Supplementary file

Addressing mobility control challenges in high-pressure high-temperature oil reservoirs via water-saturated CO₂ injection

Hang Yin¹, Jiachao Ge^{1,2,3}, Furqan Hussain^{1,*}

¹ School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW

2052, Australia

² State Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, P. R. China

³ CNOOC Research Institute, Beijing 100028, P. R. China

E-mail address: hang.yin1@unsw.edu.au (H. Yin); gejch3@cnooc.com.cn (J. Ge);

furqan.hussain@unsw.edu.au (F. Hussain).

* Corresponding author (ORCID: 0000-0003-4207-5767)

Yin, H., Ge, J., Hussain, F. Addressing mobility control challenges in high-pressure high-temperature oil reservoirs via water-saturated CO₂ injection. Advances in Geo-Energy Research, 2025, 16(3): 276-287. The link to this file is: https://doi.org/10.46690/ager.2025.06.07

Citation	Foam agent/Thickener	Concentration	Temperature (°C)	Half-life/Stability	Observations/Key findings
Wang et al. (2017)	Nonylphenol polyethoxylate (nonionic)	1.5%	40-100	5-40 min at 40°C, drops to 0-10 min at 100°C	Foam stability significantly reduced as temperature increases.
	Anionic surfactants	1.5%	60-120	10-100 min at 60°C, falls to 5-70 min at 120°C	Decreased foam stability with temperature increase.
Emrani and Nasr-El-Din (2017a, 2017b)	Alpha olefin sulfonate (AOS) + Silica nanoparticles	0.1-0.3 wt% nanoparticles	24-60	Decreasing half-life with increasing temperature	Nanoparticles enhance foam at low temp, but stability decreases with rising temp.
Li et al. (2019)	Lauryl alcohol polyoxyethylene ether + Silica nanoparticles	1 wt% nanoparticles	50	Improved foam stability at 50°C; higher temp untested	Stability improvement at moderate temp, but untested at high temp.
Li et al. (2020)	Oil-based CO ₂ foam	Not specified	20-70	The foam height increases with temperature up to 50°C, beyond which the half-life decreases.	Temperature affects oil-based foam stability by reducing crude oil viscosity, promoting foam formation, and accelerating liquid- film drainage, decreasing foam stability.
Bello et al. (2022)	Surfactant + nanoparticles	0.01-0.5 wt% nanoparticles	25, 70	Same half-life at 25°C and 70°C	Foamability is significantly higher at 25°C than 70°C.
Zhang et al. (2019)	Ethylene oxide surfactant	1 wt%	50-90	Decreasing half-life as temperature increases	Foam stability strongly temperature- dependent.

Table S1. Summary of the literature on using foam agent or thickener to increase foam stability.

Zhang et al. (2020)	Amine surfactants	1 wt%	60-130	Decreasing half-life as temperature increases	Foam stability strongly temperature- dependent.
Al Hinai et al. (2018)	26 commercial polymers	0.8-5 wt%	56-104	The solubility/stability of 25 polymers decreased with increasing temperature.	Viscosity capacity generally reduced with higher temperature; pressure slightly improves effectiveness.
Gandomkar et al. (2023)	Poly (fluoroacrylate)	2-3%	40-100	Solubility decreases with increasing temperature	Requires higher reservoir pressure at higher temperatures to maintain effectiveness.

Fig. S1. Comparison of experimental observations on pure CO₂ injection and wsCO₂ injection at 70 °C and 10.3 MPa.

Fig. S2. Comparison of experimental observations on pure CO₂ injection and wsCO₂ injection at 70°C and 12 MPa.

Fig. S3. Comparison of experimental observations on pure CO₂ injection and wsCO₂ injection at 116°C and 10.3 MPa.

Fig. S4. Comparison of experimental observations on pure CO_2 injection and ws CO_2 injection at 116 °C and 14.6 MPa.

Fig. S5. Comparison of experimental observations on pure CO₂ injection and wsCO₂ injection at 116 °C and 18.6 MPa.

Reference

- Al Hinai, N. M., Saeedi, A., Wood, C. D., et al. Experimental evaluations of polymeric solubility and thickeners for supercritical CO₂ at high temperatures for enhanced oil recovery. Energy & Fuels, 2018, 32(2): 1600-1611.
- Bello, A., Ivanova, A., Cheremisin, A. Enhancing N₂ and CO₂ foam stability by surfactants and nanoparticles at high temperature and various salinities. Journal of Petroleum Science and Engineering, 2022, 215: 110720.
- Emrani, A. S., Nasr-El-Din, H. A. An experimental study of nanoparticle-polymer-stabilized CO₂ foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017a, 524: 17-27.
- Emrani, A. S., Nasr-El-Din, H. A. Stabilizing CO₂ foam by use of nanoparticles. SPE Journal, 2017b, 22(2): 494-504.
- Gandomkar, A., Reza Nasriani, H., Enick, R. M., et al. The effect of CO₂-philic thickeners on gravity drainage mechanism in gas invaded zone. Fuel, 2023, 331: 125760.
- Li, S., Wang, Q., Li, Z. Stability and flow properties of oil-based foam generated by CO₂. SPE Journal, 2020, 25(1): 416-431.
- Li, S., Yang, K., Li, Z., et al. Properties of CO₂ foam stabilized by hydrophilic nanoparticles and nonionic surfactants. Energy & Fuels, 2019, 33(6): 5043-5054.
- Wang, Y., Zhang, Y., Liu, Y., et al. The stability study of CO₂ foams at high pressure and high temperature. Journal of Petroleum Science and Engineering, 2017, 154: 234-243.
- Zhang, P., Diao, Y., Shan, Y., et al. Experimental investigation of amine-surfactant CO₂ foam for smart mobility control during CO₂ flooding. Journal of Petroleum Science and Engineering, 2020, 184: 106511.
- Zhang, X., Zheng, W., Zhang, T., et al. CO₂ in water foam stabilized with CO₂-dissolved surfactant at high pressure and high temperature. Journal of Petroleum Science and Engineering, 2019, 178: 930-936.