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Abstract:
The structural characteristics of nanopores are known to significantly affect the wetting
effect in coal seam water injection. Currently, the three-dimensional characterization of
nanopores in coal relies mainly on digital images, whereas poor image resolution and
segmentation methods pose significant challenges. Therefore, using coal samples from
Wudong Coal Mine in China as an example, cryo-focused ion beam scanning electron
microscopy (cryo-FIB-SEM) and deep learning segmentation methods were implemented
to accurately characterize the nanopores and water distribution. In the obtained pore
structure, the number of isolated pores was higher than that of connected pores, while the
volume of connected pores was significantly larger than that of isolated pores, comprising
the key path and storage space for external water to enter the coal body. The water
content of isolated pores mainly depends on the permeability of the coal matrix. The
connectivity of single pores can be characterized by the coordination number, whose
increase leads to the number of pores exponentially decreasing. The connectivity of pore
clusters depends on the number of internal branches. The number of branches in the pore
cluster increases exponentially with the increasing total length, total volume and average
radius of the cluster, and the connectivity is correspondingly enhanced. The increase
in pore size enhances the shape factor, surface area and connectivity of pores while
reducing tortuosity, which in turn facilitates coal wetting. The accurate characterization
of coal nanopores in this study helps to scientifically evaluate the effect of coal seam
water injection, highlighting the importance of increased pore size and improved pore
connectivity for enhanced water injection effectiveness.

1. Introduction
Coal seam water injection as a multifunctional mine disas-

ter prevention measure achieves dust reduction and removal,
gas control, anti-blowout and pressure relief, and coal and
rock softening (Yang et al., 2020; Liu et al., 2021a; Wang

et al., 2023). In this regard, pores and fractures are the
main spaces for water seepage, and their development degree
largely affects the wetting range and effect of coal seam water
injection (Wang et al., 2022; Qin et al., 2023). Conventional
reservoirs such as sandstone are characterized by micron-scale
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pores, while coal reservoirs are usually dominated by pores
at the nanoscale (Jiao et al., 2014; Tang et al., 2016). The
precise characterization of nanopores in coal seam is of great
significance for the study of water seepage law in coal and the
evaluation of the coal seam water injection effect.

During long-term geological evolution, nano- to microscale
pores in coal form a tortuous, complex and highly hetero-
geneous pore network, where the pores become partially or
completely connected. These inherent pore characteristics pose
a major challenge to the comprehensive understanding of pore
structure in coal seam. At present, pore structures in coal seam
are mainly characterized by three techniques. The first one is
microscopy imaging, such as by scanning electron microscopy
(Li et al., 2024b), field emission scanning electron microscopy
(Wang et al., 2020), focused ion beam scanning electron
microscopy (FIB-SEM) (Zhou et al., 2024), transmission elec-
tron microscopy (Vranjes-Wessely et al., 2020), helium ion
microscopy (Wu et al., 2020), atomic force microscopy (Li
et al., 2024a), etc. This method presents the advantages of
high magnification, excellent resolution, and the ability to
provide high-quality images and strong 3D features, yet it is
destructive and can generally observe pore/fracture structures
only at the 2D level. The second group of methods are
fluid injection analyses, including nuclear magnetic resonance
(Zhou et al., 2023), mercury intrusion (Jiang et al., 2019),
N2/CO2 adsorption (Mazumder et al., 2024), etc. Since any
fluid needs to be injected into the test sample under a certain
pressure, these methods tend to damage the pore structure and
the observation range is limited by the fluid pressure. Besides,
the results cannot visualize the pores but only indirectly reflect
the characteristics of pore structures. The third set of methods
are derived from X-ray spectroscopy, mainly including small-
angle X-ray scattering (Sun et al., 2019), small-angle neutron
scattering (Zhang et al., 2021) and computed tomography (Liu
et al., 2021b). Such techniques are non-destructive, efficient
and provide excellent visualization, thus have been widely
used in the microstructure characterizations of coal samples.

Due to their varying working principles, different tech-
niques can characterize pores of different size ranges. Unlike
the fluid injection method, microscopy imaging and X-ray
spectroscopy are visualization methods that can accurately
image the morphology, connectivity and spatial distribution of
pores and quantify their geometric structural characteristics.
Among them, FIB-SEM tomography has more advantages in
nanopore characterization (Li, 2018; Yu et al., 2024). For a
typical FIB-SEM imaging process, the sample is sequentially
ground with an ion beam in the perpendicular direction, and
the newly exposed surface is imaged using an electron beam
to generate a series of two-dimensional grayscale images,
achieving the 3D reconstruction of nanopores inside the coal
sample. In recent years, due to its high resolution, FIB-SEM
has been widely used in the characterizations of various porous
media, such as polymers (Röding, 2021), battery electrodes
(Vierrath et al., 2015), oil and gas shales (Wu et al., 2020),
sandstones (Jacob et al., 2021), and coal (Li et al., 2018; Li
et al., 2023). However, FIB-SEM measurement requires dry
samples. The structure of the water-containing sample may be
altered during the drying process and thus cannot be accurately

characterized (Liu et al., 2024). Nevertheless, the emergence
of cryo-focused ion beam scanning electron microscopy (cryo-
FIB-SEM) has addressed this issue. Cryo-FIB-SEM rapidly
freezes the water in a water-containing sample into small and
uniform ice crystals, without destroying its pore structures, and
directly images its internal structure. It has showed significant
advantages in the observation of water-containing samples,
such as plant and animal tissues (Capua-Shenkar et al., 2022;
Raguin et al., 2023), microorganisms (Jantschke et al., 2020),
hydrated glass (De Winter et al., 2013), and soil (Lubelli et
al., 2013).

The key to the accurate characterization of pores in coal
by electron microscopy is the precise extraction thereof based
on grayscale images. However, the cryo-FIB-SEM imaging of
porous media tends to produce “pore back” artifacts, which
makes the traditional threshold segmentation methods, such
as interactive threshold segmentation, Otsu threshold segmen-
tation, and watershed segmentation, no longer applicable (Saif
et al., 2017; Zang et al., 2023). When a human expert looks at
these images, their brain will take action to eliminate noises
and artifacts and successfully identify the object region, yet
it is difficult to achieve such a process through automation
or calculation (Schlüter et al., 2014). The emergence of deep
learning provides the possibility to realize this process without
labor-intensive manual assessment. Deep learning obtains the
features of the object region by the machine analysis of the
manually segmented image. These features are then connected
into a single “feature vector” and applied to the entire image to
effectively segment the cryo-FIB-SEM image. Deep learning
has been widely used in the image segmentation of pores in
polymers (Čalkovský et al., 2021), battery electrodes (Bailey
et al., 2023), shales (Andrew, 2018), and tight reservoir rocks
(Kazak et al., 2021). It was found that the machine learning-
based classification could better tolerate artifacts and noises
than any traditional algorithm (Andrew, 2018).

Despite its remarkable advantages, previous studies have
revealed two deficiencies of FIB-SEM in the characterization
of coal nanopore structure:

1) The drying treatment before FIB-SEM imaging irre-
versibly changes the pore morphology, making it impossi-
ble to determine the water contents in the nanopores after
water injection. Cryo-FIB-SEM technology can solve
these problems, but it is rarely used in coal structure
observation.

2) Traditional threshold segmentation methods are affected
by “pore back” artifacts in the cryo-FIB-SEM image,
which makes the characterization results inaccurate.

Therefore, this study attempted to scan the coal sample
both in the original and the water-saturated state by cryo-
FIB-SEM, and accurately segment the nanopores in the image
with the assistance of deep learning, to reconstruct their
3D structure and analyze their structural characteristics. This
approach provides a new idea for the observation of water in
coal and a sound theoretical basis for improving the coal seam
water injection effect at the microscopic level.

2. Materials and methods
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Table 1. Industrial analysis of Wudong coal.

Coal rank
Industrial analysis (wt%) Elemental analysis (wt%, daf)

Water Ash Volatile component Fixed carbon C H O N S

Lignite 6.27 12.02 30.19 51.52 74.50 4.93 18.71 0.99 0.87

Fig. 1. Schematic diagram for the cryo-FIB-SEM scanning system.

2.1 Selection and preparation of coal sample
The coal sample used for this study was collected from

the Wudong Coal Mine located in the southern margin of the
Junggar Basin in China. The industrial analysis results of this
coal are shown in Table 1. A relatively flat coal block was cut
from the working face, carefully covered with plastic wrap and
sent to the laboratory for further processing. Three rectangular
coal samples with about 2 cm diameter, S1, S2 and S3, were
cut from different positions of the same coal block and their
surfaces were gently polished with fine sandpaper. S1 was
immersed in water for 3 days to observe the distribution of
water in coal, while S2 and S3 were not treated.

2.2 Cryo-FIB-SEM imaging
A Helios 5 CX dual beam electron microscope system

(Thermo Fisher Scientific) consisting of an ion beam gun,
an electron beam gun and a quick sample loader was used
for cryo-FIB-SEM imaging (Fig. 1). Following the typical
imaging process, the coal sample was first placed in the quick
loader and pre-frozen with liquid nitrogen outside the instru-
ment. When the water inside the coal sample was completely
frozen, the sample with the quick loader was transferred
to the Cryostage inside the instrument. Liquid nitrogen was
continuously circulated to maintain a uniform freezing state
at 160 ◦C. The coal sample was sprayed with a layer of gold
in the sample chamber for good conductivity. The back-facing
electronic module was then activated to enlarge the observation
range, and a region of interest was selected on each coal
sample. The angle between FIB and SEM guns was adjusted to

54◦ to ensure that the slicing was perpendicular to the surface
of the region of interest before the slice scanning was started.
Table 2 lists the scanning and imaging parameters.

2.3 Image preprocessing and deep learning
segmentation

The images obtained with the cryo-FIB-SEM system were
pre-processed as shown in Fig. 2 before undergoing seg-
mentation. During imaging, the probe inevitably produced 2-
3 nm shaking movements. Therefore, the images were first
automatically aligned using the “Auto align slices” module
of the Avizo platform. Because of the inconsistences in slice
thicknesses and imaging size (Table 2), the images were
blurrier in the z direction than the x and y directions. To solve
this problem, the resolution of the image z axis was increased
to 50 nm by activating the “Resample” module. In addition,
there were irregular edges without pores and fractures around
the coal sample in the images, affecting the observation. To
eliminate this problem, the effective areas containing pores in
the image were manually divided, and the boundaries of the
effective regions were generated by semi-automatic watershed
segmentation. Finally, the invalid areas in the images were
hidden using the “mask” module and the images were denoised
using the median filter, which could effectively remove salt and
pepper noise (Zhao et al., 2018).

The deep learning image segmentation was conducted
using the segmentation wizard of the Avizo platform “Deep
Learning Interface (Python 3.6.13)”, with the following steps:

1) Select part of images from the preprocessed images as
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Fig. 2. Image pre-processing: (a) Automatic image alignment, (b) improved z-direction resolution, (c) effective region extraction
and (d) noise reduction.

Table 2. Scanning and imaging parameters for three coal samples.

Sample SEM voltage
(kV)

Electron beam
current (nA)

Slice thickness
(nm)

Image resolution
(nm) Number of images

S1 2 0.4 180 50×50 149

S2 2 0.4 180 50×50 450

S3 2 0.4 180 50×50 491

the training set;
2) Roughly divide the object region (pores and fractures in

S2 and S3 and water in S1) using interactive threshold
segmentation. Note that the extracted areas must be
smaller than the actual object region;

3) Manually segment the subtle object regions not seg-
mented perfectly in the previous step;

4) Generate a deep learning model using the segmented
image;

5) Extract the object regions from the original images using
the deep learning model.

In Step 1), to comprehensively obtain the features of the
image, slices were selected as the training set through uniform
intervals. Among them, 10, 22, and 24 slices were selected for
S1-S3 as their training sets, respectively.

The training accuracy of the three samples reached more
than 90%. In addition, the Avizo platform provides a sec-

ondary deep learning module. To further accurately extract
the target areas, the areas of unsatisfactory segmentation were
re-segmented manually in the module. Then, a portion of the
area with a size of 64×64 Pixel2 was selected after calibration
as the model for secondary deep learning. Among them, the
number of selected regions was determined based on the size
of the correction region. Ten regions were selected for S1,
while 20 regions were selected for S2 and S3, which improved
the model accuracy to more than 95%.

2.4 Construction of centerline model
Fig. 3(a) shows the reconstructed 3D pore model, which

could effectively reflect the spatial distribution and morpholog-
ical characteristics of pores. However, coal is a heterogeneous
rock with a highly complex and irregular pore network, which
is inconvenient for subsequent topological connectivity char-
acterization and quantitative analysis. To solve this problem,
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Fig. 3. 3D pore model and the simplified models: (a) 3D pore and fracture model, (b) ball-and-stick model and (c) centerline
model.

Fig. 4. Cryo-FIB-SEM images at (a)-(c) 160 ◦C, (d)-(f) 25 ◦C
and (g)-(i) at the same positions and water segmentation of
S1.

an equivalent simplified structural model is needed that reflects
the topological structure of the pores. At present, the most
common simplified model to characterize the pore network
in coal is the ball-and-stick model. As shown in Fig. 3(b),
pores are equivalent to spheres of equal volumes and throats
are equivalent to sticks of equal diameter. Thus, the model
intuitively reflects the connectivity between pores and can
be used to further calculate the properties of the network.
On the other hand, this network model has certain defects.
First, simplifying the throats connecting the pores to a straight
line ignores the curvature (tortuosity) of the throats. Second,
fractures are equivalent to spheres in the model, which is quite
different from their actual shapes.

To overcome these defects, we constructed a centerline
model as shown in Fig. 3(c). On the basis of the “Auto
Skeleton” module of the Avizo platform, the main morpholo-
gies and topologies of the pores were kept unchanged, and
the remaining topological skeleton structure was gradually

extracted by continuously removing the outer morphological
pixels of the pores while the spatial connectivity and geometric
characteristics of the pore microstructure was maintained to
the greatest possible extent. The model was further divided
into different groups based on the connectivity degrees of the
pores. Unlike the ball-and-stick model, the centerline model
can reflect not only the connectivity between the pores but also
the pore directions. Thus, tortuosity can be further calculated
with the model.

3. Results

3.1 Water distribution in a water-saturated coal
sample

Fig. 4(a) and its zoomed-in views Figs. 4(b) and 4(c) depict
the Cryo-FIM-SEM image of the water-saturated S1 sample
obtained in the frozen state. To locate the water in the image,
the temperature in the sample chamber was raised from -160
◦C to 25 ◦C in order to evaporate the water and fully expose
the pores. This process took about an hour to complete. The
sample was then re-scanned and images were collected at the
same position as those at low temperature. The black areas in
Figs. 4(d)-4(f) for the images taken at room temperature were
identified as pores. The comparison of the images obtained at
low temperature and room temperature infers that the white
areas in the Figs. 4(a)-4(c) are water. Qin and Zhang (2000)
reported that the minimum pore size for water penetration and
storage in coal was 70-220 nm. In this study, the smallest pore
of S1 was measured to be about 520 nm in diameter, larger
than the threshold pore size for water penetration. The images
also show that almost all pores are filled with water.

It is worth noting that there are small amounts of white
minerals detected in the coal sample, which manifest as white
regions (yellow circles in Fig. 4(f)). The minerals together with
water show larger and brighter regions at the same positions
in the low temperature image (yellow circles in Fig. 4(c)),
indicating that there is more water around the minerals and
they are hydrophilic. The white areas with minerals in the
low temperature images were removed by deep learning, as
shown in Figs. 4(g)-4(i). It can be seen that the white areas in
Figs. 5(a)-5(c) are all classified as water but not the mineral
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areas

Fig. 5. (a)-(c) Spatial distributions of pores/fractures in S1, S2
and S3 and (d)-(f) their centerline models.

Fig. 6. 3D water distribution in coal: (a) Water in pores and
(b) water in isolated pores.

in Figs. 5(d)-5(f), which further demonstrates the accuracy
of deep learning segmentation. The 3D distribution of water
in the coal sample was obtained by image reconstruction as
shown in Fig. 6. The total volume of the scanning area of S1
is 4.13×1013 µm3, where the water volume was determined
to be 3.48 × 1012 µm3. The water distribution is relatively
continuous, indicating that water enters the coal sample mainly
through connected pores. It was reported that water could not
enter isolated pores (Guan et al., 2023; Zhang et al., 2023).
However, scattered water distribution areas were observed in
S1, that are neither connected to other water-containing areas
inside the coal nor are in contact with external water (red
circles in Fig. 6(a)), indicating that water can enter isolated

Table 3. Heterogeneity of the parameters of three coal
samples.

Parameters S1 S2 S3

Porosity (%)
Pores 3.44 45.83 24.32

Fractures 96.56 54.17 75.68

Direction
proportion (%)

0◦ ∼ 30◦ 73.85 7.89 96.71

30◦ ∼ 60◦ 0 42.62 3.29

60◦ ∼ 90◦ 26.15 49.50 0

Volume
proportion (%)

Connected pores 88.66 34.79 79.51

Isolated pores 11.34 65.21 20.49

Number
proportion (%)

Connected pores 47.3 1.28 4.16

Isolated pores 52.7 98.72 95.84

pores in coal by penetrating through the coal matrix with
high permeability. Fig. 6(b) illustrates these isolated pores
extracted from the image. Their total volume was calculated to
be 1.71×108 µm3, accounting for only 0.0049% of the total
water volume in the coal sample. These results suggest that
water mainly enters into coal through connected pores and to
a small extent through the coal matrix.

Overall, connected pores are the key transportation path
and storage space of water and play a decisive role in increas-
ing the water content of coal seam during water injection.
The water content in isolated pores mainly depends on the
permeability of the coal matrix. For the coal dominated by
isolated pores, high permeability is particularly critical to
achieve better water injection effects. In addition, the presence
of hydrophilic mineral components can also increase the water
content in coal to a certain extent.

3.2 3D distribution and heterogeneity of pores
Since almost all pores in S1 are filled with water, the water

distribution in this sample is used to characterize the develop-
ment of its pores. Fig. 5 presents the spatial distributions of
pores and their centerline models in the three samples, which
reveals significant differences in their pore shapes, volumes,
connectivity, and high heterogeneity. S1 and S3 exhibit large
pore volumes and their fractures are mostly slender and highly
connected with each other, which are conducive features to
the entry and seepage of water. In contrast, the pore volume
of S2 is small and there are more isolated pores, allowing
water to enter mainly through the coal matrix. The detailed
differences between coal samples in the proportions of pores
and fractures, the numbers of connected pores, and the pore
volumes are presented in Table 3.

The pores and fractures in coal can be distinguished on
the basis of the shape factor H as shown in Eq. (1). If H = 1,
the pore is a standard sphere. The larger the shape factor is,
the longer the pore and the closer it is to a fracture. Taking
the pores in S3 as an example, their shape is closer to a pore
when H < 30 and closer to a fracture when H > 30 (Fig. 7).
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Fig. 7. Classification of pores and fractures in S3.

Table 4. Structure parameters of three coal samples.

Sample Number of
pores/fractures

Porosity
(%)

Fractal
dimension

Shape
factor

S1 88 8.42 2.19 43.95

S2 2,765 0.24 1.74 7.50

S3 3,811 5.88 2.20 31.05

Therefore, the pores and fractures in all three coal samples
were distinguished using H = 30 as the boundary, and their
volumes were calculated. As shown in Table 3, for all three
samples, the total volumes of fractures are greater than those
of pores. In particular, fractures contribute by 96.56% to the
porosity of S1, suggesting that it is a typical fracture-type coal.
The proportion of fractures in S3 is also high at 75.68%. The
pore volume and fracture volume of S2 are similar, accounting
for 45.83% and 54.17% of the total pore volume, respectively:

H =
A3

36πV 2 (1)

where H, A and V respectively represent the shape factor,
specific surface area and volume of the pore/fracture.

In contrast to pores, fractures in coal are directional,
and their direction is the main controlling factor of coal
permeability, failure mode and other characteristics (Wang
and Teng, 2022; Zhou et al., 2022). Table 3 lists the volume
proportions of fractures with different directions that are
expressed with the angles with the z direction. As can be seen
in the figure, the fractures in S1 and S3 are strongly directional,
mostly parallel to the z-axis. The volume proportions of
fractures with the angles of 0◦-30◦ are 73.85% and 96.71%
in S1 and S3, respectively, and more than 90% of fractures
are at angles smaller than 60◦. Therefore, water injection
from different directions face significantly varying difficulty.
For instance, that in the z direction allows water to rapidly
enter the coal body along the connected fractures and this
results in high water injection rates. Injecting water from other
directions is more difficult as water needs to pass through
the coal matrix and a small number of connected fractures
in other directions, leading to low water injection rates. The
water injection effects in different directions may eventually
become similar if sufficient time has passed, yet the water
injection rates in other directions will be much lower than
that in the z direction due to the need to penetrate the coal
matrix. In contrast, the inclination angles of fractures in S2 are

larger, with more than 90% of them being greater than 30◦,
and only 7.89% of fractures parallel to the z-axis.

Table 3 presents the connectivity of pores/fractures in the
samples. Apparently, the numbers of connected pores/fractures
in S1-S3 are lower than the numbers of isolated pores/frac-
tures, accounting for only 47.30%, 1.28% and 4.16% of the
corresponding total numbers of pores/fractures, but contribut-
ing 88.66%, 34.79% and 79.51% of their total pore volumes,
respectively. In particular, the volumes of the connected pores
in S1 and S3 are 77.32% and 59.02% higher, respectively, than
those of isolated pores. Although the number of connected
pores in S2 is 98.72% lower than that of isolated pores, their
total volume is only 30.42% lower. These results suggest that
the volume of a connected pore is significantly larger than that
of an isolated pore. The presence of connected pores/fractures
is conducive to water injection, and the larger volumes of these
pores/fractures also provide sufficient water storage spaces,
which is of great significance for improving the coal seam
water injection effect.

3.3 Pore size distribution
Table 4 lists the comprehensive structure properties of

pores/fractures in S1, S2 and S3, including porosity, number
of pores/fractures, average shape factor, and fractal dimen-
sion. Sample S1 contains only 88 pores/fractures yet shows
the highest porosity of 8.42% because the volume of each
pore/fracture in S1 is large (Fig. 5(a)). There are 2,677 more
pores in S2 than S1, but its porosity is only 2.85% of that of
S1 because its pores/fractures are much smaller. The number
of the pores/fractures is the largest in sample S3 with the
value of 3,811, and its porosity is 5.88%, second to that of
S1. Fractal dimension can quantitatively characterize the com-
plexity of a porous structure. In general, the larger the fractal
dimension is, the more complex the pore/fracture network
(Wang et al., 2019; Zhang, 2024). The fractal dimensions of
S1 and S3 are similar, exhibiting values of 2.19 and 2.20,
respectively. Theoretically, the fractal dimension of the 3D
model of a pore/fracture network ranges from 2 to 3 and it
is only lower than 2 if the pore network is extremely simple
(Wang et al., 2024). The fractal dimension of S2 sample is
1.74, suggesting that its pore/fracture structure is simple and
cannot generate a complex porous network as indicated by
the porosity. The average shape factors of S1 and S3 are
43.95 and 31.05, respectively, both higher than the criterion of
30 to distinct pores and fractures, indicating that their porous
structures are dominated by fractures. The average shape factor
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Fig. 9. (a)-(c) Shape factor and (d)-(f) surface area distributions under different pore size ranges.

of S2 is 7.50, confirming that this sample mainly contains
pores.

To explore the correlation between the structural properties
and size of pore/fracture, the distributions of pore number,
volume, surface area, and shape factor in different pore size
ranges were further analyzed. As shown in Fig. 8, the num-
ber of pores/fractures first decreases dramatically and then
becomes constant in all three samples with increasing pore
size. Specifically, as the pore size increases from the first to
the second stage, the pore numbers of S1, S2 and S3 samples
decrease by 90.32%, 94.94% and 81.15%, respectively. The
pore volume distribution is relatively dispersed, showing no
obvious change pattern with the pore size. The peak pore
volume of S1 is found in the pore size range of 4.72× 106-
5.42×106 nm. There are only 7 fractures in this size range,
but they contribute by nearly 40% to the total pore volume.
The number of pores/fractures in the size range of 5.2×105-
1.22 × 106 nm is the largest, while their total volume is
relatively small. The pore volume of S2 sample peaks in the
pore size range of 4× 105-1.4× 106 nm, which contains the

largest number of pores/fractures and gradually decreases as
the pore size increases. As the pore size reaches 5.4× 106-
6.4× 106 nm, the pore volume increases again, attributed to
the increases in the volumes of single large pores. The peak
pore volume of S3 is found in the pore size range of 5×106-
7× 106 nm, and the pore volumes in other pore size ranges
are similar.

The shape factor exhibits an exponential relationship with
the pore size (Figs. 9(a)-9(c)). Fitting in the 95% confidence
interval reveals strong correlations between shape factor and
pore size of y = 0.0019x1.25 and y = 0.0082x1.10 in S2 and S3,
respectively. The correlation is not obvious in the S1 sample
due to its small number of pores/fractures. Combined with
the definition of shape factor described above, the exponential
relationship between shape factor and pore size can be under-
stood as follows: The larger the pore size is, the greater the
possibility of the pore to propagate outward and the greater
the corresponding shape factor. The pore surface area and
pore size show more obvious exponential correlations, with the
equations of y= 21.93x1.91, y= 1.14x2.28 and y= 32.16x1.91 in
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Fig. 10. (a)-(c) Relationships between average radius and (d)-(f) chord length with tortuosity.

S1, S2, and S3, respectively (Figs. 9(d)-9(e)). The cumulative
surface areas of S1 and S3 show gradient growth patterns with
increasing pore size, yet the increasing trend of S3 tends to
slow down. That of S1 still maintains a high growth rate until
reaching 70% before slowing down.

In our previous study, we have demonstrated that the shape
factor of coal pore/fracture is positively correlated with the
water seepage velocity during coal seam water injection, and
the larger the pores/fractures is, the stronger their connectivity
(Wang et al., 2022). In addition, larger pore surface areas can
facilitate water infiltration through the coal body. Therefore,
although the number of the large pores/fractures is small, their
high connectivity, great extension lengths, and large surface
areas can significantly improve the coal seam water injection
effect.

3.4 Pore/fracture tortuosity characteristics
Tortuosity reflects the degree of curvature of pores/frac-

tures in coal. The greater the tortuosity is, the more complex
the water transportation path and the more difficult the water
injection becomes. Taking the actual arc length of a fracture
as l, and its chord length as ls, its tortuosity T is the ratio of
l to ls, as shown in Eq. (2) (Guo et al., 2021). The greater the
tortuosity is, the curlier the fracture. Since the centerline model
retains the shape characteristics of the fracture, the Avizo
platform can be utilized to accurately calculate the tortuosity
of each fracture:

T =
l
ls

(2)

According to the center of fracture direction, the con-
structed centerline model is an equivalent tubular model. Each
equivalent tubular pore/fracture is called a “branch”, and the
radius of a branch is different at different positions. For the
convenience of analysis, the average radius is introduced to

represent the radius of a branch, which can be expressed as:

r =

√
Vs

πl
(3)

where r represents the average branch radius and Vs is the
volume of the branch.

Figs. 10(a)-10(c) show the tortuosity of pores/fractures
with different average radii in S1-S3. The average pore/frac-
ture tortuosity of S1, S2 and S3 are 1.2008, 1.3262 and
1.1727, respectively. The low tortuosity pores/fractures are
evenly distributed in each radius range, but those with high
tortuosity are mostly concentrated in the low average radius
range. To intuitively show this phenomenon, the numbers of
pores/fractures with greater-than-average tortuosity in different
radius ranges in Figs. 10(a)-10(c) were counted. It was found
that, with increasing average radius, the number of pores
with greater-than-average tortuosity gradually decreases and
eventually approaches 0. Combined with the previous analysis,
these results suggest that the volumes, shape factors, and
surface areas of the pores/fractures with smaller radii are all
small, while their curvatures are large, which causes poor wa-
ter permeability. As shown in Figs. 10(d)-10(f), the changing
trend of tortuosity with chord length is similar to that with
average radius. The low-tortuosity pores/fractures are more
concentrated in the low chord length ranges. Similarly, the
number of pores/fractures with greater-than-average tortuosity
decreases rapidly with increasing chord length in all samples.
In particular, as the chord length increases to above 10,000 nm
in S3, there are no pores/fractures with greater-than-average
tortuosity.

3.5 Pore/fracture connectivity characteristics
As demonstrated in Section 3.1, connected pores/fractures

contribute to most of the water storage space in coal and are an
important indicator for evaluating the seepage capacity of the
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Fig. 11. Numbers of pores/fractures with different coordination numbers in (a) S1, (b) S2 (b) and (c) S3.

porous matrix (Liu et al., 2020). The structural characteristics
of connected pores/fracture will be further discussed in this
section. The centerline model is composed of many isolated
pore/fracture clusters, and each cluster is composed of multiple
interconnected pores and fractures (branches) (Figs. 5(d)-
5(f)). Therefore, based on the centerline model, this section
explores the pore/fracture connectivity at two levels: Single
pore/fracture and pore/fracture cluster.

3.5.1 Pore/fracture connectivity

For an individual pore/fracture, its connectivity can be
evaluated by the coordination number, defined as the number
of throats connecting a pore/fracture to other pores/fractures.
The coordination number of an isolated pore/fracture is 0. As
demonstrated in Table 3, the number of isolated pores/fractures
is significantly larger than that of connected pores/fractures.
To further explore the relationship between the connectiv-
ity and number distribution of pores/fractures, connected
pores/fractures in the model were extracted and the numbers
of pores/fractures with different coordination numbers were
counted. It was found that the number of pores/fractures
shows similar exponentially decreasing trends with increasing
coordination number in the three samples (Fig. 11). Since
S1 and S3 mainly contain fractures with larger propagation
lengths, and the possibilities for them to connect with other
pores/fractures are higher, the number of pores/fractures with
larger coordination numbers in S1 and S3 is larger than that
in S2.

3.5.2 Connectivity of pore/fracture cluster

The connectivity of a pore/fracture cluster depends on the
number of internal pores/fractures, i.e., its branches. According
to the author’s previous research (Wang et al., 2022), the
connectivity of a single pore/fracture is affected by its propaga-
tion length. The larger the propagation length is, the stronger
the connectivity. To determine whether this correlation also
exists in pore/fracture clusters, the relationship between the
total length of all branches and the number of branches was
statistically analyzed. The results revealed a strong exponential
relationship between the number of branches in a cluster and
their total length with the correlation coefficients over 95% for
all three samples (Figs. 12(a)-12(c)). Therefore, pore/fracture
length is considered a key factor affecting the connectivity

of either an individual pore/fracture or a pore/fracture cluster.
The larger the length is, the stronger the connectivity.

In addition to length, the number of branches in a pore/frac-
ture cluster is also correlated to its total pore volume and
average radius. The average radius of a pore/fracture cluster
can be calculated according to:

R =

√
V1 +V2 + · · ·+Vn

πL
(4)

where R represents the average radius of the pore/fracture
cluster, V1, V2, · · · , Vn denote the branch volumes in the cluster,
and L is total pore/fracture length of the cluster.

Similar to the total length, the total volume of pore/fracture
cluster exponentially increases with the number of branches
(Figs. 12(d)-12(f)). The larger the volume of the cluster
is, the stronger its connectivity. However, this correlation
is significantly weaker than that between total length and
branch number; especially, the correlation coefficient in S2
and S3 are only 0.4604 and 0.1658. The average radius of
the pore/fracture cluster is quadratically related to the number
of branches in S1 and S3, but this correlation is weak (Figs.
12(g)-12(i)). No obvious correlation was found between the
average radius and the number of branches in S2.

The pore/fracture clusters with the strongest connectivity
were extracted from each of the samples for comparison (Fig.
12). It was found that the larger the total length, the total
volume and the average radius of the pore/fracture cluster
is, the stronger its connectivity. The correlation between the
number of branches and the total length, total volume and
average radius of the pore/fracture cluster was stronger in S1
and S3 samples compared to S2, possibly because the former
two are fracture-dominated coal samples with well-developed
pore/fracture networks.

4. Discussion
The coal seam water injection process can be divided into

two stages, i.e., seepage stage and wetting stage, as shown in
Fig. 13. In the early water injection stage, the water injection
rate mainly depends on the seepage velocity in large fractures.
Later, the dominant mechanism shifts to matrix wetting, and
the water diffusion mainly occurs in the micro/nanopores
of the matrix. Insufficient wetting and serious water leaking
can cause a poor field water injection effect, despite the
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large amount of water injected (Zheng, 2022). Therefore,
compared with the rapid seepage stage, the wetting stage
plays a more decisive role in achieving good water injection
effect via changing the physical and chemical properties of
the coal seam and reducing dust production. The connectivity
between pores/fractures is crucial to the wetting process.
However, coal seams usually contain large numbers of isolated
pores disconnected from the water injection pores/fractures.
For example, the volume of isolated pores/fractures in S2
accounts for more than 50% of the total pore volume, and
these pores/fractures can only obtain a small amount of water
through matrix infiltration. Therefore, improving the connec-
tivity of pores/fractures is the key to increasing the wetting
range of water injection.

The statistical analysis reveals strong correlations between
the size and multiple structural parameters of the pore/fracture.
Pore size is positively correlated with shape factor, surface area
and connectivity, while it is negatively correlated with fracture
tortuosity (Fig. 13). From this point of view, the relationship
between pore size and connectivity can be described as fol-
lows: the larger the pore is, the larger its shape factor and
surface area. Larger pores/fractures are more likely to propa-
gate in other directions and connect with other pores/fractures.
In addition, they usually show lower tortuosity and seepage
barriers, which is conducive to the wetting process. Therefore,
pore size is a key structural parameter for the wetting process
in the later stage of water injection. However, the number of
large pores/fractures is small and their volume is not dominant
(Fig. 8). To improve the water injection effect, attention should
be paid to increasing the pore size and thus enhancing the
connectivity of the pore/fracture network.

5. Conclusions
To better understand the properties of the nanopores in-

cluding pore size distribution, tortuosity and connectivity in
coal, we have determined and calculated the 3D distributions
of water and pores/fractures and established a centerline
model by cryo-FIB-SEM tomography and deep learning-based
image segmentation. The findings are of great significance
for improving the coal seam water injection effect. The main
conclusions can be summarized as follows:

1) Connected pores comprise the key water transportation
path and storage space for coal seam water injection.
The water content in isolated pores mainly depends on
the permeability of the coal matrix. The presence of
hydrophilic minerals can increase the water content in
coal to a certain extent.

2) The shape factor can be a used as a criterion to distinguish
pore and fracture. Specifically, it is a pore when H < 30
and a fracture when H > 30. The fractures in S1 and S3
samples are highly directional. The volume proportions
of their fractures with the angles of < 30◦ with the z
direction are 73.85% and 96.71% respectively, and the
angles of more than 90% of fractures are smaller than 60◦.
There are large numbers of isolated pores/fractures in the
samples, but their volume is much smaller than that of
the connected pores/fractures. The number of connected

pores/fractures accounts for only 47.30%, 1.28% and
4.16% of the total pore number in S1, S2 and S3 samples,
but they contribute 88.66%, 34.79% and 79.51%, respec-
tively, of the total pore volumes of the corresponding
samples.

3) The connectivity of pores/fractures are investigated from
the prospects of single pore/fracture connectivity and
pore/fracture cluster connectivity. The characterization of
the connectivity of single pores/fractures with coordina-
tion number suggests that the number of pores/fractures
gradually decreases with increasing coordination number.
The connectivity of a pore/fracture cluster depends on
the number of its internal branches. The porosity, total
propagation length, total volume, and average radius of
porosity exponentially increase with the increase in the
number of branches, and the connectivity correspondingly
becomes stronger.

4) Increasing the size and connectivity of pores is of great
significance for improving the wetting effect of coal
seam water injection. The shape factor and surface area
become larger as the pore size increases, and thus larger
pores/fractures are more likely to propagate in other
directions and connect with other pores/fractures. Larger
pores/fractures usually exhibit low tortuosity and cause
little obstruction to seepage, which is conducive to the
wetting of coal seam.
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