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Abstract:
Evolution behaviors of triaxial shearing parameters are very important for geo-technical re-
sponse analysis during the process of extracting natural gas from hydrate-bearing reservoirs.
In order to explore the effects of hydrate formation/decomposition on triaxial shearing
behaviors of intermediate fine sediment, natural beach sand in Qingdao, China, which was
sieved from 0.1 to 0.85 mm, was used and a series of triaxial shear tests were carried
out in this paper. The principle of critical state was firstly used to explain the mechanism
of strain softening and/or hardening failure mode. Moreover, an empirical model was
provided for axial-lateral strain and corresponding model parameters calculation. Evolution
rules of critical strength parameters were analyzed prominently. The results show that
failure mode of sediment is controlled by several parameters, such as effective confining
pressure, hydrate saturation, etc. Different axial-lateral strain model coefficients’ effect on
strain relationships are different, probing into the physical meaning of each coefficient is
essential for further understanding of strain relationships. Complex geo-technical response
should be faced with the progress of producing natural gas from hydrate-bearing reservoir,
because of sudden change of failure pattern and formation modulus. Further compressive
study on critical condition of failure pattern is needed for proposed promising hydrate-
bearing reservoirs.

1. Introduction
Gas hydrate is a caged compound formed under high

pressure and low temperature conditions, it was anticipated
to be a promising energy resource (Zhang et al., 2007; Wu et
al., 2017). Hydrate-bearing reservoir is always formed by un-
consolidated formation. Thus, production of natural gas from
hydrate-bearing reservoir may lead complex geo-mechanical
response, which will affect the stability of wellbore or other
subsea structures (Winters et al., 2014). Therefore, prediction
of geo-mechanical properties of hydrate-bearing sediments is
essential to avoid the occurrence of geo-hazards and ensure
gas productivity (Wei et al., 2011; Li et al., 2012a; Liu et al.,
2013).

Triaxial shearing test is one of the direct and effective ways
to obtain mechanical properties of hydrate-bearing sediments.
Because of lack of pressure coring samples, artificial re-
constructed hydrate-bearing samples are widely used for detec-
tion of triaxial shearing test. Previous studies have published
lots of experimental research results on triaxial shearing test of

hydrate-bearing sediments, and these researches already made
tremendous progress in hydrate-bearing sample preparation
methods (Yun et al., 2007; Masui et al., 2007, 2015; Priest
et al., 2014), hydrate saturation decision methods (Liu et al.,
2014a, 2014b; Li et al., 2016a), shearing rate control (Yu et
al., 2011; Li et al., 2011, 2012b) and shearing P-T condition
selection (Yan et al., 2012, 2013; Li et al., 2017a, 2017b). Both
artificial (Winters et al., 2007; Miyazaki et al., 2011) and field
coring samples (Hyodo et al., 2013; Winters et al., 2014; Shi et
al., 2014, 2015) were used for triaxial shearing test. Different
research results already showed various shearing behaviors for
hydrate-bearing sediments, which can be divided into strain-
hardening failure mode and/or strain-softening failure mode
totally (Lu et al., 2007; Zhang et al., 2010, 2011; Sun et
al., 2012). However, the above researches rarely consider
the strain softening and/or strain-hardening mechanisms, axial
strain vs lateral/volumetric strain relationships, as well as their
critical changing conditions under triaxial shearing condition.
Miyazaki et al. (2012) provided a preliminary model for axial
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Fig. 1. Schematic of triaxial apparatus for hydrate-bearing sediments.

strain vs lateral strain relationship by ignoring the influences
of hydrate saturation. What’s more, this model can’t describe
axial-volumetric strain changing rules of hydrate-bearing sed-
iments under triaxial shearing conditions.

In this paper, a series of triaxial shear test were carried out
to explore deformation and failure behaviors of unconsolidated
sediments with different saturation of methane hydrate. The
principle of critical state was firstly used to explain the
mechanism of strain softening and hardening failure mode.
Secondly, axial-lateral strain relationships were explored, and
then a semi-empirical model was provided for axial-lateral
strain relationships description. Finally, evolution behaviors of
typical triaxial shearing parameters along with hydrate satu-
ration and effective confining pressure were analyzed based
on failure mode. This study may have some significant guide
for the modeling of mechanical parameters of hydrate-bearing
sediments.

2. Measurement method and experimental pro-
cess

2.1 Test apparatus and sample preparation

The triaxial system for testing hydrate-bearing sediments is
illustrated in Fig. 1. It was a modified soil triaxial apparatus
with additional features, such as pressure controller and air
bath cooler, was developed to reproduce the high-pressure,
low-temperature conditions of deep seabed sediments for
hydrate formation and subsequent triaxial shearing tests. The
apparatus is equipped with a hydraulic system that can provide

and maintain confining pressure up to 10 MPa. By lowering
the air temperature surrounding the triaxial cell within the air
bath, water and percolating gas inside the triaxial specimen
were cooled, sufficient time should be allowed for the system
to reach hydrate equilibrium. A thermocouple (No. 9 in Fig.
1) placed inside the cell near the middle of the specimen
records specimen temperature evolution over time. In these
experiments, the temperature was always kept above freezing.
Controls for the confining pressure and temperature systems
were established using data control and acquisition software.
Appropriate calibrations were made for changes in pressure
and temperature and trace changes in TDR.

Methane gas with purity of 99.99% was used in the
experiment.

To avoid the influence of shale content and other minerals,
marine silica intermediate fine sands with dry density of 2.78
g/cm3 were used for formation of hydrate-bearing samples.
Sample size is Φ39.1 mm × 120 mm. Particle size analysis
curve of intermediate fine sands is illustrated in Fig. 2.

Solution with SDS mass concentration of 0.03% was used
to promote the formation of methane hydrate in porous media
and detailed sample preparation procedure are as follows. 1©
192 g dry sands were intensively mixed with 8 mL, 16 mL and
24 mL SDS solution, respectively. After 24 hours’ standing in
an enclosed container, go through next step. It should be note
that for triaxial shearing test of sediments without hydrate,
the above process can be omitted. 2© Mixed sediments were
put into the silicone membrane which stands within the high
pressure reactor with four times (about 48 g each time for dry
sands). Meanwhile, apply moderate compaction. Thickness of
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Fig. 2. Sand particle size distribution.

the sample silicone membrane is 1 mm. During the process
of hydrate formation, the sample silicone membrane is to
minimize gas diffusion from the specimen into the cell water.
While during the process of shearing test, it is used to prevent
membrane puncture under relatively high confining pressures.
3© Seal the vessel and pump water into the confining pressure

cavities, which is described as “porous holder” in Fig. 1. Pump
methane gas into the cell when confining pressure reached
0.5 MPa. Since outlet of the circulation line located at the
bottom of the vessel and inlet located at both side of the
vessel. In order to replace the air inside the porous media,
we keep inlet closed and outlet open. Methane gas is injected
only from the upper inlet. Keep confining pressure larger
than pore pressure 0.5 MPa constantly. 4© Turn off outlet,
keep both inlet line open, inject methane gas simultaneously
from upper and bottom inlet line, increase the confining
pressure at the same time. Until pore pressure reaches 4.5
MPa while the confining pressure reaches 5.5 MPa. 5© Turn
on air bath and set temperature for 1.0 °C (±0.5 °C) to cool
the system and form hydrate for 60∼72 h, during which the
pore pressure and confining pressure were kept at a constant
value, as was descript in step 4©. 6© According to different
experimental demand, effective confining pressure is adjusted
for 1 MPa, 2 MPa, 4 MPa, respectively. Set the shear rate for
0.9 mm/min. 7© Start shearing test and record shearing data
at each 5 s, stress-strain changing behaviors were shown in
the coordinate frame timely. In order to forbid hydrate from
decomposition, system temperature was kept at 1.0 °C (±0.5
°C) during shearing test. If no strain-softening phenomena
exhibited during the whole shearing procedure, finish shear
when axial strain arrives 12%∼15%. Otherwise, finish shear
when after-peak stress keeps stable.

2.2 Hydrate saturation determination

Since the capillary effect of marine silica intermediate
fine sands can be ignored under constant temperature and

constant pressure condition, injected methane and pre-mixed
SDS solution can be mixed intensively. All water inside the
porous media can be assumed to form hydrate. Then the
hydrate saturation in the sediments can be expressed as Eq.
(1).

Sh =
Vh

Vϕ

×100% (1)

where, Vh = mh/ρh, mh = (nMW +Mc)/nMW ·mW , mW =VW ·
ρW .

According to the above method, if prime water content in
the sediments is 8 mL, 16 mL and 24 mL, the final hydrate
saturation in the sediments is about 13.3%, 26.6%, 39.9%,
respectively.

2.3 Volumetric strain and lateral strain test method

In the experiments, confining pressure is supplied by tap
water, which can be viewed as incompressible liquid under
experimental pressure condition. Thus, some of the tap water
will be squeezed out while piston is pressed into the cell. The
volumetric strain can be expressed as Eq. (2).

εv =
∆V
V0
×100% =

Vin−Vout

V0
×100% (2)

Lateral strain along height of the test species is uneven,
equivalent lateral strain of the hydrate-bearing sediments can
be calculated by the following procedures.

Volume change during shearing process can be expressed
as Eq. (3).

∆V =V0−V1 = π(r2
0L0− r2

1L1) (3)

Supposing current lateral strain is εl , current axial strain is
εa. Then Eq. (4) obtained.

L1 = L0(1− εa)

r1 = r0(1− εl)
(4)

Finally, lateral strain of hydrate-bearing sample under
triaxial shearing condition can be derived by combining Eqs.
(2)∼(4).

εl = (1−
√

1− εv

1− εa
)×100% (5)

3. Shearing behaviors and softening/hardening
mechanisms

3.1 Stress-strain properties

As was described above, hydrate saturation in the exper-
imental samples are 0%, 13.3%, 26.6%, 39.9%, respectively.
Typical stress-strain curves of unconsolidated hydrate-bearing
sediments at different hydrate saturation situations with the
same effective confining pressure are depicted from Figs. 3 to
5. Here we won’t focus on the absolute shear strength values
of hydrate-bearing samples, but emphasis on the virtual factors
that affect failure mode of hydrate-bearing sediments.
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Table 1. Failure pattern of unconsolidated hydrate-bearing sands.

σ3 = 1 MPa σ3 = 2 MPa σ3 = 3 MPa

Sh = 0% Strain-hardening Strain-hardening Strain-hardening

Sh = 13.3% Strain-hardening Strain-hardening Strain-hardening

Sh = 26.6% Strain-softening Strain-hardening Strain-hardening

Sh = 40.0% Strain-softening Strain-softening Strain-hardening

Fig. 3. Typical stress-strain curves while effective confining pressure is 1
MPa.

Fig. 4. Typical stress-strain curves while effective confining pressure is 2
MPa.

Fig. 5. Typical stress-strain curves while effective confining pressure is 4
MPa.

If the effective confining pressure is 1 MPa, it can be
seen from Fig. 3 that for samples with hydrate saturation of
39.9% and 26.6%, failure mode tends to become brittle and
their stress-strain curves present to be strain-softening shapes.
While for the samples with hydrate saturation of 0% and
13.3%, failure mode tend to become ductile or even plastic,
and their stress-strain curves present to be strain-hardening
shapes. It’s means that for the same species of sediments,
with the increase of hydrate saturation, failure mode will
change from plastic damage to ductile damage and to the
brittle damage mode eventually. The changing behaviors of
failure mode can also be proved via Figs. 4 and 5, where the
effective confining pressure is 2 MPa and 4 MPa, respectively.
Particularly, all stress-strain curves showed strain-hardening
shapes and the failure mode tends to be ductile or plastic when
effective confining pressure is 4 MPa (Fig. 5).

On the other hand, we conclude that different effective
confining pressure may cause different changing critical values
of failure mode. To detect the influence of effective confining
pressure on failure mode of hydrate-bearing sediments at the
same hydrate saturation situations, we extract stress-strain
curves with the same hydrate saturation from Figs. 3 to 5,
and then put them into the same coordinate systems, Figs.
6∼9 were yielded finally.

Fig. 4 showed unconsolidated sediment’s shearing prop-
erties without hydrate formation in the porous media. It can
be seen that all stress-strain curves showed strain-hardening
shapes and the failure mode tend to be plastic damage when
without hydrate formation in the porous media. The higher
the effective confining pressure, the higher shear strength is,
as was known commonly.

It can be infer by comparison of Figs. 6∼9 that with the
increase of effective confining pressure at the same hydrate
saturation condition, the failure mode tends to change from
brittle to ductile and will show evident plastic damage if the
confining pressure is high enough. By the way, stress-strain
curves tend to change from strain-softening to strain-hardening
shapes.

The above experimental data showed similar changing
trend with the data published by Miyazaki et al. (2011), but
different with those published by Shi et al. (2015) absolutely,
in which the stress-strain curves showed obvious “flat stage”
when triaxial strain reach around 6%. This may be caused by
the difference between the particle size and continent of the
sediment itself.
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Fig. 6. Effective confining pressures influence on stress-strain curves when
Sh = 0%.

Fig. 7. Effective confining pressures influence on stress-strain curves when
Sh = 13.3%.

3.2 Softening/Hardening mechanisms

As was discussed above, 12 groups of typical triaxial
shearing experiments were done and their homologous failure
pattern was summarized in Table 1.

According to critical state theory of Sandy soil, in the
critical void ratio versus average effective stress coordinate
system, Top right of the critical state line is characterized as
“soften plane”, while bottom left of the critical state line is
characterized as “harden plane”, as was shown in Fig. 10.

During the process of triaxial shearing test, all samples’
state will tend to progress toward the critical state line,
wherever the original state located or however its stress state
changes. Therefore, samples with an original state located at
soften plane will tend to come close to the critical state line
and may lead obvious dilatancy effect, and the dilatancy effect
will be shown as strain-softening properties of the stress-strain
curves. In another way, samples with an original state located
at harden plane will tend to come close to the critical state
line and may lead obvious shrinkage effect, and the shrinkage
effect will be shown as strain-hardening properties of the
stress-strain curves.

As for hydrate-bearing sediments, hydrate can be viewed
as part of the skeleton. Therefore, formation of gas hydrate
will decrease the void ratio of the sediment. For the same ki-

S h=26.6%

Fig. 8. Effective confining pressures influence on stress-strain curves when
Sh = 26.6%.

Fig. 9. Effective confining pressures influence on stress-strain curves when
Sh = 39.9%.

nd of sediment, same hydrate saturation may lead same
void ratio of the hydrate-bearing sediments. If the confining
pressure is small enough, the original state of the sample may
locate at point A in Fig. 10. Since samples located at A belongs
to harden plane, sample’s stress state should tend to come
close to the critical state line and may lead obvious shrinkage
effect, and the shrinkage effect will be shown as strain-
hardening properties of the stress-strain curves. In addition, if
the confining pressure is high enough, the original state of the
sample may locate at point C in Fig. 10. Since samples located
at C belongs to soften plane, samples stress state should tend
to come close to the critical state line and may lead obvious
dilatancy effect, and the dilatancy effect will be shown as
strain-softening properties of the stress-strain curves, which
was already described above.

Since hydrate can be viewed as part of the skeleton, the
higher the hydrate saturation, the lower the void ratio. If the
hydrate saturation is high enough, the void ratio may be low
and the original state of the sample may locate at point D in
Fig. 10. Since samples located at D belongs to harden plane,
sample’s stress state should tend to come close to the critical
state line and may lead obvious shrinkage effect, and the
shrinkage effect will be shown as strain-hardening properties
of the stress-strain curves. On the contrary, if the hydrate
saturation is low enough, the void ratio may be high and the
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original state of the sample may locate at point B in Fig. 10.
Since samples located at B belongs to soften plane, sample’s
stress state should tend to come close to the critical state line
and may lead obvious dilatancy effect, and the dilatancy effect
will be shown as strain-hardening properties of the stress-strain
curves, which was already described above.

All in all, critical state theory is the root cause of failure
pattern of hydrate-bearing sediments.

4. Axial-lateral strain relationship models

4.1 Axial-lateral strain relationship modeling process

Generally, axial stress-strain curves can be matched by
different kind of constitutive models (Li et al., 2016b). How-
ever, these constitutive models didn’t contain effective factors
that can describe axial-lateral strain relationships for hydrate-
bearing sediments.

Lateral strain was calculated via Eq. (5) in this study. A ba-
sic semi-empirical model for axial-lateral strain relationships
has been provided by Miyazaki et al. (2012).

ε1 =− f ε
2
a −gεa ( f > 0,g > 0) (6)

Typical axial-lateral strain curves of unconsolidated
hydrate-bearing sediments at different hydrate saturation situ-
ations and different effective confining pressure were shown
in Figs. 11 and 12, respectively, where solid lines represent
experimental result while broken lines represent calculated
result by Eq. (6).

For further study, all experimental data were fitted by Eq.
(6) and corresponding model coefficients were shown in Figs.
13 and 14, respectively.

It can be seen from Fig. 13 that f values for different
experimental conditions lie in the range defined by 0.009 and
0.015. For simplicity, average of all f values ( f = 0.012) was
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f 1MPa 2MPa 4MPa
0.0 0.01462 0.01243 0.01559
13.3 0.009475 0.01159 0.01034
26.6 0.008571 0.01104 0.01411
40.0 0.0139 1.35E-02 0.009412
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Fig. 13. f variation with hydrate saturation and confining pressure.
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p sh g计算值 g拟合值
1 0 0 0.2806 0.30298 1 2 4
1 0.05 5 0.377007 g 1MPa 2MPa 4MPa
1 0.1 10 0.404405 0 0.2806 0.244 0.1711
1 0.133 13.3 0.4446 0.418435 13.3 0.4446 0.349 0.2485
1 0.15 15 0.42492 26.6 0.483 0.4229 0.2588
1 0.2 20 0.441945 40 0.4764 0.4334 0.3569
1 0.266 26.6 0.483 0.461167
1 0.3 30 0.470052
1 0.35 35 0.482171
1 0.4 40 0.4764 0.493378
2 0 0 0.244 0.24936
2 0.05 5 0.323387
2 0.1 10 0.350785
2 0.133 13.3 0.349 0.364815
2 0.15 15 0.3713
2 0.2 20 0.388325
2 0.266 26.6 0.4229 0.407547
2 0.3 30 0.416432
2 0.35 35 0.428551
2 0.4 40 0.4334 0.439758
4 0 0 0.1711 0.14212
4 0.05 5 0.216147
4 0.1 10 0.243545
4 0.133 13.3 0.2485 0.257575
4 0.15 15 0.26406
4 0.2 20 0.281085
4 0.266 26.6 0.2588 0.300307
4 0.3 30 0.309192
4 0.35 35 0.321311
4 0.4 40 0.3569 0.332518

0
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1MPa,predicted by Eq.7
2MPa,Predicted by Eq.7
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g

Fig. 14. g variation with hydrate saturation and confining pressure.

taken as the final model coefficient for unconsolidated hydrate-
bearing sediments.

On the other hand, g values increase with the increase of
hydrate saturation, but decrease with the increase of effective
confining pressure. An empirical model can be obtained by
least-square regression for the data showed in Fig. 14.

g = a2Sn2
h +b2σ3 + c2 (7)

where, n2, a2, b2 and c2 are factors, a2 = -0.2887, b2 = -0.0536,
c2 = 0.3566 and n2 = 0.4543.

4.2 Physical meaning of model coefficients

It can be easily concluded from Eq. (6) that absolute value
of the slope for axial-lateral lines is tangent Passion’s ratio.
Which can be written as Eq. (8).

µt =−
dεl

dεa
= 2 f · εa +g (8)

Then, Initial tangent Passion’s ratio can be obtained if we
take εa = 0 in Eq. (8).

µi =−
dεl

dεa
|εa=0 = g (9)

The above equation indicates that g values in Fig. 14 just
reflect changing rules of initial tangent Passion’s ratio under
different experimental condition. Initial tangent Passion’s ratio
decrease with the increase of confining pressure and the
decrease of hydrate saturation. Furthermore, different model
coefficients’ effect on strain relationships are different, probing
into the physical meaning of each coefficient is essential for
further understanding of strain relationships.

5. Strength and modulus parameters evolution
rules

5.1 Tangent modulus

Tangent modulus is the slope of the tangent line of stress-
strain curves. Tangent modulus can be used to describe real-
time deformation modulus during the whole process of triaxial

shearing procedure. Fig. 15 shows typical tangent modulus of
unconsolidated hydrate-bearing sands under different hydrate
saturation and different effective confining pressure. As was
supposed previously, tangent modulus is of strong correlation
with failure pattern. Under strain-hardening failure pattern,
value of tangent modulus decreases rapidly with the increase
of axial train, and then keeps relatively constant. What’s more,
tangent modulus keeps positive in all axial train variation
range. Nevertheless, under strain-softening failure pattern, with
the increase of axial strain, tangent modulus decreases from
a very high positive value until negative “peak point”, and
then keeps relatively constant around zero by a slight uplift.
The marginal value of tangent modulus from positive value
to negative value represents peak strain of hydrate-bearing
sediments.

Wei et al. (2011) has indicated the feasibility of Eq. (10)
in description of tangent modulus hydrate-bearing sediments.

Etan = E0(1+
εa

τmax/E0
)−2 (10)

However, after direct comparison between form of Eq.
(10) and Fig. 13, we found that Eq. (10) is not descriptive
enough to completely describe tangent modulus when axial
strain exceeds peak strain, where tangent modulus become
negative. It means that Eq. (10) is suitable only for strain-
hardening failed hydrate-bearing sediments. An immaculate
tangent modulus prediction model should be discussed within
each failure pattern, and further research should be done in
order to establish a quantized tangent modulus prediction
model for unconsolidated hydrate-bearing sediments.

5.2 Peak strength and Peak modulus

Peak strength represents ultimate deviator stress strength
in triaxial shearing experiments. As for strain-softening failed
hydrate-bearing samples, peak value of axial stress can be
taken as peak strength directly. Otherwise, axial stress when
axial strain arrives 12% was taken as the peak strength of
hydrate-bearing samples in this paper. Fig. 16 explicates basic
changing rules of peak strength with the change of effective
confining pressure and hydrate saturation. It can be seen
from Fig. 16 that peak strength increases almost linearly with
effective confining pressure, despite of strain-hardening failure
pattern or strain-softening failure pattern. Similarly, although
nonlinear variation rules showed, peak strength increase with
hydrate saturation independent of failure pattern.

Specific value of peak strength and corresponding axial
strain represents deformation modulus when hydrate-bearing
sediments was destructed under triaxial stress. Deformation
modulus at peak strength point can be defined as peak modu-
lus. Typical peak modulus evolution curves of unconsolidated
hydrate-bearing sedimentss with hydrate saturation and effec-
tive confining pressure were shown in Fig. 17.

Fig. 17 showed very interesting phenomena because the
results in Fig. 17 are of great correspondence with the failure
pattern summarized in Table 1. Under strain-hardening failure
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(a) (b)

Fig. 15. Changing rules of tangent modulus with axial strain.

(a) (b)

Fig. 16. Peak strength evolution rules for unconsolidated hydrate-bearing sediments.
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Fig. 17. Peak modulus of unconsolidated hydrate-bearing sands.

pattern condition, peak strength increases slightly with the
increase of hydrate saturation and effective confining pressure.
However, there was a value zoom for peak strength with the
changing of combination of hydrate saturation and effective
confining pressure, which indicates changes of failure pattern
from strain-hardening to strain-softening.

The above conclusions are very important for hydrate
exploitation test operation because of the following reason. As
was described above, high-hydrate-saturated formations are of

strain-softening failure pattern normally. With the progress of
producing natural gas from hydrate-bearing reservoir, hydrate
saturation decreased. It means that sudden change of failure
pattern maybe happen during the process of hydrate exploita-
tion, which indicates sudden decrease of formation modulus.
Hydrate exploitation test operation may be forced to face some
probabilistic risks because of sudden decrease of formation
modulus. Therefore, compressive study on critical condition of
failure pattern is of vital importance for hydrate exploitation
in specialized hydrate-bearing reservoirs.

6. Conclusion and outlook

1) Failure mode of hydrate-bearing sediments is controlled
by several parameters, such as effective confining pres-
sure, hydrate saturation, etc. The principle of critical
state controlled mechanism of strain softening and/or
hardening failure mode basically for hydrate-bearing in-
termediate fine sediments.

2) Initial tangent Passion’s ratio decrease with the increase
of confining pressure and the decrease of hydrate satu-
ration. Furthermore, different model coefficients’ effect
on strain relationships are different, probing into the
physical meaning of each coefficient is essential for
further understanding of strain relationships.
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3) Models proposed here maybe only suitable for description
of hydrate-bearing intermediate fine sediments, In order
to detect strength properties of other hydrate-bearing
sediments, further laboratory study is needed.

4) With the progress of producing natural gas from hydrate-
bearing reservoir, sudden change of failure pattern and
sudden decrease of formation modulus maybe happen. To
avoid engineering operation risks, compressive study on
critical condition of failure pattern is needed for hydrate
exploitation in specialized hydrate-bearing reservoirs.

Nomenclature
mw = mass of SDS solution, g
mh = mass of hydrate, g
ρw = density of SDS solution, g/cm3

ρh = density of hydrate, g/cm3

Vw = volume of SDS solution, g/cm3

Vh = volume of hydrate, g/cm3

Vφ = pore volume of sediment in the silicone membrane,
g/cm3; Vφ =77.9 g/cm3

Vin,Vout = the volume of piston pressed into the cell and
the volume of tap water squeezed out of the cell, g/cm3

V0 = the prime volume of the test species, g/cm3

r0, r1 = prime radius and current radius of the test species
during shearing test, cm

L0, L1 = prime height (120 mm) and current height of the
test species during shearing test, cm

E0 = initial tangent modulus, MPa
τmax = shearing strength, MPa
εa = axial strain, %
f ,g = model coefficients that can be decided via least-

squares approximation method for different experimental data
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