Supplementary file

Gas transport mechanisms, mathematical models, and impact factors in low-

permeability rocks: A critical review

Milei Wang¹, Maosheng Gao¹, Cheng Zhang^{2,*}, Hung Vo Thanh^{3,4,5}, Zhien Zhang⁶, Dayong Wang⁷, Zhenxue Dai^{2,8,*}

¹ Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, P. R. China

² School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520,

P. R. China

³ Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam

⁴ School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam

⁵ MEU Research Unit, Middle East University, Amman 11831, Jordan

⁶ Department of Geosciences, University of Cincinnati, Cincinnati, OH 45220, USA

⁷ Water Resources Research Institute of Shandong Province, Jinan 250014, P. R. China

⁸ College of Construction Engineering, Jilin University, Changchun 130012, P. R. China

E-mail address: wangmilei_415@163.com (M. Wang); gaomsh66@sohu.com (M. Gao);

zhangchengqut@163.com (C. Zhang); hung.vothanh@vlu.edu.vn (H. V. Thanh); zhienzhang@hotmail.com (Z.

Zhang); skybgs@163.com (D. Wang); dzx@jlu.edu.cn (Z. Dai).

* Corresponding author (ORCID: 0000-0001-9892-6431 (C. Zhang); 0000-0002-0805-7621 (Z. Dai))

Wang, M., Gao, M., Zhang, C., Thanh, H. V., Zhang, Z., Wang, D., Dai, Z. Gas transport mechanisms, mathematical models, and impact factors in low-permeability rocks: A critical review. Advances in Geo-Energy Research, 2024, 14(2): 119-134.

The link to this file is: https://doi.org/10.46690/ager.2024.11.05

Table S1. Mathematical models for gas transportation in nano-porous media.				
References	Description	Limitation		
(Klinkenberg, 1941)	Empirical model with slippage effect.	With no consideration of other flow mechanisms.		
(Baehr, 1990)	Extension of Fick's law for a multicomponent mixture	Inappropriate for porous media.		
(Pruess, 1991)	Linear addition of advection and diffusion fluxes.	Ignore coupling between advective and diffusive mechanisms.		
(Webb and Pruess, 2003)	Combination of diffusion (ordinary and Knudsen) and advection	Underpredict cumulative flow under low permeability.		
(Wu and Persoff, 1998)	Analytical solutions considering slippage effects.	Ideal gas flow model at low pressure condition.		
(Beskok and Karniadakis, 1999)	Empirical model considering all bulk gas flow mechanisms.	Excessive empirical coefficient.		
(Civan, 2010)	Considering various influence factors based on the Beskok and Karniadakis's model.	Excessive empirical coefficient.		
(Xiong et al., 2012)	Considering adsorbed gas and surface diffusion based on the Beskok and Karniadakis's model.	Excessive empirical coefficient.		
(Wang et al., 2017)	Considering monolayer and multilayer, and surface diffusion based on the Beskok and Karniadakis's model.	Excessive empirical coefficient.		
(Anderson et al., 2014)	Continuous flow model modified by slip boundary condition.	Slip factor is determined by the experiments.		
(Ertekin et al., 1986)	Considering Darcy flow and molecular Fickian diffusion.	Constant weight factors. For pores with circular cross-section.		
(Liu et al., 2002)	Considering the continuum flow and Knudsen diffusion.	With no consideration of the real gas effect. For pores with circular cross-section.		
(Javadpour, 2009)	Linearly superposing the continuum flow and Knudsen diffusion.	With no consideration of the real gas effect. For pores with circular cross- section.		
(Azom and Javadpour, 2012)	Extending Javadpour's model by considering the real gas effect.	For pores with circular cross- section.		
(Darabi et al., 2012)	Extending Javadpour's model by considering the effect of pore wall roughness.	For pores with circular cross- section.		

(Ma et al., 2014)	Extending Javadpour's model by considering the real gas effect.	Liner superposition.
(Sakhaee-Pour and Bryant, 2012)	Considering free molecular diffusion and slip flow.	For pores with circular cross- section.
(Singh and Javadpour, 2013)	Considering advection and diffusion flow.	For low Knudsen number condition.
(Rahmanian et al., 2013)	Considering viscous flow and gas diffusion.	For pores with slit cross-section.
(Singh et al., 2013)	A non-empirical model considering viscous flow and Knudsen diffusion	With no consideration of the real gas effect.
(Wu et al., 2015)	Considering slip flow and Knudsen diffusion.	With no consideration of the adsorbed gas transportation mechanisms.
(Sun et al., 2018)	A non-empirical model for viscous flow considering various influence factors.	With no consideration of the adsorbed gas transportation mechanisms.
(Wu et al., 2016)	Considering slip flow, Knudsen diffusion and surface diffusion.	For pores with circular cross- section. With no consideration of the real gas effect.
(Li et al., 2017)	Considering the continuum flow, surface diffusion and desorption.	For pores with circular and slip cross-section separately.
(Zhang et al., 2018)	Considering viscous flow, Knudsen diffusion and surface diffusion.	For pores with circular cross- section.
(Huang et al., 2018)	Considering viscous flow, slip flow, Knudsen diffusion and surface diffusion.	For pores with circular cross- section.
(Shen et al., 2018)	Considering slip flow, Knudsen diffusion, surface diffusion and adsorption.	For pores with slit cross-section.

References

- Anderson, J. M., Moorman, M. W., Brown, J. R., et al. Isothermal mass flow measurements in microfabricated rectangular channels over a very wide Knudsen range. Journal of Micromechanics and Microengineering, 2014, 24(5): 055013.
- Azom, P. N., Javadpour, F. Dual-continuum modeling of shale and tight gas reservoirs. Paper SPE 159584 Presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-10 October, 2012.
- Baehr, A. L. Application of the Stefan-Maxwell equations to determine limitations of Frick's law when modeling organic vapor transport in sand columns. Water Resources Research, 1990, 26(6): 1155-1163.
- Beskok, A., Karniadakis, G. E. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering, 1999, 3(1): 43-77.
- Civan, F. Effective correlation of apparent gas permeability in tight porous media. Transport in Porous Media, 2010, 82(2): 375-384.
- Darabi, H., Ettehad, A., Javadpour, F., et al. Gas flow in ultra-tight shale strata. Journal of Fluid Mechanics, 2012, 710: 641-658.
- Ertekin, T., King, G. A., Schwerer, F. C. Dynamic gas slippage: A unique dual-mechanism approach to the flow of gas in tight formations. SPE Formation Evaluation, 1986, 1: 43-52.
- Huang, S., Wu, Y., Cheng, L., et al. Apparent permeability model for shale gas reservoirs considering multiple transport mechanisms. Geofluids, 2018, 2018: 2186194.
- Javadpour, F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone). Journal of Canadian Petroleum Technology, 2009, 48(8): 16-21.
- Klinkenberg, L. J. The permeability of porous media to liquids and gases. API Drilling and Production Practice, 1941, 2(2): 200-213.

- Li, A., Ding, W. L., Wang, R. Y., et al. Petrophysical characterization of shale reservoir based on nuclear magnetic resonance (NMR) experiment: A case study of Lower Cambrian Qiongzhusi Formation in eastern Yunnan Province, South China. Journal of Natural Gas Science and Engineering, 2017a, 37: 29-38.
- Liu, Q., Shen, P., Yang, P. Pore scale network modelling of gas slippage in tight porous media. Contemporary Mathematics, 2002, 295: 367-376.
- Ma, J., Sanchez, J. P., Wu, K., et al. A pore network model for simulating non-ideal gas flow in micro- and nano-porous materials. Fuel, 2014, 116: 498-508.
- Pruess, K. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows. United States, U.S. Department of Energy Office of Science and Technical Information, 1991.
- Rahmanian, M. R., Aguilera, R., Kantzas, A. A new unified diffusion-vis- cous-flow model based on pore-level studies of tight gas formations. SPE Journal, 2013: 38-49.
- Sakhaee-Pour, A., Bryant, S. Gas permeability of shale. SPE Reservoir Evaluation and Engineering, 2012, 15(4): 401-409.
- Shen, Y., Pang, Y., Shen, Z., et al. Multiparameter analysis of gas transport phenomena in shale gas reservoirs: apparent permeability characterization. Scientific Reports, 2018, 8: 2601.
- Singh, H., Javadpour, F. A new non-empirical approach to model transport of fluids in shale gas reservoirs. Paper 1258-1273 Presented at Unconventional Resources Technology Conference, Denver, Colorado, 12-14 August, 2013.
- Singh, H., Javadpour, F., Ettehadtavakkol, A., et al. Nonempirical apparent permeability of shale. SPE Reservoir Evaluation and Engineering, 2013, 17(3): 414-424.
- Sun, Z., Shi, J., Wu, K., et al. Gas flow behavior through inorganic nanopores in shale considering confinement effect and moisture content. Industrial and Engineering Chemistry Research, 2018, 57(9): 3430-3440.
- Wang, J., Luo, H., Liu, H., et al. An integrative model to simulate gas transport and production coupled with gas adsorption, non-Darcy flow, surface diffusion, and stress dependence in organic-shale reservoirs. SPE Journal, 2017, 22(1): 244-264.

- Webb, S. W., Pruess, K. The use of Fick's law for modeling trace gas diffusion in porous media. Transport in Porous Media, 2003, 51(3): 327-341.
- Wu, K., Chen, Z., Li, X. Real gas transport through nanopores of varying cross-section type and shape in shale gas reservoirs. Chemical Engineering Journal, 2015, 281: 813-825.
- Wu, K., Chen, Z., Li, X., et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect-adsorption-mechanic coupling. International Journal of Heat and Mass Transfer, 2016, 93: 408-426.
- Wu, Y. S., Persoff, K. P. Gas flow in porous media with Klinkenberg effects. Transport in Porous Media, 1998, 32: 117-137.
- Xiong, X., Devegowda, D., Michel, G. G., et al. A fully-coupled free and adsorptive phase transport model for shale gas reservoirs including non-Darcy flow effects. Paper SPE 159758 Presented at SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 8-10 October, 2012.
- Zhang, Y., Li, D., Sun, X., et al. A new model for calculating the apparent permeability of shale gas in the real state. Natural Gas Industry, 2018, 5(3): 245-252.