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Abstract:

This study introduces a three-dimensional supervoxel segmentation method to accurately
separate solid and fluid phases in X-ray images of porous materials, with applications
in energy research. Compared with intelligent segmentation algorithms requiring model
training, the proposed method operates as a ready-to-use solution with significantly en-
hanced efficiency. When benchmarked against conventional approaches such as watershed
transformation, our technique demonstrates superior segmentation accuracy. Tested on
porous rock and gas diffusion layers under varying wettability, it accurately quantifies
fluid saturation, interfacial area, curvature, and contact angles-key parameters for enhanced
oil recovery, CO, storage, and hydrogen fuel cells. The proposed three-dimensional
segmentation method is noise-resistant and annotation-free, improving both the accuracy
and efficiency of segmenting diverse micro-structural material datasets and providing

algorithm for rapid segmentation of
multiphase X-ray images. Advances in
Geo-Energy Research, 2025, 16(1): 50-59.
https://doi.org/10.46690/ager.2025.04.06

reliable measurements of their geometric characteristics.

1. Introduction

The X-ray Micro-computed tomography (micro-CT) has
gained widespread application in recent years in fields such
as materials science and energy research (Blunt et al., 2013;
Liu et al., 2023; Zhao and Lu, 2023). This technique of-
fers non-destructive, high-resolution Three-dimensional (3D)
images that reveal the internal micro-structure of materials,
including the distribution of fluids in the pore space (Schliiter
et al, 2014; Zeng et al., 2022; Zhu et al., 2022; Isah et
al., 2024). Such insights are invaluable for applications like
evaluating the efficiency of CO; sequestration, optimizing
hydrocarbon recovery from porous rocks (Yang et al., 2021;
Yang et al., 2023).

Micro-CT records local X-ray adsorption, resulting in gray-

scale images: for further analysis it is necessary to segment
this image to identify mineral and fluid phases (Wildenschild
and Sheppard, 2013).

However, due to the complexity of porous material struc-
tures, achieving accurate segmentation is highly challenging.
Currently, three types of method are widely employed. (1)
Traditional methods, such as watershed segmentation, use
gray-scale and gradient information to identify phases. These
algorithms do not require pre-labeled training data and can
provide highly accurate boundary lines, which has led to their
widespread use (Andrew et al., 2014; Reynolds et al., 2017).
However, the results are sensitive to noise, typically requiring
filtering techniques and manual intervention to improve and
optimize performance. (2) Another approach is to apply a
machine learning method where the user manually labels
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phases on the image for training. Weka segmentation is an
example of this approach that can achieve good results, but
relies on the quality of the user-based training (Alhammadi et
al., 2017; Arganda-Carreras et al., 2017; Ibekwe et al., 2020;
Garfi et al., 2020). (3) With advances in deep learning, neural
netpwork-based segmelntation methods such as U-Net (Mah-
daviara et al., 2023b; Siavashi et al., 2024) and SegNet (Da
Wang et al., 2021) have been applied to 3D images of porous
materials. These models can offer higher accuracy compared
to watershed and Weka segmentation. However, training neu-
ral networks requires large amounts of high-quality labeled
data, which is a time-consuming process. Consequently, many
segmentation models are trained not on manually labeled
data but on segmentation results obtained from watershed
and Weka, resulting in sub-optimal performance (Liang et
al., 2022; Li et al., 2023; Mahdaviara et al., 2023a; Siavashi
et al., 2024). Furthermore, deep learning models often exhibit
unstable transfer ability, making it difficult to develop a model
that can be applied to various porous media images without an
extensive training dataset. Even a general image segmentation
model, such as the segment anything model (Kirillov et
al., 2023), has been shown to underperform in porous media
segmentation tasks. While some researchers have attempted to
build segmentation models using unsupervised neural network
training methods (Mahdaviara et al., 2023a), achieving precise
segmentation results still requires post-processing techniques.
Another limitation of deep learning models is that, due to
hardware constraints, most training images are either manually
cropped two-dimensional (2D) images (Siavashi et al., 2024)
or very small 3D samples (Da Wang et al., 2021; Mahdaviara
et al.,, 2023b; Zhu et al., 2024), limiting their ability to
capture 3D information particularly if there is long-range
spatial correlation.

In summary, although various segmentation methods exist
for the task of segmenting 3D images of porous media, tradi-
tional methods perform poorly on low-quality images which
need filtering techniques and manual intervention. Machine
learning and deep learning methods, meanwhile, often depend
on large, high-quality, already labeled datasets, with train-
ing requiring substantial computational resources and time.
Basically, you need to segment an image already to train a
deep learning model to reproduce what you already know.
Additionally, the limited transfer ability of machine learning
models restricts their applicability across different materials
and imaging conditions.

This work proposes a segmentation method that does not
require labeled data, and demonstrates superior accuracy com-
pared to conventional methodologies such as watershed, which
is an extension of superpixel segmentation into 3D. Superpixel
segmentation is a widely-applied image segmentation method
that groups pixels into similar regions, known as superpixels
(Vincent and Soille, 1991; Vedaldi and Soatto, 2008; Achanta
et al.,, 2012; Stutz et al., 2018). This technique effectively
reduces noise and redundant information in the image while
preserving edge and structural information, enabling rapid and
accurate segmentation. Through validation for different porous
materials and under various experimental conditions, the pro-
posed segmentation method is shown to significantly improve

both efficiency and accuracy, particularly for complex, noisy
datasets. Compared with intelligent segmentation algorithms
requiring model training, the proposed method operates as
a ready-to-use solution with significantly enhanced compu-
tational efficiency. When benchmarked against conventional
approaches such as watershed transformation, our technique
demonstrates superior segmentation accuracy. Furthermore,
the algorithm exhibits notable adaptability to raw, unfiltered
image data. This innovative approach provides a new direction
for the further development of imaging and digital rock
technology, with broad potential applications in porous media
research.

2. Materials and methods

2.1 Rock samples for segmentation

To verify the general applicability of our proposed segmen-
tation method, this work collected X-ray images of various
porous media with most of them available on the open-source
platform Digital Rocks Portal (www.digitalrocksportal.org).
Eight 3D images were considered: example 2D cross sections
are shown in Fig. 1.

1) A filtered image of Bentheimer sandstone with a voxel
size of 3.58 pm acquired using a Zeiss Versa 510 X-ray
microscope under water-wet conditions. The pore space
contains two fluid phases: oil and brine imaged during
brine injection at a fractional flow of 0.5 (Lin et al., 2018).

2) Similar to image 1 but under mixed-wet conditions (Lin
et al., 2019).

3) An unfiltered version of image 2.

4) A lower resolution image of Bentheimer sandstone with
oil and water in the pore space (voxel size of 7.0 pum)
(Ramstad et al., 2012).

5) A filtered image of a reservoir carbonate from the Middle
East with a voxel size of 2.0 pm acquired using a Zeiss
Versa 510 X-ray microscope under weakly water-wet
conditions. Again the pore space contains oil and brine
(Alhammadi et al., 2017).

6) Similar to image 5 but under mixed-wet conditions.

7) An filtered image of Ketton limestone with a voxel size
of 2.0 pm with oil and water in the pore space (Yang and
Zhou, 2020).

8) Animage of a gas diffusion layer with a voxel size of 2.05
um. The material contains 40% polytetrafluoroethylene
coating. Air and water occupy the pore space. The solid
phase in this sample is fibrous, differing from conven-
tional rock structures (Shojaei et al., 2022).

2.2 Supervoxel segmentation algorithm

This study propose a noise-resistant and annotation-free
supervoxel-based algorithm designed for efficient and accurate
3D X-ray images segmentation. This algorithm represents an
improvement over the 2D quickshift superpixel algorithm,
which demonstrates superior edge detection capabilities com-
pared to other superpixel algorithms, as shown in the Supple-
mentary Information (Fig. S1).

The supervoxel-based segmentation algorithm clusters vox-
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Fig. 1. Two-dimensional slices of the three-dimensional raw X-ray images considered in this work showing the normalized
gray-scale intensity. (a,b) Images 1 and 2: Bentheimer sandstone with oil and water in the pore space under water-wet and
mixed-wet conditions respectively. (c) Image 3: an unfiltered version of image 2. (d) Image 4: a lower resolution image of
Bentheimer sandstone with oil and water in the pore space. (e,f) Images 5 and 6: a reservoir Middle East carbonate with oil
and water in the pore space under weakly water-wet and mixed-wet conditions respectively. (g) Image 7: Ketton limestone
with oil and water in the pore space. (h) Image 8: gas diffusion layer with air and water in the pore space.

els with high similarity into supervoxels, achieving better
results in 3D data compared to superpixels formed from 2D
data, as shown in the Fig. 2. The superpixel methods can only
generate superpixels along a single plane (x-y), leading to poor
segmentation performance in the other planes (x-z, y-z) upon
completion.

The algorithm comprises the following key steps, which
are detailed below and illustrated in Fig. 3.

2.2.1 Density estimation

The first step is to define a normalized gray-scale intensity
I: 0 <1 < 1. It ensures that the image has voxels spanning the
whole range from 0 to 1. Then to define a difference between
two voxels p and g:

di(p.q) = [I(p) —1(q)]? M
It also defines a physical distance:

dg(Pa‘]) = (xp_xq)2+(YP_Yq)2+(Zp_Zq)2 2)
where (x,y,z) is the coordinate of a center of a voxel with
each voxel assumed to be a unit cube.

Then define a similarity between voxels p and g:

S(p.q) = d5(p.q) + ad} (p.q) 3)
where the parameter o weights the gray-scale and spatial
distances, set to o = 10 in this work.

Finally it defines a density representing overall the simi-

larity of voxels in the neighborhood N(p) of ¢:

S(p.,q)
Y exp [— e )
where N(p) denotes the set of neighboring voxels around p,

with radius k. In this work takes k = 1, hence N(p) includes
26 neighboring voxels.

2.2.2 Supervoxel cluster center identification

For each voxel p, find a neighboring voxel ¢ in N(p)
such that ¢ has a higher density D(q) > D(p) in Eq. (4).
Among voxels satisfying this condition, select the voxel g,
that is most similar to p, minimizing the similarity S(p,q),
Eq. (3). All voxels with the same g, are members of the same
supervoxel: it says that voxel p points to g.. This process
is repeated iteratively. Consider a voxel p that points to g1,
where voxel g.; points to another cluster center g.. In this case
p is now associated with the supervoxel centered on g.. This
assignment continues until there is no change in clustering.
Voxels pointing to the same g, form a supervoxel.

2.2.3 Gray-scale value replacement

Replace the gray-scale values of all voxels within the same
supervoxel with that of the supervoxel center voxel I(g.).

2.2.4 Threshold segmentation

As shown later, this algorithm tends to aggregate the gray-
scale values of the clusters into distinct peaks with few inter-
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superpixel

Gray-scale
3D view

supervoxel

Fig. 2. Comparison of superpixel and supervoxel segmentation. (Top) Slices along differ ent planes of three-dimensional
Bentheimer sandstone raw X-ray images. (Middle) Segmentation results of the two-dimensional superpixel algorithm in the
planes indicated. (Bottom) Segmentation results of the three-dimensional supervoxel algorithm.

mediate values. The image, after gray-scale value replacement,
can be easily segmented by selecting an appropriate gray-scale
threshold. This work set threshold values between two peak
values in the histogram.

2.3 Contact angle and curvature measurements

The capillary pressure is equal to the average curvature
of the fluid/fluid interface times the interfacial tension from
the Young-Laplace equation (Bear, 2013). Commercial image
analysis software, Avizo, was used to find the curvature. The in
situ contact angles characterize the wettability of the system.
This study applied an automated contact angle measurement
algorithm to measure the distribution of contact angle along
the three-phase contact loops (where the two fluid phases
encounter the solid) identified from the segmented images
(Alhammadi et al., 2017; Lin et al., 2019).

3. Results and discussion

3.1 Visual accuracy and efficiency

As shown in Fig. 4, the supervoxel algorithm segments
the raw three-dimensional gray-scale image into distinct su-
pervoxels based on voxel similarity, ensuring uniform gray-
scale values within each supervoxel. This approach is advan-
tageous, as evidenced by the gray-scale histogram: the most
ambiguous voxels are those located between the peaks. After
segmentation, the three peaks in the histogram become more
distinct, significantly reducing ambiguity and enabling easier

segmentation through threshold selection.

The results demonstrate visually that the proposed su-
pervoxel segmentation method outperforms the seeded wa-
tershed method which from previously published work (Lin
et al., 2019), capturing more micro-porous structures and
providing a more accurate representation of different liquid
phases within the pore space.

Additionally, the algorithm is highly efficient and operates
in an unsupervised manner, eliminating the need for segmen-
tation labels prior to processing. This reduces the time spent
on image annotation and model training compared to methods
like Weka and neural networks. Furthermore, the algorithm
can be parallelized across multiple CPU cores, resulting in
very short run times.

3.2 Testing the segmentation model’s
generalizability

When using machine learning-based segmentation models,
it is common for models to perform well on training data
but struggle with new data, a phenomenon known as limited
generalization or model transferability (Zhou et al., 2022). In
contrast, our method requires no training data and generalizes
easily to segment various porous media multiphase X-ray im-
ages. As shown in Fig. 5, we collected and segmented the eight
3D images listed previously to validate the robustness of our
method: multiphase X-ray images of Bentheimer sandstone,
a Middle Eastern reservoir carbonate, and Ketton limestone
under both water-wet and mixed-wet conditions. Additionally,
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Fig. 3. The workflow for supervoxel segmentation and image analysis. (a) The distribution of gray-scale intensity in the image.
The middle figure is a schematic showing individual voxels. The bottom figure is the gray-scale histogram of the top image.
(b) Supervoxels are identified by clustering voxels that are most similar using Eq. (3) and associating a cluster center based
on the density D(p) defined in Eq. (4). The green lines in the top figure shown the boundaries of supervoxel regions, while
the arrows in the middle figure indicate which voxels are associated with the two supervoxel centers shown. (c) Gray-scale
value replacement, where all voxels within a supervoxel adopt the gray-scale value of the cluster center I(g.). In the top figure
this leads to a simple threshold-based segmentation of the image into three phases: grain (red), oil (green) and brine (blue).
The bottom figure shows the selected thresholds from the gray-scale histogram of the image after clustering. (d) A schematic
showing how contact angle and interfacial curvature are measured on the segmented image.

the algorithm effectively segments the gas diffusion layer
containing air and water in the pore space. Despite the
fibrous, elongated structure of the fibrous solid phase, which
differs from typical rock formations, our algorithm performs
well. These results indicate that the proposed supervoxel
segmentation algorithm is highly versatile and suitable for the
segmentation of most porous media multiphase X-ray images.
Details on gray-scale histogram distribution of images used
for validation before and after superpixel segmentation can be
found in the Supplementary Information (Fig. S2). It is worth
noting that the algorithm is not sensitive to image quality,
even for the original image containing noise or low resolution
image can still achieve effective segmentation. Different kinds
and degrees of noise has been added to the images to further
verify the anti-noise ability of the algorithm, as shown in Fig.

6.

3.3 Curvature and contact angle

Contact angles were calculated from a 500 x 500 x 500
voxel subvolume centered within the full images. As shown in
Fig. 7(a), both segmentation methods produced similar contact
angle distributions, with variances of less than 20°. For the
water-wet and mixed-wet samples, the average contact angles

measured by the watershed and supervoxel methods were
66.6° and 79.8°, and 69.9° and 77.3°, respectively. Even in
unfiltered mixed-wet samples, contact angle distributions and
mean values were consistent with those of the filtered samples.
As shown in Fig. 7(b), curvature measurements show predom-
inantly positive values in the water-wet condition, as expected:
the mode curvature values were 0.0227 and 0.0226 um~! for
the watershed and supervoxel methods, respectively. In the
mixed-wet system, the mode curvature values were -0.0020
and -0.0001 um~! for the watershed and supervoxel methods,
respectively. Note that the magnitude of the curvature is at least
one order of magnitude lower than in the water-wet system
implying the presence of near minimal surfaces: the supervoxel
algorithm implies that the mode curvature is almost exactly
zero, consistent with the the theoretical picutre of interfaces
in equilibrium pinned at boundaries between water-wet and
oil-wet regions of the solid surface (Lin et al., 2019).

In analyzing additional properties as shown in Table 1,
supervoxel segmentation yielded slightly higher porosity and
a marginally lower Euler number (implying better connec-
tivity) compared to watershed. Comparative analysis of the
segmented images indicates that, relative to watershed seg-
mentation, the supervoxel method captures smaller pores and
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Fig. 4. Performance of supervoxel segmentation. (a) Gray-scale image of a Bentheimer sandstone sample under mixed-wet
conditions, Fig. 1(b). (b) Histogram of the gray-scale values from (a). (c) Gray-scale image from (a) with supervoxels applied.
(d) Histogram of the gray-scale values from (c). Segmented images showing rock (red), brine (blue), and oil (green) using
the watershed algorithm (e), and the supervoxel algorithm (f). (g) Difference map between (e) and (f), with yellow boxes
highlighting key differences between the two algorithms. (h) Computer time to segment images of different size using the
supervoxel algorithm.

Table 1. Comparison of watershed and supervoxel methods under different experimental conditions.

Property Watershed Supervoxel

Mixed-wet ~ water-wet  Mixed-wet unfiltered Mixed-wet  Water-wet
The average contact angle (°) 79.8 66.6 78.5 77.3 69.9
The standard deviation of contact angle (°) 18.0 16.1 18.5 19.2 16.1
The mode curvature values (x 1072 pm~1) -0.20 2.27 -0.05 -0.01 2.26
Porosity (%) 21.54 20.30 20.34 22.53 22.94
Saturation of water (%) 63.75 47.16 57.53 62.79 49.28
Saturation of oil (%) 36.25 52.84 42.47 37.21 50.72
Euler number of water 533 1745 942 48 =776
Euler number of rock -2,853 -2,465 -3,290 -3,162 -5,620
Euler number of oil 696 331 803 775 266
Surface area of water (x10° pum?) 5.8 6.3 6.1 6.5 6.6
Surface area of rock (x10° pum?) 7.0 7.6 7.3 7.4 7.3
Surface area of oil (x10° um?2) 3.2 3.9 3.8 3.6 3.2
Interfacial area of solid & oil (x10° pm?) 3.6 3.5 4.3 3.8 4.0
Interfacial area of solid & water (x10% pm?) 7.9 8.8 7.9 8.3 9.4
Interfacial area of oil & water (x10° pmz) 1.8 1.4 2.4 2.3 1.3

Note: The 'mixed-wet unfiltered’ segmentation image from watershed was omitted from analysis due to its absence in the
referenced open-source dataset.
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1. Water-wet 2. Mixed-wet 3. Mixed-wet unfiltered 4. Low-resolution
Bentheimer Sandstone Bentheimer Sandstone Bentheimer Sandstone Bentheimer Sandston

5. Water-wet 6. Mixed-wet 7. Water-wet
Middle East Carbonate ~ Middle East Carbonate Ketton Limestone 8. GDL

Fig. 5. Segmentation results of the supervoxel algorithm under various experimental conditions and for different porous media.
(a-g) 2D slices from the 3D segmentation of different rock samples: rock (red), oil (green), and brine (blue) for images 1-7 in
Fig. 1. (h) 2D slice from the 3D segmentation of a gas diffusion layer (GDL), image 8 in Fig. 1: fiber (red), air (green), and
water (blue).
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Fig. 6. The impact of different noise types on algorithm segmentation results. (a)-(e) respectively show filtered image (no noise
added), unfiltered image with random noise, image with Gaussian noise (low standard deviation), image with Gaussian noise
(high standard deviation), image with Poisson noise added; (f)-(j) present the segmentation results corresponding to (a)-(e).
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Fig. 7. Contact angle and curvature distributions for water-wet and mixed-wet Bentheimer sandstone with different segmentation
methods: (a) The average contact angle of water-wet and the mixed-wet case the watershed and supervoxel methods, respectively
and (b) The curvature values of water-wet and the mixed-wet case for the watershed and supervoxel methods, respectively.

provides improved connectivity between void spaces.
4. Conclusions

This work has developed a supervoxel-based segmentation
algorithm to segment X-ray micro-CT images of porous ma-
terials accurately and efficiently. Unlike traditional machine
learning and deep learning methods, our approach is an
unsupervised algorithm that requires no manual annotation,
offering robust performance even in high-noise, low-resolution
environments.

Validation on multiple datasets under varied experimental
conditions demonstrates the algorithm’s generalization and re-
liability, achieving precise segmentation for different materials.
Additionally, the algorithm’s parallel processing capabilities

enable rapid segmentation of large 3D images, drastically
reducing computation time.

Overall, the proposed 3D supervoxel segmentation method
effectively enhances the segmentation quality of X-ray micro-
CT images of porous materials by preserving essential struc-
tural details and minimizing noise and redundancy. This makes
it a reliable tool for analyzing diverse porous media in
geophysics, material science, groundwater studies, and CO»
storage.
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