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Abstract:
Simulation of elastic wave propagation is an important method for oil and gas exploration.
Accuracy and efficiency of elastic wave simulation in complex geological environment
are always the focus issue. In order to improve the accuracy and efficiency in numerical
modeling, a staggered grid fourth-order finite-difference scheme of modeling elastic wave
in frequency-domain is developed, which can provide stable numerical solution with fewer
number of grid points per wavelength. The method is implemented on first-order velocity-
stress equation and a parsimonious spatial staggered-grid with fourth-order approximation
of the first-order derivative operator. Numerical tests show that the accuracy of the fourth-
order staggered-grid stencil is superior to that of the mixed-grid and other conventional
finite difference stencils, especially in terms of shear-wave phase velocity. Measures of
mass averaging acceleration and optimization of finite difference coefficients are taken to
improve the accuracy of numerical results. Meanwhile, the numerical accuracy of the finite
difference scheme can be further improved by enlarging the mass averaging area at the
price of expanding the bandwidth of the impedance matrix that results in the reduction of
the number of grid points to 3 per shear wavelength and computer storage requirement in
simulation of practical models. In our scheme, the phase velocities of compressional and
shear wave are insensitive to Poisson’s ratio does not occur conventional finite difference
scheme in most cases, and also the elastic wave modeling can degenerate to acoustic
case automatically when the medium is pure fluid or gas. Furthermore, the staggered grid
scheme developed in this study is suitable for wave propagation modeling in media with
coupling fluid-solid interfaces that are not resolved for previous finite difference method.

1. Introduction
In the past few decades, the reflection seismic method

has developed into the main geophysical tool for oil and gas
reservoir exploration, it could provide better resolution for
the underground structure comparing with other geophysical
methods. The essence of seismic exploration is the propagation
of seismic waves in underground media, seismic wave is key to
understanding characteristics of wave propagation in complex
medium, and finite-difference method is one of the most
effective ways of obtaining full waveform information due
to its simplicity and convenience. So far, frequency-domain
modeling of elastic wave has been studied for half a century.
Numerical modeling of wave propagation in frequency-domain
has many advantages over that in time-domain. For example,
solving the visco-elastic wave equation in time-domain, is a

time consuming and memory intensive work as the convolution
integral should be calculated at every time interval. But in
frequency-domain, as a complex to set the elastic parameters
as complex, such as the velocities, the bulk density, and
stiffness modulus (Arntsen et al., 1998; Štekl and Pratt, 1998;
Chillara et al., 2016; Takekawa and Mikada, 2018), and the
resonant phenomena can be circumvented by exerting damping
factor (Min et al., 2000). Moreover, the implementation of
perfectly matched layer (PML) absorbing boundary conditions
(ABC) (Bérenger, 1994) provides satisfactory results both in
time and frequency domain, there are additional requirement
computer memory over that in time domain because of the
extra need to store the splitting components in time-domain,
especially for 3D cases. Besides, the application of PML in
frequency-domain needs no more extra computer resources.

Another important advantage of frequency-domain mod-
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eling is the convenience of parallelization that has already
attracted growing interests with the development of hardware
and parallelization technique (Operto et al., 2007). And the
most predominant superiority has been shown in manipulation
of data sets acquired in multi-sources experiment where a
direct solver was used (Štekl and Pratt, 1998).

Though there are many advantages of frequency-domain
finite-difference technique (FDFD), it is still in its immaturity
compared with that of time-domain finite-difference (TDFD)
because of the intensive need of computational resources for
the tremendous discrete grids in entire domain. In this regard,
Jo et al. (1996) and Shin and Sohn (1998) present the optimal
9-point 2D scalar wave extrapolator operator and extended 25-
point extrapolator operator, respectively. And both of them
have been extended to elastic wave modeling (Štekl and Pratt,
1998; Min et al., 2000; Wang and Liang, 2018). The number of
grid points per wavelength required by Štekl and Pratt (1998)
is larger than four, and their optimal coefficients of the finite
difference (FD) scheme varies with Poisson’s ratio, and yet
the compressional and shear wave phase velocities couldn’t
converge to their true values simultaneously by mixed-grid
operator. The 25-point weighted-averaging FD operator has
made a great progress in the simultaneous convergence of
compressional and shear wave phase velocities, and the num-
ber of grid can be lowered to 3.3 points per wave length for
a wide range of Poisson’s ratio. But the 25-point FD scheme
is not quite efficient in complex medium modeling because of
the differential form of second-order partial derivative terms,
which may also lead to amplitude distortion at source location.
Moreover, all of the FD schemes described above appear to
be inefficient when dealing with strong contrast medium and
pure fluid bearing problems. Therefore, for pure fluid bearing
problems that are usually the case in practical application,
one has to solve acoustic wave equation and the solid-fluid
interfaces the treated with special measures which result in
complicated impedance matrix with full rank (Matuszyk et
al., 2012).

Actually, some problems listed above can be solved by
staggered-grid FD scheme. It is well known that the staggered
grid TDFD method is conductive to elastic wave simulation
in heterogeneous formation with arbitrary Poisson’s ratio
(Madariaga, 1976; Virieux, 1984, 1986). In the study, we in-
troduce an elastic wave modeling method using staggered-grid
FDFD stencils. As usual as conventional difference scheme
(Pratt, 1990a, 1990b), the staggered-grid TDFD method was
first fulfilled in second-order approximation (Virieux, 1984),
and was later modified to fourth-order (Dablain, 1986; Levan-
der, 1988). Until now, nearly most work are on the basis of
conventional grid in frequency-domain. Hustedt et al. (2004)
compared the efficiency and accuracy between the mixed-grid
scheme and the fourth-order staggered grid scheme in case of
acoustic simulation.

For now, staggered grid FDFD method is not widely used
in modeling of elastic wave compared with TDFD, most likely
due to the low accuracy of second order approximation. Gelis
et al. (2007) adopted a second-order rotated staggered grid
scheme (Saenger et al., 2000) in full waveform inversion. In
this study, we first introduce the basic procedure of construc-
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Fig. 1. Elementary grid cells for the conventional grid scheme and staggered
grid scheme in 2D.

ting the parsimonious form of first-order velocity-stress equa-
tion with second-order. Secondly, we extended the FD stencil
to fourth-order, and employ the lumped mass acceleration
averaging method to alleviate the grid dispersion at the same
time. Next, the staggered grid scheme proposed in this study
is applied to modeling medium of pure fluid, and medium
including coupled interfaces of solid and fluid. Finally, a
complex model developed by previous authors is used to check
the validity and accuracy of our FDFD scheme.

2. The staggered grid stencil for elastic wave
equation

In a 2D Cartesian coordinate system (x,z), where x-axis
is positive to the right horizontally and z-axis is positive
downward vertically (Fig. 1), the first-order elastic wave
equation (Virieux, 1986) including body force can be written
as follows:

iωρvx +
∂σxx

∂x
+

∂τzx

∂ z
+ fx = 0

iωρvz +
∂τxz

∂x
+

∂σzz

∂ z
+ fz = 0

(1a)

iωσxx + c11
∂vx

∂x
+ c13

∂vz

∂ z
= 0

iωσzz + c13
∂vx

∂x
+ c33

∂vz

∂ z
= 0

iωτxz + c55
∂vx

∂ z
+ c55

∂vz

∂x
= 0

(1b)

where, vx(x,z,ω) and vz(x,z,ω) are temporal Fourier compo-
nents of horizontal and vertical velocity vector, respectively;
σxx(x,z,ω), σzz(x,z,ω) and τxz(x,z,ω) are stress components;
ω is circular frequency; ρ is the bulk density; and c11, c13,
c33 and c55 are elastic stiffness modulus; fx and fz are body
forces.

The equations of system (1) could be discretized on the
staggered grid by defining the particle velocity and stress
as well as the bulk density and stiffness modulus in the
different position of the grid. We followed the grid stencil
of Virieux (1986) shown in Fig. 1, while the displacements on
a conventional grid is in position of the vertex.



412 Ma, C., et al. Advances in Geo-Energy Research 2019, 3(4): 410-423

Applied the PML (Ma et al., 2014) to equations of system
(1), they can be modified as follows:

ρ(i+1/2 ,k) [iω +dx(i+1/2 )]vxx(i+1/2 ,k,ω)

+
∂σxx

∂x
(i+1/2 ,k,ω)+ fx = 0

ρ(i+1/2 ,k) [iω +dz(k)]vxz(i+1/2 ,k,ω)

+
∂τxz

∂ z
(i+1/2 ,k,ω)+ fx = 0

ρ(i,k+1/2 ) [iω +dx(i)]vzx(i,k+1/2 ,ω)

+
∂τxz

∂x
(i,k+1/2 ,ω)+ fz = 0

ρ(i,k+1/2 ) [iω +dz(k+1/2 )]vzz(i,k+1/2 ,ω)

+
∂σzz

∂ z
(i,k+1/2 ,ω)+ fz = 0

(2)

where dx and dz are damp function for PML, vxx(i+1/2 ,k,ω)
and vxz(i + 1/2 ,k,ω) and are auxiliary variables of hori-
zontal velocity components with vx(i + 1/2 ,k,ω) = vxx(i +
1/2 ,k,ω)+ vxz(i+1/2 ,k,ω).

3. The discretization of first-order elastic wave
equation on staggered grid

3.1 Second-order approximation of derivatives and
the discrete wave equation

In Fourier-domain, we discretize the Eq. (2) using approx-
imation of second-order central difference by partial deriva-
tives:

∂σxx

∂x
(i+1/2 ,k,ω)≈ 1

∆x
[σxx(i,k,ω)+σxx(i+1,k,ω)]

∂τxz

∂ z
(i+1/2 ,k,ω)≈ 1

∆z
[τxz(i+1/2 ,k+1/2 ,ω)+ τxz(i+1/2 ,k−1/2 ,ω)]

∂τxz

∂x
(i,k+1/2 ,ω)≈ 1

∆x
[τxz(i+1/2 ,k+1/2 ,ω)+ τxz(i−1/2 ,k+1/2 ,ω)]

∂σzz

∂ z
(i,k+1/2 ,ω)≈ 1

∆z
[σzz(i,k,ω)+σzz(i,k+1,ω)]

(3)

where ∆x and ∆z are spatial sampling intervals. Substituting
the equations of system (3) to Eq. (2) and with Sx = iω +dx
and Sz = iω +dz, equation system (2) can be rewritten as:

vxx(i+1/2 ,k,ω)+ fx =−
σxx(i,k,ω)+σxx(i+1,k,ω)

Sx(i+1/2 )ρ(i+1/2 ,k)∆x

vxz(i+1/2 ,k,ω)+ fx =

− τxz(i+1/2 ,k+1/2 ,ω)+ τxz(i+1/2 ,k−1/2 ,ω)

Sz(k)ρ(i+1/2 ,k)∆z

vzx(i,k+1/2 ,ω)+ fz =

− τxz(i+1/2 ,k+1/2 ,ω)+ τxz(i−1/2 ,k+1/2 ,ω)

Sx(i)ρ(i,k+1/2 )∆x

vzz(i,k+1/2 ,ω)+ fz =−
σzz(i,k,ω)+σzz(i,k+1,ω)

Sz(k+1/2 )ρ(i,k+1/2 )∆z

(4)

After pair wise summation of Eq. (4), the left hand side
term will be vx(i+ 1/2 ,k,ω)+ fx and vz(i,k+ 1/2 ,ω)+ fz,
the discretized equations of system (1b) are as follows:

σxxx(i,k,ω) =−c11(i,k)
Sx(i)∆x

[vx(i+1/2 ,k,ω)+ vx(i−1/2 ,k,ω)]

σxxz(i,k,ω) =−c13(i,k)
Sz(k)∆z

[vz(i,k+1/2 ,ω)+ vz(i,k−1/2 ,ω)]

σzzx(i,k,ω) =−c13(i,k)
Sx(i)∆x

[vx(i+1/2 ,k,ω)+ vx(i−1/2 ,k,ω)]

σzzz(i,k,ω) =−c33(i,k)
Sz(k)∆z

[vz(i,k+1/2 ,ω)+ vz(i,k−1/2 ,ω)]

σxzx(i+1/2 ,k+1/2 ,ω) =−c55(i+1/2 ,k+1/2 )

Sx(i+1/2 )∆x
[vz(i+1,k+1/2 ,ω)+ vz(i,k+1/2 ,ω)]

σxzz(i+1/2 ,k+1/2 ,ω) =−c55(i+1/2 ,k+1/2 )

Sz(k+1/2 )∆z
[vx(i+1/2 ,k+1,ω)+ vx(i+1/2 ,k,ω)]

(5)
As before, we sum the Eq. (5), and sort out three

equations, the left hand side are σxx(i,k,ω), σzz(i,k,ω) and
σxz(i+1/2 ,k+1/2 ,ω), respectively. Now we substitute the
consolidated Eq. (5) to Eq. (4), then we have the parsimonious
form as follows:

vx(i+1/2 ,k,ω) =−A3vx(i−1/2 ,k,ω)

−A8vx(i+1/2 ,k−1,ω)

+(A1 +A3 +A6 +A8)

× vx(i+1/2 ,k,ω)

−A6vx(i+1/2 ,k+1,ω)

−A1vx(i+3/2 ,k,ω)

− (A4 +A7)vz(i,k−1/2 ,ω)

+(A4 +A5)vz(i,k+1/2 ,ω)

+(A2 +A7)vz(i+1,k−1/2 ,ω)

− (A2 +A5)vz(i+1,k+1/2 ,ω)

(6a)

vz(i,k+1/2 ,ω) =−B3vz(i−1,k+1/2 ,ω)

−B8vz(i,k−1/2 ,ω)

+(B1 +B3 +B6 +B8)vz(i+1/2 ,k,ω)

−B6vz(i,k+3/2 ,ω)

−B1vz(i+1,k+1/2 ,ω)

− (B4 +B7)vx(i−1/2 ,k,ω)

+(B4 +B5)vx(i−1/2 ,k+1,ω)
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+(B2 +B7)vx(i+1/2 ,k,ω)

− (B2 +B5)vx(i+1/2 ,k+1,ω)
(6b)

The parsimonious form for fourth-order FD scheme could
be derived in the same way, and the expressions of coefficients
Ai and Bi for both second-order and fourth-order FD schemes
are listed in Appendix.

The fourth-order staggered grid FD scheme is a FD scheme
no more than 29 points, and the non-zero elements in each row
are no more than 33. At last, elastic wave equations can be
written in terms of the following form:

S(ω) · v(ω) = f (7)

where, S(ω) is the large sparse matrix at different frequency
ω; v(ω) is the unknown wavefield; and f is the source term.
Both direct solvers and iterate solvers (Erlangga, 2006; Plessix,
2007; Plessix, 2009) can be used to solve the equations of
linear system (7).

3.2 Determination of the averaging and optimal FD
coefficients

To minimize the effect of grid dispersion, we must derive
the dispersion relationship first. Considering a vector plane-
wave solution in a homogeneously infinite medium with
velocity of vω = V ω eik·r, where V = (V ω

x ,V ω
z ) are vector

of horizontal and vertical velocity components, respectively;
k = (kx,kz) is the wavenumber vector and r = (x,z) represents
the position vector. And the staggered grid FD scheme for
homogeneous elastic wave equations reduces to a matrix form

[
ω2M− (α2FXX +β 2FXZ) (α2−β 2)FZ

(α2−β 2)FX ω2M− (α2FZX +β 2FZZ)

]
[
V ω

x
V ω

z

]
= 0

(8)

where M is the mass acceleration operator; V ω
x and V ω

z are
compressional and shear wave velocities; FXX , FXZ , FZX ,
FZZ and FX , FZ are FD operators of spatial derivative. In the
case of homogeneous isotropic medium, FX = FZ , FXZ = FZX ,
FXX = FZZ and have forms of

FXX =2{a2
1 +a2

2−a2
1 cos(kx)−a2

2 cos(3kx)

+2a1a2[cos(kx)− cos(2kx)]}
(9)

FXZ =2{a2
1 +a2

2−a2
1 cos(kz)−a2

2 cos(3kz)

+2a1a2[cos(kz)− cos(2kz)]}
(10)

FX =4{a2
1 sin(kx/2) sin(kz/2)

+a2
2 sin(3kx/2) sin(3kz/2)

+a1a2[sin(kx/2) sin(3kz/2)
+ sin(3kx/2) sin(kz/2) ]}

(11)

In Eq. (8), the term of M can be obtained through two kinds
of averaging scheme, which are mass weighted-averaging
without additional costs (13-point FD scheme) and that of

mass weighted-averaging with additional costs (29-point FD
scheme). The former can be written as:

M =c1 + c2[cos(kx)+ cos(kz)]

+ c3[cos(2kx)+ cos(2kz)]

+ c4[cos(3kx)+ cos(3kz)]

(12)

and the later can be described as:

M =c1 + c2[cos(kx)+ cos(kz)]

+ c3[cos(2kx)+ cos(2kz)]

+ c4[cos(3kx)+ cos(3kz)]

+ c5[cos(kx + kz)+ cos(kx− kz)]

+ c6[cos(2kx +2kz)+ cos(2kx−2kz)]

+ c7[cos(2kx + kz)+ cos(2kx− kz)

+ cos(kx +2kz)+ cos(kx−2kz)]

(13)

where, kx = k∆cos(θ) = 2πK cos(θ), kz = k∆sin(θ) =
2πK sin(θ). If the grid is square, under the condition of the
determinant equals to zero, the phase velocity is expressed as
vph = ω/k .

vpph

vp
=

1
2πK

√
B+
√

B2−4AC
2A

vsph

vs
=

1
2πKR

√
B−
√

B2−4AC
2A

(14)

where, A = M2, B = M(1 + R2)(FXX + FXZ), C = (FXX +

R2FXZ)(R2FXX +FXZ)−M2(1−R2)
2, σ is the Poisson’s ratio,

R = vs/vp =
√
(0.5−σ)/(1−σ) . While the group velocity

could be obtained by vgr = ∂ω/∂k (Štekl and Pratt, 1998).
In this study, the Gauss-Newton method (Lines and Tre-

itel, 1984; Min et al., 2000) is used to determine the mass
weighting coefficients and optimal FD coefficients. It should
be pointed out that in two mass weighting schemes, usually
the first one is favorable due to easy realization. For large
scale problems, the second one may be selected for higher
accuracy needed. In our case, the initial guess of the optimal
coefficients is as follows: c1=1, c2=0, c3=0, c4=0, c5=0, c6=
0, c7=0, a1=9/8, a2=-1/24.

The two sets of optimal coefficients with different mass
averaging schemes after the optimization by using Gauss-
Newton method is listed in Table 1.

3.3 Dispersion analysis

With all the weighting coefficients prepared, firstly, it is
about to check the dispersion relations by comparing the phase
and group velocities as a function of the grid numbers per
shear wavelength.

Fig. 2 shows the result of dispersion curves by using 25-
point weighted-averaging FD stencil (Min et al., 2000) for
a Poisson’s ratio of 0.48, which represents for an extreme
situation. It is shown that as the increasing of the Poisson’s
ratio, the velocity of shear wave tends to be dispersive.
This also demonstrates that the scheme of 25-point weighted-
averaging FD stencil is not independent of Poisson’s ratio. For



414 Ma, C., et al. Advances in Geo-Energy Research 2019, 3(4): 410-423

Table 1. Two sets of optimal coefficients with different mass averaging schemes.

c1 c2 c3 c4 c5 c6 c7 a1 a2

0.770568 0.180138 -0.108776 0.030163 0 0 0 1.092386 -0.053935

0.784123 0.100338 -0.057946 0.006473 0.064332 0.00126 -0.01288 1.058806 -0.039234
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Fig. 2. Dispersion curves of phase velocity and group velocity by using 25-point FD scheme (Min et al., 2000) when the Poisson’s ratio is 0.48.
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Fig. 3. Dispersion curves of phase velocity and group velocity by using the staggered grid fourth-order FD stencil with 13-point mass weighted-averaging
while the dispersion relationship of S-wave is independent of Poisson’s ratio.
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Fig. 4. Dispersion curves of phase velocity and group velocity by using the staggered grid fourth-order FD stencil with 29-point mass weighted-averaging
while the dispersion relationship of S-wave is independent of Poisson’s ratio.
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Table 2. Model parameters of the vertical-step model.

Layer Density VP VS

1 2.0 g/cm3 1800 m/s 1000 m/s

2 2.4 g/cm3 3000 m/s 1600 m/s

3 2.7 g/cm3 4000 m/s 2200 m/s

this problem, we bring to the staggered grid optimal fourth-
order FD stencil with 13-point weighted-averaging, and the
results are exhibited in Fig. 3. It’s clear that the accuracy and
dispersion are improved obviously, and the dispersion curves
with 29-point weighted-averaging are presented in Fig. 4. It is
clearly that the 29-point weighted-averaging scheme behaves
better for a higher accuracy, but it will enlarge the numerical
bandwidth of the impedance matrix and hence increases the
computational cost and memory requirement.

4. Numerical examples

4.1 The vertical-step model

We compare the fourth-order staggered grid FDFD scheme
with TDFD scheme for a vertical-step model (Min et al., 2000;
Hustedt et al., 2004). The vertical-step model contains three
homogeneous media with a horizontal layer and a vertical step
layer. The model parameters are shown in Table 2. The size of
the model is 1500 m × 1500 m and discretized with a uniform
mesh spacing of 7.5 m, where five layers of PML ABCs are
applied at four edges. Noting the lowest shear wave velocity
and considering the model size, we set the total time of
seismogram to 2.5 s, and the maximum frequency could be as
high as 54 Hz, then the lowest grid points per shear wavelength
is only 2.47. We put a concentrated force source at the position
of x = 750 m and z = 75 m, the receivers are laid up parallelly

as shown in Fig. 5b. Then we run the forward procedure for
135 frequencies in the 0∼54 Hz frequency range. Wavefield
of horizontal component and vertical component at 16 Hz are
shown in Fig. 5 and the synthetic seismograms between FDFD
and TDFD schemes are displayed in Figs. 6∼7.

From Figs. 6∼7, the same seismogram patterns are dis-
played from both left and right panel. The direct P-wave and
S-wave appear at the same time but with a little difference at
the source location. And the PP, PS, SP and SS-reflections
show the same arrival time either. The stepped conformation
can be reflected by the white circles in Fig. 6, the amplitude
from the result of FDFD is weaker compared with the result
from TDFD, which may on account of the rarity of frequency
sampling and the lack of PML layers (see the white dashed
line in Fig. 7b). From the above seismograms, even the shear
wave dispersion is rarely seen with only 2.47 grid points per
shear wavelength. In a word, the fourth-order staggered grid
FD scheme shows strong stability when modeling in complex
isotropic medium.

4.2 Modeling in Marmousi model

A comparison of accuracy between acoustic staggered
grid second-order and fourth-order schemes for the Marmousi
model has been conducted by Pan et al. (2012). The result
turned out the fourth-order scheme holds a satisfactory sta-
bility and consistency for strong inhomogeneous medium. We
complete the elastic modeling for Marmous model and make a
comparison between the results from second-order scheme and
fourth-order. The size of Marmous model is reshaped in the
numerical operation, as the P-wave velocity is shown in Fig.
8a, Taking the medium as Poisson’s body for simplicity, so
vs= vp/1.732. And the density is given by Gardner’s method,
i.e., ρ= 310v0.25

p .
In both cases, we perform the simulation among two sets

of grids, that is ∆x = ∆z = 25 m for the spatial grid stencil
of 321 × 201, and ∆x = ∆z = 12.5 m for 641 × 401, the
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Fig. 5. Real part of 16 Hz monochromatic Vx wavefield (a) and Vz wavefield (b). The horizontal layer and vertical-step layer are delineated with white dashed
line on the right panel, which can be easily recognized on the left panel.
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Fig. 6. Synthetic seismograms of horizontal component for vertical-step model from different FD schemes. (a) Staggered grid TDFD (∆t2, ∆x20), (b) staggered
grid 4th-order FDFD.
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Fig. 7. Synthetic seismograms of vertical component for vertical-step t2, ∆x20), (b) staggered grid 4th-order FDFD.
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Fig. 9. Comparison of different wavefields by second-order scheme and fourth-order scheme between two grids at 8 Hz.
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Fig. 10. The simulated wavefield (real-part) at 20 Hz with ∆x = ∆z = 25 m by fourth-order FD scheme. (a) horizontal component, (b) vertical component.

size of geological model is 8 km × 5 km. The explosive
source is excited at x = 1600 m and z = 375 m. Fig. 8b
indicates the horizontal velocity component (real part) of 8
Hz monochromatic wavefield.

We pick a line of wavefield from the results of different FD
schemes by each grid, while the line is displayed in Fig. 8a.
The comparison between them is shown in Fig. 9, which turns
out to a perfectly consistence except in the position of source.
Regarding the complexity of the model and the dispersion
condition between two schemes, under the circumstances of
∆x = ∆z = 25 m, the second-order scheme could be used to
simulate the wavefield when the frequency is as high as 12 Hz,
and the results of higher frequency will be dispersed seriously,
while the fourth-order scheme keeps its stability at even 20 Hz,
the simulated results still manifest the physical significance
from the geological model.

4.3 Coupled problem with solid-fluid interface

Seismic simulation for solid-fluid interface problem is a
traditional problem in sonic well logging. Here, we construct
a simple model by extending the model scale into seismic
range, as is shown in Figs. 11a∼b. The model consists of solid

matrix with P-wave velocity and S-wave velocity of 3,000
m/s and 1,800 m/s, respectively, and S-wave velocity of the
water inclusion is zero; the density of solid matrix and water
inclusion are 2,000 kg/m3 and 1,000 kg/m3 respectively. Fig.
11b reveals a model contains larger fluid area which represents
another situation, that is, both source and receiver are placed
in the fluid area. We put an impulse source in the position of
x = 800 m and z = 400 m, and the wavefield is observed at
a receiver downward vertically. Fig. 12a shows the simulation
result by conventional FD scheme. It is obvious that at the
low frequency wavefield of 5 Hz is distorted severely, and the
same effect occurred in the case of borehole measurement as
is shown in Fig. 12b, where the simulated wavefield becomes
ambiguous when the water inclusion grows.

The modeling results excited at 5 Hz and 50 Hz are
presented in Figs. 13a∼b. It is clearly that the staggered grid
scheme proposed in this study is capable of dealing with
fluid-solid interfacial-coupling problem. Moreover, in order
to validate the effectiveness of the staggered grid FDFD in
medium with coupled fluid-solid boundary, the model shown
in Fig. 11b is used and both the source and receiver are
located in borehole fluid surrounded with solid matrix, and the
simulation results of horizontal velocity and vertical velocity
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Fig. 14. Normalized amplitude of horizontal velocity (a) and vertical velocity (b) when central frequency is 30 Hz, and vertical velocity (c) when central
frequency is 20 Hz from staggered grid FDFD and TDFD solutions.

are shown in Figs. 14a and 14b together with that from the
numerical method of TDFD. It is shown that the waveforms
from TDFD (Ma and Shen, 2013) and FDFD are matched
fairly well on the vz part for both higher frequency and lower
frequency. As a matter of fact, we pose a compressional source
in the fluid and the receiver downward, then the received signal
is mainly vertical component, the magnitude of horizontal
component is lower than 10% of the vertical component.

5. Conclusion
A fourth-order staggered grid finite-difference scheme is

developed for elastic wave forward modeling in the frequency-
domain. An effective PML absorbing boundary condition is
adopted to suppress the artificial reflection. By implementing
PML boundary condition and optimizing the FD coefficients,
we observe that there is a negligible reflection at the interface
between the interior domain and the PML domain. The theo-
retical dispersion error curve matches well with the numerical
one. Moreover, examples contains pure fluid or coupled solid-
fluid interfaces demonstrate merits of fourth-order staggered
grid finite difference method as follows:

1) By optimizing of the mass weighting coefficients and
FD coefficients with Gauss-Newton method, the pro-
posed fourth-order optimal FD scheme accompanied with
mass weighted-averaging approach can obtain dispersion
curves that are independent of the Poisson’s ratio and
also acquire high accuracy result in modeling elastic wave
propagation.

2) For the homogeneous medium, the simulation error of the
shear wave group velocity is within 2%, and only 3 grid
points are required per shear wavelength with the same
computational efficiency as that of 25-point weighted-
averaging FD scheme

3) The staggered grid FD scheme suggested in this study
holds the flexibility of modeling in complex medium
contains fluid, and when it comes to fluid environment,
the elastic system of staggered grid FD scheme will
automatically degrade to acoustic one.
The method described above can effectively improve
the accuracy of simulation of elastic wave propagation,
and also show a satisfactory adaptability for different
modeling environment. It could be effectively applied to
seismic exploration and acoustic logging, so as to provide
services for fine reservoir exploration in oil fields.
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Appendix: Expressions of the staggered grid finite-difference scheme
From equation system (9), the specific expressions of Ai and Bi (i = 1, . . . , 8) is as follows:
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And in the case of fourth-order scheme, the expressions of coefficients Ã1∼Ã29 and B̃1∼B̃29 are combinations of difference
coefficient and coefficients Ai and Bi (i = 1, . . . , 16) for fourth-order scheme.
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2(A8 +A13)
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1(B2 +B11), B̃11 =−a2

1(B2 +B9), B̃12 =−a1a2(B2 +B13)

B̃13 = a2
2(B6 +B15), B̃14 = a1a2(B6 +B11), B̃15 =−a1a2(B6 +B9)

B̃16 =−a2
2(B6 +B13), B̃18 =−a1a2(B3 +B7), B̃17 =−a2

2B7

B̃19 = (a1a2B1−a2
1B3 +a1a2B7), B̃20 =−a2

2B16, B̃21 =−a1a2(B12 +B16)
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B̃22 = (a1a2B10−a2
1B12 +a1a2B16), B̃23 =

[
a2

1(B1 +B3 +B10 +B12)+a2
2(B5 +B7 +B14 +B16)

]
B̃24 =−(a2

1B10−a1a2B12−a1a2B14), B̃25 =−a1a2(B10 +B14),

B̃26 =−a2
2B14, B̃27 =−(a2

1B1−a1a2B3−a1a2B5), B̃28 =−a1a2(B1 +B5), B̃29 =−a2
2B5

where the specific expressions of Ai and Bi (i = 1, . . . , 16) is as follows:

A1 = c11(i+1,k)/[ω2
ρxSx(i+

1
2
)Sx(i+1)∆x2], A2 = c13(i+1,k)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z]

A3 = c11(i,k)/[ω2
ρxSx(i+

1
2
)Sx(i)∆x2], A4 = c13(i,k)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z]

A5 = c11(i+2,k)/[ω2
ρxSx(i+

1
2
)Sx(i+2)∆x2], A6 = c13(i+2,k)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z]

A7 = c11(i−1,k)/[ω2
ρxSx(i+

1
2
)Sx(i−1)∆x2], A8 = c13(i−1,k)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z]

A9 = c55(i+
1
2
,k+

1
2
)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z], A10 = c55(i+

1
2
,k+

1
2
)/[ω2

ρxSz(k)Sz(k+
1
2
)∆z2]

A11 = c55(i+
1
2
,k− 1

2
)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z], A12 = c55(i+

1
2
,k− 1

2
)/[ω2

ρxSz(k)Sz(k−
1
2
)∆z2]

A13 = c55(i+
1
2
,k+

3
2
)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z], A14 = c55(i+

1
2
,k+

3
2
)/[ω2

ρxSz(k)Sz(k+
3
2
)∆z2]

A15 = c55(i+
1
2
,k− 3

2
)/[ω2

ρxSx(i+
1
2
)Sz(k)∆x∆z], A16 = c55(i+

1
2
,k− 3

2
)/[ω2

ρxSz(k)Sz(k−
3
2
)∆z2]

B1 = c55(i+
1
2
,k+

1
2
)/[ω2

ρzSx(i)Sx(i+
1
2
)∆x2], B2 = c55(i+

1
2
,k+

1
2
)/[ω2

ρzSx(i)Sz(k+
1
2
)∆x∆z]

B3 = c55(i−
1
2
,k+

1
2
)/[ω2

ρzSx(i)Sx(i−
1
2
)∆x2], B4 = c55(i−

1
2
,k+

1
2
)/[ω2

ρzSx(i)Sz(k+
1
2
)∆x∆z]

B5 = c55(i+
3
2
,k+

1
2
)/[ω2

ρzSx(i)Sx(i+
3
2
)∆x2], B6 = c55(i+

3
2
,k+

1
2
)/[ω2

ρzSx(i)Sz(k+
1
2
)∆x∆z]

B7 = c55(i−
3
2
,k+

1
2
)/[ω2

ρzSx(i)Sx(i−
3
2
)∆x2], B8 = c55(i−

3
2
,k+

1
2
)/[ω2

ρzSx(i)Sz(k+
1
2
)∆x∆z]

B9 = c13(i,k+1)/[ω2
ρzSx(i)Sz(k+

1
2
)∆x∆z], B10 = c11(i,k+1)/[ω2

ρzSz(k+
1
2
)Sz(k+1)∆z2]

B11 = c13(i,k)/[ω2
ρzSx(i)Sz(k+

1
2
)∆x∆z], B12 = c11(i,k)/[ω2

ρzSz(k+
1
2
)Sz(k)∆z2]

B13 = c13(i,k+2)/[ω2
ρzSx(i+

1
2
)Sz(k)∆x∆z], B14 = c11(i,k+2)/[ω2

ρzSz(k+
1
2
)Sz(k+2)∆z2]

B15 = c13(i,k−1)/[ω2
ρzSx(i+

1
2
)Sz(k)∆x∆z], B16 = c11(i,k−1)/[ω2

ρzSz(k+
1
2
)Sz(k−1)∆z2]

where, ρx = ρ(i+ 1
2 ,k), ρz = ρ(i,k+ 1

2 ), Sn = iω +dn.


