a black box
mechanism. As a result, it is very challenging to understand
that the internal mechanism of neural networks that reconstruct
high-quality samples, i.e., the lack of interpretability, which
is difficult to solve. In addition, the samples generated by
GANs are random, so the size and position distribution of the
characteristics in the generated samples cannot be accurately
controlled.

7. Conclusions
This paper proposed a new digital core image reconstruc-

tion method based on GANs. The main conclusions are as
follows.

1) GANs can effectively reconstruct digital core images.

They use shale samples for unsupervised training, and
do not need to manually extract characteristics. They
converge quickly, and the generated samples are of high
quality and rich in diversity.

2) GANs can generate digital core images with high quality.
The generated digital core images have good consistency
with real ones. Generated digital core images can ef-
fectively capture fractures and white ores characteristics.
The indicators of FID and KID further illustrate the
consistency of the Gaussian distribution that generated
and real digital core images obey, and quantitatively show
that they have good consistency in image quality.

3) Research on digital core images reconstruction based on
GANs has an important application value. The GANs
kernel used in this paper is a convolutional neural network
with powerful image processing capabilities. The charac-
teristics of generated digital core images are consistent
with those of real digital core images. In addition, digital
cores can be produced directly without the need for “hard
data” constraints. GANs have the most fusion ability, and
is expected to generate richer and more diverse digital
core samples. This has great significance for digital core
research.
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