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Abstract:
The accurate evaluation of the electricity output of geothermal power plants requires
effective coupling between the geothermal reservoir and power plant. Existing coupling
models integrate numerical simulation models of the reservoir and power plant; however,
they are computationally expensive for electricity prediction (forward modeling) and
integrated reservoir-power plant optimization. Therefore, this study aimed to enhance
the efficiency of the coupled reservoir-power plant model for forward modeling and
optimization by replacing simulation forward models with deep-learning-based surrogate
models. Two independent surrogate models of the reservoir and power plant were trained
and assembled into one coupled forward model. Moreover, a multiobjective optimizer was
integrated with the coupled forward model to optimize reservoir operations and power plant
designs to achieve the highest electricity output or the best economic outcome. Surrogate
models for the reservoir and power plant accurately predicted the geothermal production
temperature and electricity output while approximately achieving speedups of 1.23×105

and 1.77× 105 times over those of the corresponding simulation models, respectively.
Furthermore, optimization using our surrogate-based coupled model was 1.31×106 times
faster than that using the simulation-based coupled models. Optimization results revealed
that low injection temperature, large well distance, and stable reservoir injection and
production rates contributed to better power plant performance. High design geothermal
temperature, mass flow rate, and ambient temperature favored electricity generation,
particularly in power plants located in hot regions. Our work remarkably accelerates the
feasibility assessment and decision-making procedures for geothermal reservoirs and power
plants.

1. Introduction
In 2017, the Kingdom of Saudi Arabia (KSA) launched

a 500-billion-USD project to create an innovative economic
zone called “NEOM”, with the goal of achieving zero carbon
emissions. Therefore, the development of renewable energy
in NEOM is crucial, and geothermal energy represents a
promising option. NEOM has abundant geothermal sources,
where the geothermal gradient ranges from 35 to 45 ◦C/km
(Aboud et al., 2023), which exceeds the typical geothermal

gradient (25-30 ◦C/km). The primary geothermal reservoir in
NEOM is a hydrothermal reservoir composed of permeable
porous media saturated with hot brine; it is located 200-3,000
m beneath the Earth’s surface.

High-fidelity reservoir simulations can effectively simulate
the thermal front movement and predict the production tem-
perature. However, geothermal reservoir simulation involves
high computational costs because of reservoir heterogeneity,
multiphysics coupling phenomena, and matrix-fracture inter-
actions (Yan et al., 2024). The high computational costs in-
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hibit conventional simulation-based optimizations. In contrast,
a deep learning (DL)-based surrogate model can simulate
underlying nonlinear relationships between input and output
parameters and directly predict outputs without solving partial
differential equations, which is a more efficient alternative to
simulation models in both forward and inverse modeling (Chen
et al., 2025).

During geothermal production, the production temperature
decreases with time after the cold waterfront reaches the
production well (cold-water breakthrough). DL architectures
excelling at time-series forecasts, such as recurrent neural
networks (RNNs), gated recurrent unit (GRUs), and long
short-term memory (LSTM) networks, are commonly used for
predictions. Qin et al. (2023) predicted and optimized the net
power generation of a geothermal field using an RNN-based
surrogate model. Li et al. (2024) used a bidirectional GRU to
predict the production temperature of a fractured geothermal
reservoir. Wang et al. (2023) developed a convolution neural
network (CNN)-LSTM hybrid surrogate model to predict the
production rate and temperature. However, RNN-based models
cannot fully exploit the parallel computing capability of mod-
ern graphics processing units (GPUs) and can be vulnerable
to vanishing and exploding gradients. In comparison, the
transformer architecture is built entirely based on the attention
mechanism and processes all timesteps simultaneously, which
mitigates vanishing and exploding gradients and allows the
maximum utilization of the parallelism capability of GPUs.
Xue and Chen (2023) compared the performances of an
RNN, an LSTM network, and a transformer architecture in
geothermal electricity output predictions and demonstrated
that the transformer architecture had the best predictive ac-
curacy. However, the transformer architecture used in their
study was designed to solve autoregressive problems, in which
the current timestep is predicted based on previous timesteps.
The transformer’s performance in solving nonautoregressive
problems and its hybridization capability with other archi-
tectures remain to be studied. In this study, a hybrid CNN-
nonautoregressive transformer (NAT) architecture was con-
structed to predict the geothermal production temperature.
The hybrid architecture mitigated vanishing and exploding
gradients while allowing multimodal input features, including
three-dimensional (3D) heterogeneous geological fields (per-
meability and porosity), time-varying injection schedules, and
other scaler parameters.

The geothermal fluid produced by a reservoir with a
temperature > 80 ◦C can be utilized by a power plant to
generate electricity (Hu et al., 2021). The reservoir productiv-
ity (production temperature and rate) has a significant impact
on the output of a power plant. Therefore, the coupling
between the subsurface and surface units must be studied
because it plays a critical role in accurately evaluating the
performance of a power plant. Garapati et al. (2017) integrated
a multiphase reservoir simulation model with a power plant
model to examine the electricity output potential of a CO2-
based geothermal system. Jiansheng et al. (2022) built a
coupling model integrating an enhanced geothermal system
(EGS) with a horizontal well and an organic Rankine cycle
(ORC) power plant. Hsieh et al. (2024) coupled an EGS

model with a flash-binary hybrid power plant model. Meng et
al. (2024) proposed a time-sequential coupling model of EGS
and ORC power plants. However, existing coupled models face
two major challenges. First, these coupled models integrate
numerical simulation models of the reservoir and power plant,
which results in high computational costs. Reservoir models
are commonly developed in simulators such as COMSOL
Multiphysics or TOUGH2, whereas power plant models are
simulated in ASPEN PLUS or in-house simulators. However,
the coupling of such computationally intensive simulators
significantly increases the computation time of the models
for electricity output predictions and optimization. This may
be the reason why the aforementioned studies did not apply
their models in optimization contexts. Second, current studies
assume constant injection and production rates. However, re-
alistic injection and production rates of a geothermal reservoir
are rarely constant throughout the lifetime. The injectivity can
decrease due to clogging triggered by particle migration, min-
eral precipitation, and microbial activities (Markó et al., 2021;
Luo et al., 2023). The injection scheme must be changed
under such circumstances, resulting in time-varying production
rates. Besides, the investors may deliberately change the
production rate based on the real-time energy price and market
demand (Haklıdır, 2020). Therefore, dynamic well control
in geothermal applications must be investigated for flexible
reservoir management and productivity adjustments. Besides,
the effects of dynamic injection and production rates on power
plant performance cannot be examined using existing models.

This study primarily aimed to accelerate the forward
modeling and optimization procedures of a coupled reservoir-
power plant model by integrating the coupled model with sur-
rogate models instead of simulation models. In reservoir mod-
eling, a CNN-NAT hybrid surrogate model was constructed
for the 3D heterogeneous geothermal reservoir in NEOM to
efficiently predict the wellhead production temperature. Dy-
namic well controls were implemented in the reservoir model
to better align with realistic production schedules. In power
plant study, a DL-based power plant surrogate model was
built to predict the maximum electricity output under actual
heat-source and heat-sink conditions. More importantly, the
reservoir and power plant surrogate models were assembled
into one coupled forward model through heat-source condi-
tions, efficiently coupling the subsurface and surface units.
Finally, the forward model was combined with a multiobjective
optimizer to efficiently optimize the coupled system to achieve
the highest electricity output or best economic outcome. The
optimal decision parameters of the geothermal reservoir and
the optimal power plant design conditions within the frame-
work are discussed herein.

The novelty of our work lies in the following three aspects:

1) A CNN-NAT reservoir surrogate model is established.
The NAT can predict production temperatures at all
timesteps simultaneously without dependence on previous
timesteps, while mitigating vanishing or exploding gradi-
ents observed in RNN-based architectures. Hybridization
with a CNN allows the architecture to process complex
3D spatial data beside sequential data.
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Fig. 1. Geothermal reservoir model: (a) Stratigraphy of the Ifal Basin and (b) dynamic injection rates.

2) A data-driven forward model coupling the reservoir and
power plant is proposed, which is much more efficient
than simulation-based coupled models reported in exist-
ing studies. The effects of dynamic reservoir injection and
production rates on the performance of the power plant
are examined.

3) The multiobjective optimizer combined with the forward
model efficiently optimizes the coupled system consider-
ing reservoir uncertainty. The optimal decision param-
eters of the reservoir and power plant are determined
based on reservoir productivity variations and power plant
outputs throughout the lifespan.

Our work remarkably accelerates the feasibility assessment
and decision-making procedures of geothermal reservoirs and
power plants. The remainder of the manuscript is organized as
follows: Section 2 discusses the methodology of the surrogate
models and optimization framework. Section 3 presents the
prediction performance of the surrogate models. Section 4
discusses the optimization results. Section 5 presents the
conclusions and highlights of this work.

2. Methodology

2.1 Geothermal reservoir simulation model
The Ifal Basin is one of the well-defined basins along

the Red Sea coast in the NEOM region, northwestern Saudi
Arabia. Because the geology of the Ifal Basin has been well
studied, a hydrothermal reservoir model based on the geolog-
ical data of the basin was developed to study the geothermal
energy potential of this region.

The stratigraphy of the Ifal Basin is shown in Fig. 1(a).
Over the granitic basement, there are four sedimentary for-
mations characterized by distinct lithology and thickness.
From top to bottom, they are the Ghawwas, Mansyiah, Jabal
Kirbit, and Burqan formations (Hughes and Johnson, 2005).
Among them, the Burqan formation is the deepest sandstone
formation with the highest initial reservoir temperature and
permeability. Therefore, it was selected as the target reservoir
for geothermal production. The other three formations serve
as the overburden in the model. The lithology, thickness, and

other properties of the four formations are summarized in
Table S5 (Supplementary file).

The target reservoir has a volume of 1,000×1,000×200
m3 in the x, y, and z directions, respectively. It is located at
a depth of 2,286 m beneath the surface. A doublet system –
a pair of injection and production wells – was employed for
reservoir development. The production rate is set equal to the
injection rate, which is a common setup in a doublet system
(Ke et al., 2021), assuming high permeability between the
production and injection wells and negligible fluid losses to the
formation. Dynamic well controls were implemented on the
doublet system. The injection rate changes dynamically each
year, as shown in Fig. 1(b). In addition, the surface temperature
is 30 ◦C, and constant pressure and temperature conditions are
applied to the external boundaries.

Considering reservoir heterogeneity in terms of permeabil-
ity and porosity, 3D heterogeneous permeability and porosity
fields were generated using the open-source Python library
GSTools (Müller et al., 2022). The permeability fields were
first generated, which followed the Gaussian distribution.
Further, the porosity-permeability correlation for sandstone
regressed by Gudala and Govindarajan (2020) was used to
generate the porosity fields. The correlation is expressed as
follows:

φ =
log10 K +16.97

19.12
(1)

where φ is the porosity and K is the permeability.
Examples of 3D heterogeneous permeability and porosity

fields are shown in Fig. 2. The porosity field follows the same
spatial distribution pattern as the permeability field owing to
the correlation.

The reservoir model was built using the simulation
software COMSOL Multiphysics (Multiphysics, 1998). The
COMSOL modules used in reservoir simulation included the
“heat transfer”, “flow in porous media”, “rock mechanics”, and
“poroelasticity” modules, which simulated the thermo-hydro-
mechanical (THM) coupling mechanism during geothermal re-
covery (Wan et al., 2023). Moreover, a nonisothermal wellbore
flow model was developed using the nonisothermal pipe flow
module and coupled with the reservoir model to calculate heat
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Fig. 2. Heterogeneous geological fields: (a) permeability and (b) porosity fields.

Table 1. Ranges of scaler reservoir parameters (Al-Laboun
et al., 2014; Hoteit et al., 2023).

Parameter Unit Lower bound Upper bound

Kmin mD 20 80

Kmax mD 4,000 11,000

I - 0.1 0.5

cx m 50 200

cy m 50 200

cz m 25 50

Tin j
◦C 20 100

Lw m 100 600

G ◦C/km 35 50

λ W/(m ·K) 1 5

Cp J/(kg ·K) 700 1,200

α - 0.2 1

E GPa 10 40

ν - 0.2 0.4

loss through the production wellbore. The governing equations
of the THM reservoir model and the nonisothermal wellbore
model are presented in Appendix A in Supplementary file. The
physical model of the production wellbore has been discussed
by Shi et al. (2019), as shown in Fig. 3. The properties of
each component in the wellbore model are listed in Table S6.

2.2 Geothermal reservoir surrogate model
2.2.1 Data preparation

To build a database for reservoir surrogate model train-
ing, 2,000 cases based on the numerical model discussed in
Section 2.1 were generated and simulated. Eleven parameters,
including three operational parameters and eight reservoir
property parameters, were selected as the input variables of the
surrogate model: Injection temperature Tin j, injection rate qin j,
well distance Lw, geothermal gradient G, thermal conductivity
λ , specific heat capacity Cp, Biot coefficient α , Young’s
modulus E, Poisson ratio ν , porosity φ , and permeability K.
The injection rates of all cases were sampled by following a
uniform distribution between 40 and 60 kg/s. The rate changes
between two neighboring timesteps were limited to < 5 kg/s

Production tubing

Inner layer

Insulation layer

Outer layer

Casing

Cement

Fig. 3. Structure of a geothermal production wellbore.

to avoid drastic injectivity or productivity variations and allow
the reservoir to fully respond to productivity changes. More-
over, 2,000 permeability fields were generated with GSTools.
Six parameters determined the permeability field (minimum
permeability Kmin; maximum permeability Kmax; anisotropic
ratio I; and correlation lengths in the x, y, and z directions,
denoted as cx, cy and cz, respectively). A smaller correlation
length indicates greater spatial heterogeneity and vice versa.
These parameters were sampled using the Latin Hypercube
sampling method, with ranges listed in Table 1. After the
permeability fields were generated, the same number of poros-
ity fields were generated based on the porosity-permeability
correlation expressed in Eq. (1).

After running all the simulations in COMSOL, the well-
head production temperature data of 30-year duration were
collected. To better capture the cold-water breakthrough time,
the temperature data were collected using a small timestep (0.5
year). Overall, a database containing input and output data of
2,000 cases was developed.

2.2.2 CNN-NAT

A hybrid CNN-NAT reservoir surrogate model (denoted as
Sr) was constructed to predict the wellhead production tem-
perature Tp(t) from multimodal input features, including het-
erogeneous geological fields mmmg, time-sequential well control
mmmw, and scaler parameters mmms. A CNN encoder (C ) was used
to capture the spatial information, and NAT was employed to
predict the production temperature. The prediction procedure
was as follows:

Tp(t) = Sr(mmmg,mmmw,mmms) (2)
Fig. 4 shows the architecture of Sr. The input of the

CNN encoder was 3D heterogeneous geological data. In this
study, because permeability and porosity were correlated,
either of them could be input into the model (the permeability
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field was input in this study). After processing through the
convolutional blocks (red arrows) and pooling layers (blue
arrows) of the CNN encoder, the high-dimensional geological
data were flattened into a 1D latent vector, which is a dense
representation of the original permeability field with a reduced
number of parameters (Feng et al., 2025). The aforementioned
procedure is formulated as:

m̃mmg = C (mg) (3)
where mg ∈RNz×Nx×Ny is the 3D permeability field; Nz, Nx, and
Ny are dimensions in the z, x, and y directions, respectively,
which equal the number of grids in each direction in reservoir
discretization; and m̃mmg ∈RNl is the latent vector with dimension
Nl .

The latent vector obtained from the CNN encoder is one
of the input features of the transformer architecture, together
with well-control data (mmmw ∈RNt,w×Nw ) and other scaler input
variables (mmms ∈ RNs ). Nt,w is the number of timesteps of the
well-control data, and Nw is the number of wells. In this study,
Nw = 1 because the injection and production wells shared the
same schedule. Ns is the number of scaler input variables.
The input vectors are broadcasted and projected into a shared
embedding space of dimension N f and ultimately fused into
one latent representation m̃mm ∈ RNt,w×N f by addition.

Because the attention-based transformer architecture does
not have an inherent sense of sequence, positional encoding
(PE) is added as the temporal information of data points. Si-
nusoidal positional encodings are used, and they are expressed
as follows (Vaswani et al., 2017):

PE(P,2i) = sin
P

100002i/N f
(4)

PE(P,2i+1) = cos
P

100002i/N f
(5)

where P is the temporal position of a data point in a time
sequence and i is the index of a feature in the projected space.

After augmentation with PE, the resulting sequence m̃mm+

PE ∈RNt,w×N f is input to the transformer encoder. The encoder
generates contextual representations that capture long-range
dependencies within the input sequence through the multihead
self-attention mechanism. The contextual representations are
passed to the decoder through the cross-attention mechanism
(red elbow arrow from the transformer encoder to the trans-
former decoder in Fig. 4). Subsequently, they are further trans-
formed by the feed-forward network and the linear projection
layer to generate the final geothermal production temperature
predictions with the targeted length.

Compared with recurrent architectures such as LSTM
networks and RNNs, the transformer architecture based on
the multihead attention mechanism processes all timesteps in
parallel instead of processing them sequentially, which better
utilizes the GPU parallelism ability and effectively mitigates
vanishing and exploding gradients. Besides, hybridization
with a CNN allows the transformer architecture to handle
complicated 3D spatial information instead of handling only
sequential data.

The mean square error (MSE) was used as the loss function
Lr during training, and the nondimensional coefficient of
determination (denoted as R2) was employed as a performance
evaluation metric of the surrogate model, which are expressed
by Eqs. (6) and (7), respectively:

Lr =
1

NbNt,T

Nb

∑
j=1

Nt,T

∑
k=1

(
T̂j,k −Tj,k

)2 (6)

R2 = 1−

Nb
∑
j=1

Nt,T

∑
k=1

(
T̂j,k −Tj,k

)2

Nb
∑
j=1

Nt,T

∑
k=1

(
Tj,k − T̄

)2
(7)

where T̂j,k and T̂j,k are the predicted temperature and ground
truth of sample j at timestep k, respectively; Nb is the total
number of samples (i.e., batch size); and T̄ is the mean ground
truth temperature over all samples and timesteps.
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2.3 Power plant simulation model
The subcritical binary ORC power plant was studied

because it is currently the most typical and widely used
configuration, accounting for 42.8% of the 673 power units
worldwide (Gutiérrez-Negrín, 2024). The layout of the ORC,
comprising an evaporator, a turbine, a condenser, and a pump,
is illustrated in Fig. 5.

The net electricity output of the ORC Pnet was calculated
as follows:

Pnet = Pt −Pp −bmc (8)
where Pt is the raw electricity output of the turbine, Pp is the
electricity consumption of the pump, and mc is the mass flow
rate of the cooling fluid. Air was used as the cooling fluid
because of water scarcity in Saudi Arabia. Finally, b is the
electricity consumption of the condenser per mass flow rate
of air.

The levelized cost of electricity (LCOE) and net present
value (NPV) were employed as key metrics to evaluate the
cost-effectiveness of the power plant. The LCOE is defined as
the ratio of the discounted costs over the lifetime of a power
plant to the discounted actual cumulative electricity generated
(Lai and McCulloch, 2017), which is expressed by:

LCOE =
Cin +Cd +

∫ tab

0 Com,ae−irtdt∫ tab

0 Pcum,ae−irtdt
(9)

where Cin is the installation cost of the power plant, Cd is
the drilling cost of geothermal wells, tab is the abandonment
time of the power plant, Com,a is the annual operation and
maintenance (O&M) costs of the power plant, ir is the interest
rate (currently 5% in KSA), and Pcum,a is the annual cumulative
electricity output.

The NPV is expressed as:

NPV =−Cin −Cd +
∫ tab

0
(BPcum,a −Com,a)e−irtdt (10)

where B is the electricity price.
The price of the electricity generated from geothermal

energy comprises the market price and feed-in tariff (FIT).

The FIT is an incentive policy that guarantees a specific
price (normally higher than the market price) for electricity
generated from renewable sources for a long period of time
(normally 15-20 years). This policy reduces risks associated
with renewable energy installation and production, which en-
courages investments in renewable energy. In 1990, Germany
was the first country to apply the FIT to renewable energy.
Currently, 93 countries have applied incentives for renewable
energy, and 44 countries have FITs, including China, the UK,
and France (Murdock et al., 2020). However, the KSA has
not yet implemented a FIT or any other incentive policy for
renewable energy. Detailed expressions used to calculate the
parameters in Pnet, the LCOE, and NPV are presented in
Appendix A (Supplementary file).

In the design stage of the power plant, the design values
of the heat-source (geothermal) temperature, heat-source mass
flow rate, and heat-sink (ambient environment) temperature
were specified. Based on the design heat-source and heat-sink
conditions, the operational parameters of the power plant, such
as the condensing temperature, working fluid temperature at
the turbine inlet, cooling fluid temperature at the condenser
outlet, and pump pressure, were optimized. The optimization
goal was to achieve the maximum net electricity output.

The power plant is expected to operate as per the optimal
operational parameters under the design conditions. However,
when the heat-source or heat-sink conditions deviate from their
design values, such as due to production temperature decline,
production rate variations, or ambient temperature fluctuations,
the power plant will operate under off-design conditions.
Hence, the operational parameters should be optimized to
achieve the highest net electricity output under the new heat-
source and heat-sink conditions. Further details on the design
and off-design procedures are available in our previous work
(Liu et al., 2025). Both the design and off-design models were
validated by comparing the results of this study with those
reported in literature, demonstrating a strong correlation. The
validation results are presented in Appendix B (Supplementary
file).

2.4 Power plant surrogate model
2.4.1 Data preparation

The in-house power plant simulator took approximately 3-
10 min to run one design and off-design simulation, which
was computationally very expensive to be employed in opti-
mization. Therefore, an efficient power plant surrogate model
was developed.

The input variables of the surrogate model (denoted as mmmp)
included:

1) Design values of the geothermal production temperature
Tg,d , geothermal mass flow rate qg,d , and ambient temper-
ature Tam,d , which were used to design the power plant.

2) Off-design values of the geothermal production temper-
ature Tg,o, geothermal mass flow rate qg,o, and ambient
temperature Tam,o, which determined the off-design con-
ditions of the power plant.

3) The geothermal fluid re-injection temperature Tre, which
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constrained the geothermal fluid temperature at the evap-
orator outlet.

The input parameters were sampled using the Latin Hyper-
cube sampling method, with parameter ranges listed in Table
2. Notably, 2,000 cases were generated and simulated in the in-
house power plant simulator. The resulting data on off-design
net electricity output were collected as the ground truth to train
the surrogate model. Consequently, the power plant surrogate
model could flexibly predict the electricity output under any
off-design condition for any power plant design.

2.4.2 Surrogate model architecture

The power plant surrogate model (denoted as Sp) was con-
structed based on a fully connected neural network (FCNN).
The FCNN comprises a sequence of stacked layers, including
input, hidden, and output layers, where each layer (denoted as
li, i = 1,2,3, · · · ,n) contains numerous neurons. Every neuron
in a layer receives and processes inputs from all neurons in the
previous layer, making them “fully connected”. The outputs of
each layer are passed through a nonlinear activation function
σ , which introduces nonlinearity and allows the network to
learn complex patterns. The procedure can be formulated as
follows:

p̂net =Sp(mmmp;θ)=σtanh (lnσtanh (. . .σtanh (l2σtanh (l1(mmmp))) . . .))
(11)

where θ denotes learnable parameters, including the bias
and weight, and σtanh is the adaptive hyperbolic tangential
activation function, which can effectively mitigate exploding
or vanishing gradients (Yan et al., 2023).

The MSE is used as the loss function Lp in the FCNN:

Table 2. Ranges of power plant input parameters.

Parameter Unit Lower bound Upper bound

Tg,d
◦C 80 160

qg,d kg/s 20 70

Tam,d
◦C 0 40

Tg,o
◦C 80 160

qg,o kg/s 20 70

Tam,o
◦C 0 40

Tre
◦C 30 95

Lp =
1
nb

nb

∑
j=1

(p̂net, j − pnet, j)
2 (12)

where P̂net, j and Pnet, j are the prediction and ground truth of
the net electricity output of sample j in a batch, respectively,
and nb is the batch size.

The training of Sp is based on the Adam optimizer (Paszke
et al., 2019). The goal of the training is to determine learnable
parameters by minimizing the loss function using:

θ
∗ = argmin

θ
Lp(θ) (13)

2.4.3 Coupled reservoir-power plant forward model

The coupling relationships between the reservoir and power
plant surrogate models are illustrated in Fig. 6. Some input
variables of the power plant surrogate model Sp can be
obtained from the input or output variables of the reservoir
surrogate model Sr. For example, the off-design geothermal
mass flow rate qg,o equals the reservoir injection rate qin j and
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the re-injection temperature Tre equals the reservoir injection
temperature Tin j, which can be obtained from the inputs of the
reservoir surrogate model. Further, the off-design geothermal
production temperature Tg,o equal the reservoir production
temperature Tp, which is the output variable of the reser-
voir surrogate model. Therefore, a data-driven forward model
(denoted as S ), which couples the surrogate models of the
reservoir (Sr) and the power plant (Sp) considering heat-
source conditions, was developed. Any reservoir productivity
change, such as production temperature decline or injection
rate variation, can impact the electricity output or economic
outcome of the power plant.

2.5 Multiobjective optimization
A multiobjective optimization (MOO) framework was de-

veloped to optimize the performance of the power plant while
accounting for reservoir uncertainty. The general formulation
of the MOO framework is expressed as follows:

min
xxx∈X

Fi(xxx), i = 1,2, . . . , f

s. t. L j(xxx)≤ 0, j = 1,2, . . . , l
Hk(xxx) = 0, k = 1,2, . . . ,h

(14)

where xxx is the vector of decision parameters optimized within
the space X ; Fi is the i-th objective function; L j is the j-th
inequality constraint; Hk is the k-th equality constraint; and
f , l, and h are the number of objective functions, inequality
constraints, and equality constraints, respectively.

The MOO framework based on nondominated sorting
genetic algorithm II (NSGA-II) (Deb et al., 2002) was adopted.
This algorithm mainly operates as follows:

1) Initialization: A random population M0 is generated
within the searching space.

2) Offspring creation: Parents are selected from M0 using bi-
nary tournament selection and offspring O0 are generated
through crossover and mutation operations.

3) Pareto front selection: The parent and offspring popula-
tions are merged (D0). The solutions of all the populations
are ranked through nondominated sorting, where one so-
lution is considered dominant over another if it performs
better in at least one objective and not worse in all others.
Solutions that are not dominated by any other solutions
are selected as nondominated solutions, which are also
the optimal solutions, forming the Pareto front.

4) New population creation: Best solutions from D0 are
selected as the new parent population M1. Steps 2-4 are
then repeated with the new population until the maximum
number of iterations or other convergence criteria are
satisfied.

The ultimate output of the MOO framework is the Pareto
front, which is a set of optimal solutions that offer tradeoffs
between objective functions.

The parameters involved in the MOO are divided into three
categories:

1) Uncertain parameter vector mmmu: This is the set of param-
eters with high uncertainty. Compared with the power
plant, the reservoir has significantly higher uncertainty.

Therefore, uncertain parameters in this study mainly refer
to reservoir parameters, which are expressed as:

mmmu = [λ ,Cp,α,E,v,φ(x,y,z),K(x,y,z)]T (15)
2) Decision parameter vector mmmd . This is the set of param-

eters to be optimized in the MOO framework, which is
usually related to the operations. The decision parameters
of the reservoir mmmd,r include the injection temperature
Tin j, injection rate qin j, and well distance Lw. These
operational parameters determine the decline behavior
of the production temperature. The decision parame-
ters of the power plant mmmd,p comprise the geothermal
temperature Tg,d , geothermal mass flow rate qg,d , and
ambient temperature Tam,d . These three design parameters
determine the installed capacity of the power plant and
sizes of the heat exchangers, which further affect the off-
design performance of the power plant throughout the
lifespan. Besides, the operational parameters of the power
plant (e.g., condensing temperature and pump pressure)
do not have to be explicitly optimized by the MOO
framework because the simulator of the power plant
and the surrogate model based on the simulator have
inherently optimized them. The decision parameters in
the MOO can be expressed as:

mmmd,r = [Tin j,qin j,Lw]
T (16)

mmmd,p =
[
Tg,d ,qg,d ,Tam,d

]T (17)

mmmd =

mmmd,r

mmmd,p

 (18)

3) Given parameter vector mmmg: This is the set of parameters
that are given or can be directly measured. The given pa-
rameters of the reservoir mmmg,r only include the geothermal
gradient G, which can be measured at the geothermal well
site. The given parameters of the power plant mmmg,p contain
the off-design ambient temperature Tam,o, which can be
measured in the ambient environment. Besides, owing
to the coupling between the power plant and reservoir,
the decision parameters and output of the reservoir,
including Tin j (equivalent to Tre), qin j (equivalent to qg,o),
and geothermal production temperature Tp (equivalent to
Tg,o), can serve as given parameters of the power plant.
The given parameters can be expressed as:

mmmg,r = [G]T (19)
mmmg,p = [Tre,qg,o,Tam,o,Tg,o]

T (20)

mmmg =

mmmg,r

mmmg,p

 (21)

Further, the input variables of the surrogate models of the
reservoir mmmr and power plant mmmp can be re-assembled as:

mmmr =


mmmu

mmmd,r

mmmg,r

 (22)
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Fig. 7. Workflow of multiobjective optimization considering reservoir uncertainty.

mmmp =

mmmd,p

mmmg,p

 (23)

The MOO workflow considering reservoir uncertainty is
illustrated in Fig. 7.

The uncertain parameters mmmu are assumed to follow a Gaus-
sian distribution, and N equal-probable realizations (N = 50
in this work) are established to account for reservoir uncer-
tainty. Each realization can be denoted as mmmu,i, i = 1,2, ...,N.
Consequently, N sets of input parameters mmmr,i exist for the
reservoir surrogate model, which results in N production
temperature profiles T̂p,i(t) and N sets of input parameters
mmmp,i for the power plant surrogate model. Finally, N different
electricity and economy results are obtained corresponding to
each realization. The objective functions in the MOO can be
defined as:

ε(X) =

N
∑

i=1
Xi

N
(24)

σ(X) =

√√√√√ N
∑

i=1
(ε(X)−Xi)

2

N
(25)

where X can be the cumulative electricity Pcum, the LCOE,
or NPV. ε(X) and σ(X) are the expectation and standard
deviation of X over N realizations, respectively.

In this study, the expectation of each metric (Pcum, the
LCOE, or NPV) was the primary objective. The standard
deviation is interpreted as the risk in achieving the primary
objective. Three basic optimization scenarios were tested, in-
cluding electricity, LCOE, and NPV optimization. In addition,
a nonlinear constraint was imposed in LCOE optimization,
which ensured that the cumulative electricity generated in any
realization was > 0 to prevent negative LCOE results from

being selected as the lowest (optimal) results. The constraint
was formulated as follows:

min
xxx∈X

Fi(xxx), i = 1,2, . . . , f

s. t. L j(xxx)≤ 0, j = 1,2, . . . , l
Hk(xxx) = 0, k = 1,2, . . . ,h

(26)

3. Performance of surrogate models

3.1 Performance of the reservoir surrogate
model

For the reservoir surrogate model, the learning rate and
batch size were set as 1×10−3 and 24, respectively. The total
number of epochs was set to 200. The training stopped early
when there was no further improvement in the validation loss
for 30 epochs. The training and validation losses decreased
quickly with increasing number of epochs and converged after
approximately 100 epochs, as shown in Fig. 8(a). The training
process of the surrogate model was efficient, requiring 475.33
s. When using the testing dataset, the model’s predictions
closely matched the simulation ground truth, yielding an R2

score of 0.994 and a relative error of 0.79% ± 0.74%, as
shown in Figs. 8(b) and 8(c). Moreover, the prediction results
accurately captured various production temperature decline
patterns, showing high agreements with simulation results, as
shown in Fig. 8(d). The high prediction accuracy indicated that
the reservoir surrogate model can provide reliable production
temperature data to be input to the power plant surrogate
model in the coupled forward model. The average central
processing unit (CPU) time for prediction was 0.0039 s per
prediction, which was approximately 1.23× 105 times faster
than the numerical simulation model (∼ 8 min per simulation).
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Fig. 8. Performance of the reservoir surrogate model: (a) Loss, (b) R2 score based on the testing dataset, (c) distribution of
the relative error based on the testing dataset and (d) comparisons between simulation and prediction results for typical testing
cases.
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Fig. 9. Performance of the power plant surrogate model: (a) Loss, (b) R2 score based on the testing dataset, and (c) distribution
of the relative error.

3.2 Performance of the power plant surrogate
model

The power plant surrogate model had seven hidden layers,
with 30 neurons in each layer. The learning rate and batch size
were set as 1×10−3 and 100, respectively. The total number of
epochs was 1,000. The training and validation losses changed
similarly and converged well after approximately 400 epochs,
as shown in Fig. 9(a). The training process required 206.42 s,
exhibiting high efficiency. The well-trained surrogate model
accurately predicted the net electricity output, with an R2

score of 0.999 on the testing dataset, as shown in Fig. 9(b).

The predicted electricity output had a low relative error of
1.67% ± 1.15%, as shown in Fig. 9(c). The average CPU
computation time was 0.0017 s per prediction, which achieved
approximately 1.77 × 105 times speedup over the in-house
power plant simulator (which required 5 min per simulation
on average).

4. Optimization results
The high accuracy of the reservoir and power plant sur-

rogate models ensures the reliability of the coupled forward
model for optimization.
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Fig. 10. Solutions of electricity output optimization: (a) Pareto plot and (b) optimal injection rates.

Table 3. Means and standard deviations of uncertain
parameters.

Parameter Unit Mean Standard deviation

λ W/(m ·K) 3 0.3

Cp J/(kg ·K) 900 50

α - 0.6 0.1

E GPa 25 2.5

ν - 0.3 0.01

Table 4. Searching ranges of decision parameters.

Parameter Unit Lower bound Upper bound

Tin j
◦C 70 95

qin j kg/s 40 60

Lw m 200 500

Tg,d
◦C 80 160

qg,d kg/s 30 70

Tam,d
◦C 5 40

In the MOO, the given parameter vectors of the reser-
voir mmmg,r and power plant mmmg,p, realizations of an uncertain
parameter vector mmmu,i, and searching ranges of the decision
parameter vectors of the reservoir mmmd,r and power plant
mmmd,p were consistent across all optimization scenarios. The
geothermal gradient G in mmmg,r was set to 40 ◦C/km, which is
the highest geothermal gradient in the Ifal Basin. The initial
reservoir temperature was approximately 129.44 ◦C, represent-
ing a medium-temperature geothermal source for the power
plant. For the off-design ambient temperature Tam,o in mmmg,p,
a significant distinction was observed between the ambient
temperatures of the summer (May-October) and winter seasons
(November-April) in NEOM (Aljohani et al., 2024), as shown
in Fig. S1 (Supplementary file). Therefore, Tam,o was set as
31.79 ◦C and 21.93 ◦C for summer and winter, respectively.
Moreover, Tam,o remained consistent throughout the lifespan
of the power plant. The uncertain parameters were sampled

by following a Gaussian distribution based on their means
and standard deviations, as listed in Table 3. The searching
ranges of the decision parameters are presented in Table 4. The
injection rate qin j was a time sequence with 31 timesteps, and
the injection rate at each timestep was a decision parameter.

4.1 Electricity output optimization
The optimization goal was to achieve the highest cumu-

lative electricity output after 30 years while minimizing the
standard deviation (risk). The optimized solutions are shown
in Fig. 10(a). Among the optimal solutions on the Pareto front
(purple points), low-risk (blue square), median-risk (green
diamond), and high-risk (red triangle) solutions were selected
based on the minimum, median, and maximum standard de-
viations. The high-risk solutions yield the highest expectation
but are accompanied by the highest risk and uncertainty. In
contrast, the low-risk solution yields the lowest expectation.
Consequently, the median-risk solution was selected. The
optimal injection rate is plotted in Fig. 10(b). The mean (dash
lines) and standard deviation of the injection rate at each risk
level were calculated, as presented in the plot. The expectation,
risk, and other decision parameters (except for the injection
rate) at each risk level are listed in Table 5.

The solutions at the median- and high-risk levels had
similar optimal reservoir decision parameters, indicating that
the difference in the cumulative electricity output at different
risk levels was mainly due to different power plant designs.
For the high-risk solution, the design geothermal temperature
Tg,d (127.88 ◦C) was close to the initial wellhead production
temperature. Moreover, the design geothermal mass flow rate
qg,d (60.40 kg/s) and design ambient temperature Tam,d (26.02
◦C) were close to the average injection rate (57.29 kg/s) and
the average ambient temperature (26.86 ◦C), respectively. Such
values of design geothermal temperature and mass flow rate
allow the evaporator to fully utilize the geothermal energy at
the early stages of its lifetime when there is no significant
decline in the production temperature. Besides, using a design
ambient temperature that approximates the average ambient
temperature guarantees a satisfactory overall performance of
the condenser when the actual ambient temperature (21.93
◦C in winter and 31.79 ◦C in summer) fluctuates around the
design value. However, using a high Tg,d close to the initial
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Table 5. Optimal results of the electricity output optimization scenario.

Risk Tin j (◦C) Lw (m) Tg,d (◦C) qg,d (kg/s) Tam,d (◦C) ε(Pcum) (GWh) σ(Pcum) (GWh)

Low 81.24 337.58 97.73 33.40 7.12 67.14 0.066

Median 73.58 395.10 122.07 51.61 17.13 158.26 5.87

High 72.31 410.64 127.88 60.40 26.02 203.22 10.72

production temperature is risky because the evaporator may
perform poorly at later stages of its lifetime when there is
a significant production temperature drop. Moreover, using a
high qg,d above the upper limit of the actual injection rate
(60.00 kg/s) can significantly limit evaporator performance
when there is a drastic reduction in the injection rate. In
summary, using a high geothermal temperature and mass flow
rate to design the power plant is favorable for electricity
generation but also increases risk and uncertainty.

In comparison, the optimal Tg,d , qg,d , and Tam,d values
of the median-risk solution were lower than those of the
high-risk solution, where Tg,d (122.07 ◦C) approximated the
production temperature at the middle stage and qg,d (51.61
kg/s) was below the average injection rate (54.63 kg/s). To
a certain extent, such design conditions limit the capability
of the evaporator to utilize the best geothermal source at the
early stage but result in a stable performance throughout the
lifetime of the power plant. These design conditions generate
a moderate amount of electricity with less risk than those in
the high-risk solution. The low-risk solution had the lowest
optimal Tg,d , qg,d , and Tam,d values, which were close to their
lower limits. Such a power plant design is safe and has the
lowest risk because the evaporator is designed to utilize the
geothermal energy even if its temperature or mass flow rate
drops to a low value. However, it significantly limits the power
plant’s capacity during most of its lifetime, resulting in the
most conservative electricity output. Additionally, when using
a low Tam,a value to design the condenser, the condenser must
increase the cooling fluid mass flow rate to maintain proper
condensation under the high-ambient-temperature condition in
summer, which increases electricity consumption and reduces
net electricity output.

4.2 Economic optimization
This section discusses the optimization of the reservoir

and power plant to achieve the best economic outcomes
(lowest LCOE or highest NPV) with the lowest risks. In
NPV optimization, two scenarios with and without the FIT
are considered. Pareto plots and optimal injection rates of
the three optimization scenarios are presented in Fig. 11. The
optimal solutions of each scenario are summarized in Table
S9 (Supplementary file).

In the LCOE optimization scenario, the optimal decision
parameters of the reservoir and the power plant at the median-
and high-risk levels followed the same patterns as those in
the electricity optimization scenario. Furthermore, the standard
deviations of all three risk levels were low; σ(LCOE) of the
high-risk solution was 0.49, indicating that there is little risk in

choosing the high-risk solution as the optimal result, although
the median-risk solution is often recommended. Therefore,
the optimal LCOE result was 14.81 US¢/kWh. This value is
higher than the average LCOE value of a geothermal power
plant (6.40-10.60 US¢/kWh) reported by Lazard® (Bilicic
and Scroggins, 2023). The main reason was that the LCOE
values reported by Lazard® were based on scalable, com-
mercial geothermal projects, wherein several production and
injection wells are drilled to achieve high geothermal mass
flow rates. However, in our study, only one pair of injection
and production wells with a maximum production rate of 60
kg/s was considered, which limited the electricity generation
capacity of the power plant and raised the cost of electricity
generation.

NPV optimization without the FIT conformed to the
current policy implemented in the KSA. The average local
electricity price is 0.26 SAR/kWh (6.93 US¢/kWh). Detailed
electricity prices in the KSA are presented in Table S8
(Supplementary file). The results of NPV optimization without
the FIT were negative at all risk levels, where the best result
was US$ -7.92 million, as shown in Fig. 11(b). In this scenario,
incentive policies such as FITs become important. The design
geothermal temperatures Tg,d of all risk levels in this scenario
were close to the lower bound (90 ◦C). This was because
electricity generation is a negative factor when the power
plant does not make profits. Higher electricity outputs lead
to higher installation and O&M costs. Therefore, a low design
geothermal temperature is selected to restrict the electricity
generation capacity.

To further illustrate the importance of the FIT, another NPV
optimization scenario was tested, where the FIT was added to
the electricity price as a subsidy. Because no FIT has been
implemented in the KSA so far, the reference value of the
FIT in Germany was adopted, which is 24 C-ct/kWh (25.2
US¢/kWh). With the incorporation of the FIT, the optimal
NPV result changed substantially from US$ -7.92 to 19.53
million. Thus, the FIT will bring more profits to the power
plant, encouraging more investments in geothermal electricity
and boosting the development of geothermal energy in NEOM,
KSA.

In the optimization scenarios of electricity, the LCOE, and
NPV with the FIT, the injection rates of the median- and high-
risk solutions showed smaller standard deviations than those
of the low-risk solutions, indicating that maintaining stable
injection and production rates improves power plant perfor-
mance. This is because the isentropic efficiency of the turbine
decreases in the off-design conditions. If the geothermal mass
flow rate (i.e., production rate) varies drastically from the
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Fig. 11. Solutions of economic optimizations: Pareto plots obtained after (a) LCOE optimization, (b) NPV optimization
without the FIT, and (c) NPV optimization with the FIT. Optimal injection rates obtained after (d) LCOE optimization, (e)
NPV optimization without the FIT and (f) NPV optimization with the FIT.

design value, the power plant will continuously operate under
off-design conditions with a low turbine efficiency during its
lifetime, which will result in low electricity outputs and profits.
The solutions of NPV optimization without the FIT (Fig.
11(e)) further validated the aforementioned conclusion. In
this scenario, the high-risk solution showed a higher standard
deviation of injection rates than the low and median-risk
solutions. As mentioned before, electricity generation is a
negative factor when the power plant does not make profits.
Therefore, the high-risk solution changes the injection rate
drastically to operate under off-design conditions with low
turbine efficiency, which decreases the electricity output to
reduce revenue loss. In practice, when there is a significant
decline in productivity or injectivity, engineers may consider
drilling several infill wells to maintain the productivity and
guarantee stable geothermal energy supply to the power plant.

Regarding the computational performance, the average
CPU time for one MOO task when using our coupled model
was approximately 25.91 min, with 0.014 s per simulation. In
comparison, MOO using the simulation models was estimated
to require approximately 313 min per simulation, including
8 min for reservoir simulation (in COMSOL) and 305 min
for power plant simulation via the in-house simulator. As the
simulation consumes most of the CPU time during MOO, it
can be concluded that the surrogate-based MOO framework
developed in this work can achieve a speedup of > 1.31×106

times that achieved by the simulator-based MOO framework.

5. Conclusions
This study developed a coupled reservoir-power plant

model based on surrogate models to address the high com-

putational costs associated with forward modeling and op-
timization in conventional simulation-based coupled models.
The major conclusions are summarized below.

1) The reservoir and power plant surrogate models ac-
curately predicted the wellhead geothermal production
temperature and electricity output with mean relative
errors of 0.79% and 1.67%, respectively, while achieving
speedups of 1.23× 105 and 1.77× 105 times over those
of the corresponding simulation models, respectively. The
coupled forward model achieved considerable efficiency
in geothermal electricity or economy predictions with
minor tradeoffs in accuracy, which further accelerates the
feasibility assessment procedures of geothermal projects.

2) The implementation of dynamic well controls (injection
and production rates) in the reservoir model better aligned
with realistic well-control schedules than constant well-
control schedules typically assumed in existing studies.
Optimization results indicated that low reservoir injection
temperature, large well distance, and stable injection
rates contributed to good thermodynamic and economic
performances of the power plant. The results provide
guidance for infill well drilling in geothermal fields.

3) High design geothermal temperatures close to production
temperatures in the early production stage and high
design mass flow rates close to the average production
rate can result in satisfactory electricity outputs and eco-
nomic outcomes with moderate risks. For power plants in
regions with high annual average ambient temperatures,
such as NEOM, the design ambient temperature should
be close to the ambient temperature in hot seasons
(e.g., summer) to allow the condenser to work efficiently
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without excessive electricity consumption.
4) The optimal NPV increased significantly from US$ -7.92

to 19.53 million with the support of the FIT. Therefore,
the FIT is a crucial incentive policy to ensure the success-
ful operation of the geothermal power plant in NEOM,
KSA. The optimization using our surrogate-based cou-
pled forward model was 1.31 × 106 times faster than
that using conventional simulation-based coupled mod-
els, which significantly accelerates the decision-making
procedures of the reservoir and the power plant.

The major limitation of this work is that the working
fluid in the binary power plant is R134a, which is commonly
investigated in previous studies (Hu et al., 2021) but not
necessarily the optimal one for this work. However, the results
of different working fluids are not compared and the optimal
working fluid is not selected in this study. The main obstacle
was that power plant simulation using different working fluids
will significantly increase computational costs compared to
that when using only one working fluid. This hampered dataset
generation for the surrogate models and their training. In
future, the optimal working fluid will be determined. The
major bottleneck remains the utilization of more efficient opti-
mization algorithms or CPU parallelism in our in-house power
plant design and off-design simulator to enhance simulation
efficiency and reduce dataset-generation costs.
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