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1. Calculation of macro-mechanical parameters 

In addition to easily measurable parameters such as peak strength and peak strain, other macro-mechanical parameters can be derived from 

the stress-strain curve characteristics to investigate the impact of microwave treatment on the mechanical properties of granite. The mid-body 

strain is calculated as follows (Brady and Brown, 2007): 
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where εv represents the volumetric strain; ε1 represents the axial strain; ε3 represents the circumferential strain. In addition, the elastic modulus and 

Poisson's ratio of rocks can be calculated as follows (Brady and Brown, 2007): 
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where σa, σb represent the starting and ending stress values of the straight line segment in the stress-strain curve, respectively, MPa; εa, εb represent 

the starting and ending strain values of the straight line segment in the stress-strain curve, respectively; εdp, εlp represent the average values of the 

strain in the corresponding straight line segment portion on the stress-annular strain curve and stress-axial strain curve, respectively. 

2. Calculation of micro-mechanical parameters 

The Oliver-Pharr method is a commonly utilized international analytical technique for determining micro-mechanical parameters such as 

hardness and Young's modulus at the maximum indentation depth. 

The contact stiffness is specified as the slope of the tangent line at the maximum load on the unloading curve, and it can be expressed as:  
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The reduced modulus is calculated as:  
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The contact area Ac is related to the contact depth hc, which can be expressed as: 
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For the Berkovich indenter, the contact depth can be expressed as: 
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Hardness is calculated as: 
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According to the Hertz contact theory (Hertz, 1881), the Young's modulus of a material can be calculated as follows: 
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where β represents the indenter correction factor and ε is a constant related to the shape of the indenter. For the Berkovich indenter, β = 1.034 and 

ε = 0.75. Among the parameters, hc denotes the contact depth; Ac denotes the contact area that can be expressed as
2

24.56
c c

A h= (Oliver and Pharr, 

1992); Er is the reduced modulus, which represents the interaction effect between the indenter and the material; Ei and vi denote the Young's 

modulus and Poisson's ratio of the indenter, respectively. For the diamond indenter used in this study, Ei = 1141 GPa and vi = 0.07. v is the Poisson's 

ratio of the indented material. This can be reasonably assumed based on the relevant literature (Mavko et al., 2020). The explanation is that a 

sensitivity analysis of the Poisson's ratio with 40% uncertainty shows that the uncertainty in Young's modulus is only 5% (Hay, 2009). 

3. Micro-fracture toughness calculation 

The authors chose the energy analysis method (Cheng et al., 2002) to calculate fracture toughness, which obtains this parameter simply on 

the basis of the single load-displacement curve of the nanoindentation. During nanoindentation, the total energy (U) is composed of two elements: 

elastic energy (Ue) and plastic energy (Up). The plastic energy (Up) in turn consists of two elements: induced fracture energy (Ufrac) and pure plastic 

energy (Upp). The specific energy balance equation is expressed as follows (Cheng et al., 2002; Ma et al., 2020): 
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where U and Ue can be gained by integrating the loading and unloading curves over the load-displacement curve.  

According to the linear elastic fracture mechanics, the fracture toughness KIC can be calculated for plane strain conditions (described below): 
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This equation applies to thick boards, such as rocks and minerals, where the constraining effect of deformation in the thickness direction results in 

no strain in the z direction, i.e., εz = 0. This state, where strain exists in only two directions, is called the plane strain case. Here, Er represents the 



reduced modulus and Gc represents the strain energy release rate. Gc can be calculated by:  
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where Ac represents the projection contact area and Ufrac can be calculated from Equation (10), expressed as: 
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Although U and Ue are known, Upp cannot be directly determined from curves but it is typically obtained through a combination of experimental 

and finite element simulation results. According to Cheng et al. (2002), Upp can be expressed as: 
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The fracture toughness can be obtained by substituting it into Equation (13), (12), and (11) sequentially. In this process, it is not necessary to 

measure the length of the crack. 

4. Upscaling calculation 

(1) Self-Consistent method 

On the basis of the equilibrium of strain energy stored or dissipated by the material over a certain volume range, the Self-Consistent method 

(S-C method) replaces anisotropic composites with an idealized homogeneous continuum. The mechanical behavior of the two media is the same 

when the scale range is much larger than the local characteristic dimensions of the anisotropic material. The effective modulus of the composite 

material can be expressed as follows: 

 ( ) ( )
0 0

1
1

1

r r

N

r r

r

C C C C P C Cc I

−
−

=

= + − + −    (15) 

where 𝐶0 and 𝐶𝑟  represent the modulus of the mineral with the largest content and the modulus of the rth phase mineral, respectively; 𝑐𝑟  

represents the volume fraction of phase r; I represents a tensor related to the inclusions' shape; 𝑃𝑟̅ represents the P tensor when the phase r is 

placed in an unknown composite material used as a matrix. 𝑃𝑟̅ is related to the shape of the inclusions and the modulus of the unknown composite 

𝐶̅. The above is the implicit equation for the effective modulus of the composite. 

By using a simplified algorithm for the isotropic tensor, implicit equations for the effective shear modulus and bulk modulus of granite were 

obtained (Lei et al., 2021b): 
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where Ghom and Khom denote the effective shear modulus and bulk modulus of the homogenized granite, respectively; Gr and Kr are the shear 

modulus and bulk modulus of phase r, respectively. The calculation equation is as follows: 
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(2) Voigt-Reuss-Hill method 

The Voigt-Reuss-Hill method (V-R-H method) takes into account the link between the elastic behavior of aggregates and single crystals. 

Therein, the Voigt boundaries (upper boundaries) and Reuss boundaries (lower boundaries) are the average elastic properties of multiphase and 



polycrystalline aggregates, respectively (Hill, 1952). The average values provide a convenient way of estimating the rock properties of aggregates, 

without considering the orientation and interlocking of the particles. 

The upper bound of the equivalent modulus for the n components is derived from the Voigt model (Voigt, 1928): 
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where 𝜑𝑖 and 𝑀𝑖  represent the volume content and Young's modulus of the ith component, respectively. The Voigt model assumes that the 

components are isotropic and linearly elastic. 

The lower bound of the equivalent modulus for the n components is derived from the Reuss model (Reuss, 1929): 
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The Hill model (Hill, 1952) uses the average of the upper and lower boundaries to calculate the equivalent modulus: 
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(3) Mori-Tanaka method 

The Mori-Tanaka method (M-T method), proposed by Mori and Tanaka in 1973 (Mori and Tanaka, 1973), takes into account the interactions 

between inclusions and assumes that each inclusion is embedded in an infinitely large matrix. The homogenization process of the method is shown 

in Fig. 1. The effective modulus of the composite material can be expressed as follows: 
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The bulk and shear modulus of granite are expressed as follows: 
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where K0 and G0 denote the bulk and shear modulus of Bit, respectively. Considering the obvious pore structure of Bit, the bulk modulus and shear 

modulus of Bit are expressed as follows: 
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where Ks and Gs represent the bulk modulus and shear modulus of Bit, respectively, independent of the pore structure; φ is the porosity of Bit. 

Considering the special laminar structure of Bit, this study set the percentage of pore volume in Bit to the total volume to 30%. 



 

Fig. 1 Homogenization process of the M-T method 

(4) Generalized Means method 

The Generalized Means method (G-M method) is a semi-empirical model for predicting the mechanical properties of multiphase materials 

and polycrystalline rocks (Ji et al., 2004). The mechanical properties of multiphase materials in the G-M method are related to the volume fraction 

and composition of the material, which can be determined by the following equation (Ayatollahi et al., 2020; Ji et al., 2004): 
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where the subscripts i and d stand for the ith phase and the multiphase material consisting of n phases, respectively; fi denotes the volume fraction 

of each phase; M is a certain mechanical property; and J is the mesostructure coefficient, whose value depends on the mesostructure. 

Note that the value of J for each multiphase material must be measured separately by multiple tests. For polycrystalline rocks (e.g., granite), 

Ayatollahi et al. (2020) found that the predicted Young's modulus matches very well with the results of uniaxial compression tests when J is 

infinitesimal. On the other hand, the predicted Young's modulus values are almost constant when J is beyond the range of (-50,50). Therefore, the 

authors chose J = -50 as the J value for the predicted modulus. 

For the equivalent mechanical parameters of the four types of mineral media obtained by using the S-C and M-T methods, on the basis of the 

theory of elastic mechanics, the Young's modulus of the rock at the centimeter scale can be calculated using Equation (26): 
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