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Abstract:
Clastic reservoirs exhibit complex and diverse lithologies. Some lithological hetero-
geneities, occurring as thin but effectively low-permeability units, have pronounced impact
on CO2 flooding schemes and oil recovery. Thin low-permeability units within permeable
sandbodies typically exhibit weak well-log responses, and are therefore of difficult
recognition using conventional well-log analysis methods. To address this challenge, a
hierarchical method is proposed for interpreting thin lithological heterogeneities by inte-
grating wavelet transform and machine learning. The discrete wavelet transform enhances
well-log responses of thin heterogeneities. An automated machine-learning framework
is designed, which integrates multiple algorithms and achieves automated parameter
optimization. This machine-learning method is then applied to well logs to establish a
nonlinear mapping model between lithology and well-log responses. Additionally, the
hierarchical nature of the workflow highlights lithological contrasts, facilitating a more
accurate lithological differentiation by dividing the recognition of thin heterogeneities into
three levels. Benefiting from these three advantages, the proposed method offers potential
to significantly enhance the accuracy of well-log interpretations. The results demonstrate
that this method yields accurate identification of lithological units as thin as 0.2 m for
muddy beds and 0.3 m for diagenetic units, achieving a recognition accuracy exceeding
the conventional well-log interpretations. This method also shows significant potential for
broader applications, including the identification of other types of geological entities of
limited thickness, and determination of reservoir parameters at fine scales.

1. Introduction
Clastic reservoirs exhibit complex internal architectures,

characterized by various sedimentary and diagenetic features
that influence their porosity, permeability, and overall ef-
fectiveness as hydrocarbon reservoirs (Stanistreet and Stoll-

hofen, 2002; Yue et al., 2018; Nyberg et al., 2023). Among
these features, the presence of permeability barriers within
sandbodies is significant as a control on reservoir behavior
(Li et al., 2011), with a particularly pronounced impact on
CO2 flooding schemes and oil recovery (Wang et al., 2011).
These permeability barriers can be broadly categorized into
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two types: Those of depositional origin and those resulting
from diagenesis (Yue et al., 2018; Zhang et al., 2023).

Thin mudstone or siltstone layers within predominantly
sandy sedimentary units commonly serve as permeability
barriers of depositional origin, resulting from variations in
hydrodynamic conditions of the formative flows during de-
position of clastic reservoir successions (Miall, 1985; Strick
et al., 2019; Li et al., 2023; Liu et al., 2024). Such thin
muddy beds are commonly observed in various depositional
environments and related sub-environments, such as point bars
of meandering river, mid-channel bars of braided rivers, and
deltaic mouth bars. These muddy beds are commonly less than
1 meter in thickness and in many cases less than 0.5 m thick
(Stanistreet and Stollhofen, 2002); as such, their identification
using conventional interpretation methods based on well logs
is challenging (Saneifar et al., 2015; Wood, 2022b).

Additionally, diagenetic processes such as cementation can
cause a marked decrease in the porosity and permeability of
the primary sandstones, transforming permeable lithologies
prone to cementation into barriers or baffles to fluid flow
(Lynds and Hajek, 2006). Identifying these diagenetic features
in well logs is particularly challenging, since these domains
occur in sandstone volumes and are of limited thickness
(Iraji et al., 2023; Wood, 2023). Both muddy and diagenetic
permeability barriers play a pivotal role in the heterogeneity of
clastic reservoirs and profoundly influence fluid-flow dynamics
(Lynds and Hajek, 2006; Zecchin and Catuneanu, 2017).
Therefore, understanding their distribution in clastic reservoirs
is essential for reservoir characterization and prediction (Li
et al., 2011). However, conventional lithologic interpretation
methods based on well logs commonly struggle to identify
these relatively thin features in thick sandbodies, due to
resolution limitations (Lai et al., 2018; Pham et al., 2020;
Wood, 2022a; Iraji et al., 2023). Therefore, enhancing the
resolution of lithologic well-log interpretation is crucial for
effectively characterizing permeability heterogeneity.

Recent advancements suggest that applying wavelet trans-
forms to well logs and incorporating intelligent algorithms into
well-log interpretation are effective approaches for improving
the accuracy of lithology interpretation (Chandrasekhar and
Rao, 2012; Zhang et al., 2018; Chen et al., 2021). The wavelet
transform is a signal processing technique, which converts a
signal into a different form. Using an appropriate algorithm,
such as the Mallat algorithm, a complex well log can be
decomposed into a set of basic signals with finite bandwidth
(Mallat and Zhang, 1993; Chen et al., 2021); these basic
signals can then be reconstructed. By appropriately increasing
the proportion of high-frequency information during well-log
reconstruction, the response of the well log to the occurrence
of thin flow barriers can be enhanced (Chandrasekhar and
Rao, 2012; Zhang et al., 2018; Chen et al., 2021). Machine
learning with supervised algorithms can be applied to establish
nonlinear mapping relationships between well-log responses
and lithological types, extracting information from multiple
logs fully and improving the accuracy of well-log interpreta-
tion (Feng et al., 2021; Zhang et al., 2021; Iraji et al., 2023;
Wei et al., 2025). Both techniques have been considered ef-
fective in aiding the identification of thin permeability barriers

in previous research (Chandrasekhar and Rao, 2012; Kuang et
al., 2021; Zhang et al., 2023).

In recent years, the Amazon Web Services team has re-
leased the automated machine learning (AutoML) framework
AutoGluon (Erickson et al., 2020), which automates feature
engineering, model selection, and hyperparameter optimiza-
tion. Therefore, this framework enables efficient end-to-end
modeling while substantially reducing manual tuning costs
and improving both model performance and reproducibility
(Erickson et al., 2020; Zhang et al., 2024). This algorithm has
demonstrated robust and accurate performance in supervised
learning tasks involving structured data (Qi et al., 2021; Sun
et al., 2023; Papík and Papíková, 2025; Yang et al., 2025).
At present, applications of this machine learning framework
in lithology interpretation from well logs remain scarce, yet
it offers a novel perspective for integrating machine learning
into well-log interpretation.

To address the challenges in identifying thin lithological
heterogeneities below resolution limits, this study proposes
a novel hierarchical interpretation method for well logs by
combining wavelet transforms and AutoML. This method is
applied to a subsurface dataset from the Niujuanhu Oilfield,
and the results demonstrate a significant improvement in well-
log resolution, enabling the accurate identification of thin low-
permeability beds.

2. Dataset and methodology

2.1 Dataset
The dataset used to evaluate the proposed method com-

prises of 225 wells, including seven cored wells from the
target interval with a total core length of approximately 400
m. These cores were systematically sampled and analyzed to
determine key reservoir properties such as grain size, porosity,
and permeability. Each well is equipped with a comprehensive
suite of conventional well logs, including Gamma Ray (GR),
Sonic (DT), Density (DEN), Deep Resistivity (RD), Shallow
Resistivity (RS), and Spontaneous Potential (SP).

2.2 Integrated workflow
Conventional well-log interpretation methods, such as the

analysis of GR and SP log crossplots, have proven effective in
accurately identifying thick sandstones and mudstones. There-
fore, GR crossplots were initially employed to distinguish
between sand and shale at first. However, this method has not
proven capable of detecting thin impermeable units occurring
within thick sandstone bodies. To address this problem, a
novel technical workflow was further developed (Fig. 1). This
proposed workflow consists of five key steps:

1) Core interpretation. Core descriptions combined with
experimental analyses are used to identify the types of
low-permeability features present in the sandbodies and
to characterize the well-log responses of each type.

2) Well-log processing. Discrete wavelet decomposition and
reconstruction techniques (Chandrasekhar and Rao, 2012)
are applied to enhance the log responses of thin, low-
permeability lithologies. Both the original and recon-
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structed well logs are used as training data.
3) Sample equalization. The number of low-permeability

unit samples is considerably smaller than that of effective
reservoir samples. In machine learning, when the minority
sample size is too small, these samples may be treated
as outliers, making sample balancing essential. Synthetic
Minority Over-sampling Technique (SMOTE) (Chawla et
al., 2002) is employed to balance the samples (Fig. 2).

4) Identification of thin heterogeneities. An AutoML frame-
work is developed that integrates multiple algorithms
and performs automated parameter optimization. This
framework is then applied to identify thin impermeable
units within sandstones.

5) Heterogeneity classification. The identified low-
permeability units were further classified into three
categories using the AutoML framework: Mudstone,
carbonate-cemented, and “diagenetic units”, i.e., units
exhibiting a diagenetic imprint different from calcareous
cementation. Although carbonate-cemented sandstone is
essentially a subtype of diagenetic unit, it is treated as a
separate category due to its distinctive well-log responses
and distribution patterns.

2.3 Decomposition and reconstruction of well
logs

As a signal processing method, the wavelet transform alters
the representation of a signal and enables the examination of
the signal at multiple scales. This makes it especially useful for
revealing details concealed in well logs. The kernel function
of the wavelet transform is defined as (Olkkonen, 2011):

ϕa,b(t) =
1√
a

ϕ

(
t−b

a

)
(1)

where t is the space variable, ϕ(t) is the mother wavelet, a
is the scale factor that determines the wavelength, and b is a
wavelet shift parameter.

Continuous wavelet transforms and discrete wavelet trans-
forms (DWT) are common types of wavelet transforms. DWT
is chosen due to its extensive application in well-log signal
analysis (Chandrasekhar and Rao, 2012; Zhang et al., 2018;
Yang et al., 2023). In DWT, variation of scale and shift is
represented by an integer:

Wf (i, j) =
1√
2i

∫
t

f (t)ϕ
(

t−2i j
2i

)
dt (2)

where Wf (i, j) is the wavelet coefficient at scale i and trans-
lation j, which represents the DWT result for the signal
given i, j ∈ Z; f (t) is the input signal. The scale parameter
i controls the dilation or compression of the wavelet. Larger
i corresponds to a wider wavelet, while smaller i corresponds
to a narrower wavelet. The shift parameter j determines the
position of the wavelet in space for well logs.

The Mallat decomposition algorithm is employed to per-
form the DWT. The Mallat algorithm, is a fundamental tech-
nique for multiresolution analysis (Mallat and Zhang, 1993;
Chen et al., 2021). A three-level decomposition is applied to
the well logs, as illustrated in Figs. 3 and 4. cLn and cHn are
defined to represent the higher-frequency and lower-frequency
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components from the n-th level decomposition, respectively.
For example, the original signal is decomposed at the first level
into a set of lower-frequency components (cL1) and higher-
frequency components (cH1). Notably, cL1 is often considered
high-frequency noise, for well logs (Zhang et al., 2018; Chen
et al., 2021). At the second level, cL1 is further decomposed
into cL2 and cH2. Similarly, at the third level, cL2 can be
decomposed into cL3 and cH3. In brief, a signal f (t) can be
decomposed into cH1, cH2 and cL2 as the second level, and
be decomposed into cH1, cH2 cH3 and cL3. Furthermore,
the original signal can be reconstructed by summing these
decomposed components, described as:

f (t) = cH1+ cH2+ cH3 (3)
f (t) = cH1+ cH2+ cH3+ cL3 (4)

where cH1, cH2 and cH3 are the higher-frequency components
at first, second and third levels; cL2 and cL3 indicate the
lower-frequency components at the second and the third levels,
respectively.

The purpose of reconstructing well logs using the DWT
algorithm and Eq. (3) is to enhance their sensitivity to thin
geological units. Therefore, it is particularly important to
emphasize the proportion of high-frequency components. The
high-frequency components at the first level (cH1) are typi-
cally dominated by noise and should therefore be excluded,
according to the principles of frequency decomposition for
well logs (Zhang et al., 2018; Chen et al., 2021). The higher-
frequency components at the second level (cH2) exhibit a
higher frequency than those of cH3. The core-analysis results
indicate that cH2 is more sensitive to the thin permeability bar-

riers in the studied stratigraphy. Consequently, the following
well-log reconstruction formula is proposed as follows:

f ∗(t) = w1CH1+w2CH2+w3cL2 (5)
where f ∗(t) is the reconstructed well log, and w1, w2 and w3
are set to 0, K and 1, respectively, where K commonly ranges
between 2 and 4 for conventional well logs such as GR, AC
and DEN.

As the value of K increases, the reconstructed well log
becomes more sensitive to thin geological units; however,
the number of artifacts also increases progressively. With K
values of 2, 3 and 4, the identification accuracies of thin
lithological beds were compared using an iterative approach.
The results indicate that for the GR, RD, RS, AC, and DEN
logs, the best performance is achieved when the K is set
to 3. In addition, the SP curve was not subjected to DWT
reconstruction. This is primarily because the SP curve lacks
high-frequency information and serves mainly to distinguish
thick sandstones from mudstones at the first level.

2.4 AutoML framework
The study area includes seven cored wells, named CW1

to CW7. Among them, CW3 is used as a blind-test well and
excluded from the supervised learning process. The remaining
six wells are used for cross-validation in turn.

The rapid advancement of machine learning has introduced
novel approaches to intelligent well-log prediction. However,
the proliferation of algorithms and the complexity of their
parameter configurations make automated algorithm selection
and parameter optimization increasingly essential (Erickson et
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al., 2020; Zhang et al., 2024). In addition, low-quality reser-
voirs often exhibit complex spatial distributions, poor physical
properties, pronounced internal interlayer heterogeneity, weak
geophysical responses, and low inter-data correlations–factors
that significantly constrain the predictive performance of any
single algorithm.

By employing ensemble learning to integrate the advan-
tages of multiple algorithms, prediction accuracy can be sub-
stantially improved. The open-source AutoGluon framework,
developed by the Amazon Web Services team (Erickson et
al., 2020), is adopted to design an integrated solution consist-
ing of three key stages: Data preprocessing (Fig. 5(a)), model
training (Fig. 5(b)), and model evaluation and output (Fig.
5(c)).

During model training, the AutoML framework automat-
ically integrates and trains a diverse set of heterogeneous
base learners–including XGBoost, Bg-KNN, Random Forest,
LightGBM, CatBoost, Extra Trees, Logistic Regression, and
MLP–while leveraging parallel computing to enhance train-

ing efficiency (Table 1). Bayesian optimization is applied
to dynamically adjust model parameters, enabling intelligent
hyperparameter search and tuning. For model integration,
a 5-fold Bagging and two-layer Stacking strategy is used
to combine and optimize the outputs of the base models,
thereby improving generalization and significantly boosting
classification accuracy.

Following training, prediction performance is evaluated on
the test set. If the results meet the required thresholds, the
model is saved; otherwise, retraining is performed. Overall,
this framework markedly enhances both the stability and
accuracy of prediction results, providing a robust technical
foundation for intelligent well-log applications.

3. Example application to a subsurface dataset

3.1 Geological settings
The proposed method was applied to a braided-river delta

reservoir within the Niujuanhu Oilfield of the Santanghu
Basin. The Santanghu Basin, located in the northeastern
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Table 1. Parameter settings for the used models in AutoGluon framework.

Model Main model parameters

XGBoost n_estimators = 50, max_depth = 6, learning_rate = 0.1, subsample = 0.8, colsample_bytree = 0.8

Bg-KNN

n_neighbors = 3, weights = ’uniform’, algorithm = ’auto’

n_neighbors = 5, weights = ’distance’, algorithm = ’auto’

n_neighbors = 7, weights = ’uniform’, algorithm = ’ball_tree’

n_neighbors=9, weights =’distance’, algorithm = ’kd_tree’

Random forest n_estimators = 50, max_depth = 10

LightGBM n_estimators = 50, max_depth = 6, learning_rate = 0.1

CatBoost iterations = 50, depth = 6, learning_rate = 0.1

Extra trees n_estimators = 50, max_depth = 10

Logistic regression C = 1.0

MLP epochs = 50, batch_size = 32, learning_rate = 0.001

Bagging num_bag_folds = 5, num_bag_sets = 3

Stacking num_stack_levels = 2
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Xinjiang Uygur Autonomous Region in northwestern China
(Zhang et al., 2021). This intermontane basin exhibits a
complex structural configuration and is divided into three
principal sectors: The Northeast Fold-and-Thrust Belt, the
Central Depression Belt, and the Southwest Fold-and-Thrust
Belt (Fig. 6) (Wang et al., 2022).

The Niujuanhu Oilfield is located in the northwestern part
of Central Depression Belt. The main reservoir target is the
Jurassic Xishanyao Formation, ranging in depth from 1,400
to 2,000 m. This formation is interpreted as having originated

from clastic deposition in a braided-river deltaic setting. These
sand bodies exhibit low porosity and permeability values,
averaging approximately 12.4% and 3.24 mD, respectively
(Fig. 7). Core sample analysis reveals that the target forma-
tion consists predominantly of mudstone and sandstone, with
occasional conglomeratic intervals (Fig. 7). The sand-to-mud
ratio exceeds 70%. These extensive sand bodies contain many
thin flow barriers, which pose significant challenges for CO2
flooding projects–some reservoirs show no response, while
others experience severe gas channeling.
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3.2 Well-log responses of permeability barriers
3.2.1 Features of permeability barriers

Five types of relatively thin low-permeability units are
primarily identified in the reservoir volumes in the study area:
Thin mudstone units, siltstone units, carbonaceous sandstone
units, carbonate-cemented sandstone units, and gravelly or
muddy-gravelly sandstone units (Figs. 8(a)-8(e)). Nonetheless,
petroleum geologists working on this oilfield tend to group
these features into three categories based on their genetic
significance and well-log response: Mudstone units, carbonate-
cemented units, and other diagenetically modified sandstone
units.

The thickness of different flow barriers in the study area
exhibits significant variability. Core analysis from seven cored
wells reveals that: Mudstone units occurring within thick
sandstones range from 0.2 to 0.8 m in thickness; carbonaceous
sandstone and conglomerate units are between 0.3 and 1.5 m
thick; siltstone units are between 0.5 to 2.5 m thick; calcareous
sandstone units typically exceed 1 m in thickness.

3.2.2 Well-log responses

Based on core calibration results, sandstones typically
exhibit low GR and high SP responses, while mudstones
show low GR and high SP (Fig. 8). Due to the significantly
lower resolution of SP compared to GR in the dataset, the
identification of thick sandstone units relies primarily on the
GR log, with 95 API serving as the tentative cutoff between

sandstone and mudstone (shown as “shale line” in Fig. 8).
Siltstone units exhibit responses that are intermediate between
those of sandstone and mudstone units, with slightly higher
GR readings in sandstone-dominated packages. Carbonaceous
sandstones are characterized by low GR, higher DT, and lower
DEN values. Calcareous sandstones display anomalously high
resistivity, high DEN, and low DT. Low-permeability con-
glomerates are identified by low GR, relatively high DEN,
lower DT, and fairly elevated RT values.

In practice, the log response amplitude of thin units is
closely related to their thickness. For example, in Fig. 8(f),
a 0.85 m mudstone bed occurring in a thick sandstone
body shows a GR value exceeding 95 API, i.e., beyond the
“shale line” threshold. On the contrary, the stratigraphic level
corresponding to the position of a 0.33 m mudstone bed
maps onto a comparatively reduced GR value, which is well
below the “shale line” threshold. Thus, it is apparent that
identifying low-permeability units that may be only a few
decimeters thick presents a considerable challenge. As shown
in Fig. 8, potential flow barriers or baffles with thicknesses
lower than 1 m display variable log responses, such that
conventional well-log interpretation methods are unsuitable for
their identification.

3.2.3 Well-log resolution analyses

The resolution of well logs is influenced by many factors,
including the design of the logging tool, the frequency of the
electrical current used, the depth and physical characteristics
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and (f)-(h) well-log responses of typical low-permeability units.

of the rock formation, and the type of drilling fluid, among
others. Nevertheless, the resolutions and investigation depths
of the six considered well-log types have been analyzed.
This analysis incorporates statistical data on resolution from
published studies (Saneifar et al., 2015; Wood, 2022a) and
evaluations conducted by geophysicists based on core samples
from the Niujuanhu Oilfield (Table 2). The resolution of these
six well-logs for lithologies with typical sensitivity ranges
from 0.4 to 1.5 m. However, the lithologies that may act as
low-permeability units do not belong to these typical cases.
For instance, the resolution of the GR log in the study area
can reach up to 0.4 m for pure mudstone beds under ideal
conditions, whereas the actual resolution of the GR log is
often larger than 1 m for siltstone units. In summary, the

difficulty in identifying thin low-permeability units varies as a
function of their type and nature, in addition to their thickness.
Mudstone units exhibit more distinct, higher resolution well-
log responses, whereas other thin units–such as siltstone,
carbonaceous-coaly sandstone, and conglomerate–display less
distinct log responses, expressed at lower resolution, making
their identification particularly challenging.

3.3 Reconstruction of well logs using DWT
Using the method described in Section 2.2, five types of

well logs–GR, DT, DEN, RD, and RS–were decomposed and
reconstructed. By way of example, a GR log is shown in Fig.
9(a) that illustrates the reconstruction results for values of the
parameter K set to 1, 2, 3 and 4, respectively. As the value of K
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Table 2. Parameter settings for the used models in AutoGluon framework.

Log type Investigation
depth (m)

Theoretical
resolution (m)

Evaluated resolution
in study area (m) Major sensitive lithologies

GR 0.4-0.8 0.3 0.4-1.0 Sandstone or mudstone

SP < 1 0.7 1.5 Sandstone or mudstone

DEN 0.15-0.4 0.2 0.4-1.0 Calcareous sandstone

DT 0.2-0.3 0.3-1.0 0.7-1.5 Calcareous sandstone

RD N/A N/A 0.4-1.0 Calcareous and oil-bearing sandstone

RS N/A N/A 0.4-1.0 Calcareous and oil-bearing sandstone
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increases, the magnitude anomaly of a relatively thin mudstone
bed becomes more pronounced (red arrow in Fig. 9(a)). When
K is set to 3, a tradeoff is achieved whereby the magnitude
anomaly of thin mudstone units in the reconstructed log is sig-
nificantly enhanced and yet their thickness is not exaggerated.
Specifically, the well-log response of a 38-cm-thick mudstone
unit (Fig. 9(b)) was highlighted in the reconstructed log for
K = 3 (Fig. 9(a)), but the thickness of this unit was markedly
overestimated for K = 4 (yellow arrow in Fig. 9(a). On this
basis, a K value of 3 was considered optimal and adopted.
As detailed in Section 2.2, with K values of 2, 3 and 4, the
identification accuracies of thin lithological beds are compared
using an iterative approach, from which the K value with the
highest accuracy is selected.

3.4 Recognition of thin heterogeneities
Using the method detailed in Section 3.2, thin het-

erogeneities are identified, including thin mudstone units,
carbonate-cemented units, and other diagenetically modified
sandstone units (Fig. 10). The results from the six cross-
validation wells (Figs. 10(a) and 10(b)) and the blind-test well
indicate that most low-permeability units are accurately inter-
preted, although discrepancies exist between their predicted
thickness and their actual thickness measured in core. It should
be emphasized that cored well CW3 was excluded from the
machine learning process and thus serves as an independent
test well (Fig. 10(c)). The interpretation results obtained from
this well are considered broadly representative of the method’s
performance in non-cored wells. Finally, the interpretation
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Fig. 10. Results of application of the machine learning model to predict the occurrence of thin sedimentary heterogeneities
using the proposed method. (a)-(b) Two cross-validation cored wells, (c) blind-test cored well CW3, and (d) application to a
non-cored well.

model was applied to 118 non-cored wells across the study
area, with the results from one representative well presented
in Fig. 10(d).

4. Discussion

4.1 Identification accuracy and reliability
The model performance of thin lithological heterogeneities

is statistically summarized in Table 3 and Fig. 10, based on
six cross-validation wells and a blind-test well. Two accuracy
evaluation methods were applied: One based on general accu-
racy and a second one based on regular well-log sampling.
The former method estimates the probability of correctly
identifying thin impermeable lithological beds within thick

sandstones, disregarding the difference between interpreted
and actual thickness. As this study targets permeability barriers
that tend to be thinner than 1 m, petroleum geologists are
chiefly concerned with their presence rather than their exact
thickness, making this approach both objective and reasonable.
The latter method assesses the reliability of identification
results by sampling the well logs at a rate of eight sampling
points per meter.

For mudstone units with thicknesses between 0.2 and 0.5
m, the identification accuracy reaches 85% when evaluated
using the general evaluation method; the accuracy decreases
to 56% when assessed using the well-log sampling method.
These results suggest that the proposed method is capable of
qualitatively detecting thin mudstone units within the thickness
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Table 3. Identification accuracy of the different types of heterogeneities based on six cross-validation wells and a blind-test
well.

Heterogeneity unit Thickness (m) Accuracy of qualitative
evaluation (%)

Accuracy of quantitative evaluation (%)

Sub-item Total accuracy

Thin mudstone

0.2-0.5 85 56 86

0.5-0.8 95 82 86

> 0.8 100 91 86

Diagenetic sandstone

0.3-0.5 81 53 84

0.5-0.8 87 80 84

> 0.8 95 89 84

Carbonate-cemented > 1.0 100 86 86

sandstones, but lacks the capability to quantitatively resolve
their precise thickness. For reservoir units that exceed 0.5 m
in thickness, accuracy values exceed 95% with the general
evaluation method and are higher than 82% with the well-
log sampling evaluation method, indicating that the proposed
method can provide quantitative interpretations in such cases.

The identification performance for thin diagenetic sand-
stone units is similar to those for mudstone units, though
with slightly reduced accuracy, with values of 82% and 56%
for thicknesses of 0.3-0.5 m based on the general and well-
log sampling evaluation methods respectively, and > 95% and
> 80% for thicknesses > 0.5 m. The carbonate-cemented units,
a specific type of diagenetic sandstone, are always readily
identified, presumably because their thickness is consistently
larger than 1 m in the study area.

4.2 Strengths of the proposed approach
Based on the test and cross-validation wells, a high degree

of match is observed between the sedimentary heterogeneities
predicted via the proposed method and those identified visually
in core, indicating the reliability and potential of the proposed
method (Fig. 10 and Table 3). Due to their weak well-
log responses, thin sedimentary heterogeneities are below the
detectability of conventional interpretation methods based on
well logs; the resolution of well logs prevents identification of
mudstone units thinner than 0.5 m and of diagenetic sandstone
units thinner than 1 m, in the study area. However, the
proposed method has enabled the identification of sedimen-
tary heterogeneities with thicknesses ranging from 0.3 to 0.5
m (Fig. 10), thereby significantly improving the breadth of
geological information that can be extracted from well logs.

The advantages of this proposed method rest primarily
on three key methodological aspects. First, the hierarchical
approach in lithological interpretation. Conventional methods
are initially used to distinguish thicker sand-prone and mud-
prone units. Subsequently, lower-order, smaller-scale hetero-
geneities that are present within the thick sand-prone packages
are identified and then classified. Second, the steps of well-log
decomposition and reconstruction using DWT. The reconstruc-

tion process effectively enhances the well-log responses of
thin sedimentary heterogeneities within sand-prone units (Fig.
9), improving well-log resolution (Zhang et al., 2018; Chen
et al., 2021). Third, the application of intelligent algorithms.
Compared to traditional lithological interpretation approaches
applied to well logs, the application of intelligent algorithms
allows users to extract information from multiple well logs
more comprehensively (Iraji et al., 2023; Wei et al., 2025).
The established nonlinear models can better represent the
complex mapping relationships between lithology and well
logs (Shan et al., 2021; Zhang et al., 2021; Iraji et al., 2023).
Collectively, these advantages enable a fuller recognition of the
lithological heterogeneity of reservoir units, thereby enhancing
the interpretation accuracy of well logs.

4.3 Potential applications and limitations
The proposed method enables the accurate identification

of thin sedimentary heterogeneity and supports the refined
interpretation of lithology, lithofacies, and reservoir-unit types.
Consequently, it can be also applied to the following research
area:

1) Sedimentological characterization of well-log data, since
facies sequences can be interpreted in greater detail
and this can help support the process of conceptual
reservoir modeling (definition of facies associations as
elements/reservoir building blocks; development of de-
positional models);

2) Improved net-to-gross quantification, which together with
improved porosity estimations supports refinement of
volume computations;

3) Improved recognition of permeability heterogeneity of
reservoir units, which can be incorporated in upscaling
workflows.

As currently developed, the method is subject to some
notable limitations. The technique currently requires an exten-
sive collection of core samples for model calibration, due to
the inherent data dependency of machine learning algorithms
which require substantial training datasets to achieve optimal
predictive accuracy. To address severe sample imbalance, this
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study employs SMOTE for data balancing, which enhances the
identification accuracy of thin lithological heterogeneities. It
should be noted, however, that SMOTE interpolation may dis-
rupt the Markovian property inherent to geological sequences,
potentially introducing spurious artifacts when analyzing well-
log curve morphology. Consequently, comparative validation
must be performed between pre- and post-SMOTE implemen-
tations in practical applications.

Additionally, the predictive power of the machine-learning
models is highly dependent on the variety and original reso-
lution of the well logs in the target field to which they may
be applied. The trained model for recognizing thin lithological
heterogeneities is specific to the study area. When applied to
other regions, it needs to be retrained using a sample set from
the target area to ensure accuracy and reliability.

5. Conclusions
This study introduces a hierarchical well-log interpretation

method that integrates DWT and AutoML framework to
improve the recognition of thin lithological heterogeneities.
Applied to a subsurface dataset, the method proves especially
effective in identifying thin permeability barriers in thick
compound sandbodies.

1) A proposed method consists of five key steps: Core
interpretation, well-log processing, sample equalization,
identification of thin heterogeneities, and heterogeneity
classification. The AutoML framework integrates multi-
ple algorithms with automated parameter optimization,
demonstrating excellent robustness and generalization
capability.

2) There are three strengths in the proposed method. The
DWT enhances the well-log responses of the considered
lithologies, facilitating the identification of thin units.
The hierarchical interpretation of lithologies at different
scales highlights lithological contrasts, facilitating a more
accurate lithological differentiation. Machine learning
leverages multiple well logs to capture complex lithology-
response relationships.

3) The results demonstrate that this new method can lead
to the accurate identification of thin lithological hetero-
geneities thicker than 0.2 m for thin mudstone units and
0.3 m for diagenetically modified sandstone units.

4) The proposed method shows potential for broader ap-
plications in reservoir studies, such as interpretations of
thin sedimentary heterogeneities, lithologies, lithofacies,
reservoir-unit types and net-to-gross quantification.
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