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Abstract:
The estimation of time-to-depth relationships can prove challenging in regions with rare
acoustic logs. This study focuses on the eastern part of the Drava Basin in north Croatia,
chosen as a mature hydrocarbon exploration area with abundant geophysical and well
data. As only a small portion of wells have well log measurements or seismic profiling
performed, a time-to-depth extrapolation is often performed, which potentially results in the
erroneous placement of well log markers in the time domain and affects the interpretation
of seismic sections or volumes. This study proposes a novel methodology for predicting
two-way travel time values in wells without vertical seismic profiling or acoustic logging.
This research evaluates the parameters for the characterization of the velocity distribution in
the subsurface and the efficiency of artificial neural networks versus conventional methods
for this task. The constructed artificial neural network model has a correlation coefficient
above 0.99 for the training, testing, and validation datasets, with a mean absolute error
of approximately 25 milliseconds for each network. Artificial neural networks proved to
have a lesser error in predicting the two-way time and are not sensitive to outlier values.

1. Introduction
The subsurface of the Drava Basin in North Croatia proved

to be a rich hydrocarbon exploration area at a Pannonian
Super Basin scale (Velić et al., 2012a, 2012b). This has led to
extensive exploration activities in the last 70 years, resulting
in a substantial amount of geophysical and geological data.
The data collected outside the active hydrocarbon exploitation
blocks is available for research purposes. However, the lack of
acoustic logs or vertical seismic profiling in many older wells
presents a significant challenge for accurate time-to-depth
conversion, rendering this region relatively underexplored in
this aspect, like many other mature basins around the world
(Hart et al., 2000; Cao et al., 2017; Sun et al., 2023).

Traditionally, solving time-to-depth relationship (TDR)
gaps within wells without acoustic logs or vertical seismic
profiling relies on the implementation of velocity functions
(hereafter referred to as extrapolation). These velocity func-
tions contain information about the depth in the two-way
travel time domain (hereafter referred to as TWT) derived
from neighboring wells (Aker et al., 2020; Inichinbia and
Saule, 2021; Al-Khazraji, 2023). Like any other assumption,
this extrapolation could be erroneous which results in inac-
curacies in time-to-depth conversion. This would influence
every subsequent analysis and cause misinterpretation of the
structures and lithofacies distribution in the subsurface which
in turn is a crucial step in assessing hydrocarbon and/or
geothermal reservoirs, as well as underground energy storage
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Fig. 1. Study area with well and seismic data displayed alongside basic surface geology adopted from the basic geological
map of the Republic of Croatia 1:300,000 (HGI-CGS, 2009).

and CO2 storage objects.
This research aims to investigate the feasibility of de-

veloping a more precise methodology for solving the TDR
in cases with limited or no geophysical data. Initially, the
accuracy of the conventional methodology was assessed in a
way that TWT values were extrapolated from a nearby well.
Subsequently, a methodology was developed for deriving TWT
data for wells lacking acoustic logs or vertical seismic profil-
ing, using artificial neural networks (ANNs) in combination
with interpretation of basic well logs which were obtained
even on older wells. Finally, results obtained using these two
approaches were compared to show the average difference in
the time-to-depth domain and the distribution of error from
both methods.

The study aims to present a novel approach and assess its
efficiency compared to traditional methods, potentially leading
to significant cost savings in future subsurface explorations.
Additionally, its application may unveil previously unknown
correlations and dependencies within existing data, which
would be beneficial for geo-energy exploration, not only in the
Drava Basin but also in similar regions undergoing exploration.

2. Geological settings
Data prediction and analysis were performed on an area

with a complex geological setting, situated in the eastern part
of the Drava Basin which is in the southwestern part of the
Pannonian Super Basin (Fig. 1).

Within the broader area of interest, three distinctive ge-
ological units can be distinguished. The first unit consists
of the crystalline basement, primarily composed of partially
metamorphosed Paleozoic magmatic rocks with the presence
of metamorphosed sediments (Pamić and Lanphere, 1991;

Pamić, 1998). The second unit is characterized by Mesozoic
carbonates (Velić, 2007; Malvić and Cvetković, 2013), often
referred to as “Base Tertiary” (Velić, 2007). The third unit
includes Neogene and Quaternary sediments representing the
basin infill (Saftić et al., 2003; Malvić and Cvetković, 2013).

The area experienced continental rifting from the Ottnan-
gian to the Badenian periods, accompanied by a shift in
stress orientation that led to sinistral transcurrent faults and
the formation of narrow asymmetrical half-grabens (Lučić
et al., 2001; Pavelić, 2001; Saftić et al., 2003; Pavelić and
Kovačić, 2018). During the Otnnangian and Carpathian, sedi-
mentation was predominantly characterized by coarse-grained
clastic sediments deposited in alluvial to lacustrine environ-
ments. Meanwhile, sporadic occurrences of pyroclastics in
the Drava Basin (Fig. 1) are related to the volcanic activity
associated with rifting (Saftić et al., 2003).

A significant change in the depositional environment took
place during Middle Badenian, due to marine transgression
(Ćorić et al., 2009), which caused a shift from lacustrine
to marine deposition. This transition resulted in sedimenta-
tion of thick marl layers with occurrences of coarse-grained
clastic sediments, reflecting the occasional activity of grav-
ity flows (Ćorić et al., 2009). Sarmatian is marked by the
end of syn-rift extension and local compression (Saftić et
al., 2003; Pavelić and Kovačić, 2018), as well as the iso-
lation of Paratethys and accompanying salinity fluctuations
(Pavelić and Kovačić, 2018). In these circumstances, depo-
sition of coarse-grained clastic sediments, calcarenites, and
limestones took place, whereas, in deeper parts of the basin,
fine-grained sediments deposited, occasionally with sandstone
occurrences resulting from sediment gravity flow (Pavelić and
Kovačić, 2018).
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Fig. 2. Schematic representation of the workflow in which each
line color represents the sequential process steps necessary for
conducting each analysis from the provided input data.

During the Pannonian period, post-rift thermal subsidence
took place (Lučić et al., 2001), due to the isostatic sinking of
the crust thinned by mantle diapirism (Stegena et al., 1975),
initially causing the deepening of the lake and deposition
of deep-water marls (Pavelić and Kovačić, 2018). However,
significant sediment supply without a corresponding increase
in accommodation space resulted in the transition of sed-
imentation from lacustrine to deltaic environments, leading
to the basin’s infilling (Saftić et al., 2003; Pavelić and Ko-
vačić, 2018). Neotectonics activity during the Pliocene and
Quaternary resulted in compression and dextral transcurrent
displacements, filling the remnants of Lake Pannon with coarse
clastic sediments and clay. The Pleistocene glacial periods
are marked by the deposition of loess sediments and aeolian
sands (Wacha et al., 2013), while interglacial periods were
marked by lacustrine and marsh sedimentation (Pavelić and
Kovačić, 2018).

3. Data and methodology
This study aimed to develop a method for defining TDR

that would be more reliable compared to extrapolation of
the velocity functions from a neighboring well. This implies
evaluating the data which has been almost always available
within the well and which would have an impact on the
change of velocities in the subsurface. All the historical well
data had the basic Electrical well log curves which were
employed to differentiate permeable and impermeable units
and establish their boundaries, as well as to estimate fluid
saturations. Units were correlated throughout the study area
based on the interpretation of the resistivity and spontaneous
potential curves, supplemented with other well data. These
interpretations provided the basis for stratigraphic analysis.
Another key part was to evaluate how many distinctive units
with different lithological compositions could be defined in
the studied area. This was evaluated from well reports based
on the descriptions of lithology and selection of interpreted

well markers.
This research utilized data from 18 wells (Fig. 1) drilled

by the INA company as a part of their oil and gas exploration
campaign between the 1980s and 2010s. The wells have an
average depth of around 2,300 m, with Well-7 being the
shallowest at 1,300 m depth and Well-3 being the deepest
well with 4,110 m depth. These wells were selected based
on the availability of acoustic well logs through the entire or
the majority of the drilled section. The summarized workflow
covering the entire process, from data preparation to the neural
network deployment, is illustrated in Fig. 2.

Initially, a TDR was applied to all wells to enable transfor-
mation from measured depth to TWT domain for validation
purposes. These steps are highlighted in blue in Fig. 2. The
wells in which seismic velocity measurements or vertical
seismic profiling data had been recorded were selected as input
for the presented study (wells which are labeled in green and
yellow in Fig. 1). The check-shot data were used to calibrate
the acoustic logs with the check-shot travel times to create the
TDRs for these 18 wells. Acoustic log calibration provides
more accurate time-to-depth relationships and corrects for
acoustic log drift due to equipment calibration issues, well
conditions, or environmental factors (Mari et al., 2020). The
calibration adjusts the acoustic log cumulative travel times to
match the smoothed check-shot times. Prior to calibration,
the acoustic logs were despiked. Despiking improves the
overall quality of the acoustic logs by eliminating outliers
and anomalies that do not represent the true properties of the
subsurface (Rider, 2002).

Well logs, including gamma ray, spontaneous potential
(SP), and short- and long-normal resistivity (R16, R64) were
analyzed primarily to distinguish permeable and impermeable
layers. Data preparation of these logs was performed in
the Interactive Petrophysics software. Well logs are typically
recorded in multiple intervals at various depths, necessitating
the merging of these intervals. In our case, nearly every
well log type required some form of conversion, rescaling,
or normalization since well conditions change with every
technical column due to the difference in temperature and
mud properties (Bassiouni, 2013). Given the significance of
the SP log and the common occurrence of SP inversion in
certain sections of the log, the initial step involved analyzing
the resistivity and gamma ray logs to identify inversed SP
intervals. The occurrence of inversed intervals is due to the
extremely low mineralization of the formation water, which
can be below 5 g/l at several thousand meters of depth in
the Drava Basin (Pavlin, 2022). Once these intervals were
determined, they were assigned appropriate SP values for
shale and clean formation, to ensure their reliability in further
analyses.

Creation of TDRs, as well as lithological and strati-
graphic interpretation were conducted in the Schlumberger
Petrel software. This was followed by the differentiation of
permeable from impermeable intervals per meter resolution.
Regional well log markers were identified on the resistivity
curve, defining boundaries of stratigraphic units (1-4). This
characterization provided input parameters for ANN analysis.

ANNs are computational models inspired by the archi-
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tecture and functionality of biological neural networks in
the human brain. They comprise interconnected nodes, or
“neurons”, that process and transmit data (Prieto et al. (2016)
and references therein).

The input parameters for the ANNs learning process con-
sisted of three variables. Firstly, the true vertical depth subsea
and the ratio of cumulative “sandstone to shale” ratio (Ss/Sh)
both serve as continuous input variables. Here, Ss denotes the
cumulative thickness of permeable layers up to a certain depth,
while Sh represents the cumulative thickness of impermeable
layers as one of the controlling factors of the velocity distri-
bution in the subsurface. The third input variable denotes the
categorical variable type, namely the stratigraphic category of
the unit situated at the observed depth/case. These categories
represent assigned values ranging from 1 to 4 which were
defined by the stratigraphic differentiation conducted using
interpreted well log markers. Finally, these input parameters
were the basis for the ANNs prediction of TWT.

The analysis was conducted in TIBCO Statistica software
using a regression approach for the time series. Networks
were configured as multi-layer perceptron (MLP). MLPs are
a type of artificial neural network with multiple layers of
nodes, which process and transmit information (Thimm and
Fiesler, 1997). Out of 18 wells, 14 were utilized for training
the neural networks, while four were reserved for testing ANN
on holdout data (Fig. 1). Neural network architecture was
restricted to a minimum of three and a maximum of 17 neurons
in the hidden layer. To mitigate overfitting during neural
network training, a smaller value of weight decay was applied
to enhance the network training. Weight decay penalizes large
weights, thereby promoting the development of a simpler and
more generalized model structure and ultimately enhancing
performance on new, unseen data (Thimm and Fiesler, 1997).

Neural networks went through training, testing, and vali-
dation using a dedicated dataset consisting of four variables
with a resolution of one meter. In total, there were more than
27,000 cases from 14 wells that were used for the training
process of the neural networks. Ten neural networks with
the most successful performance in training and testing were
selected and used as an ensemble for the analysis (Hansen
and Salamon, 1990). In a subsequent phase of ANNs analysis,
trained neural networks were applied to predict target TWT
values for four test wells (holdout wells) not included in the
training process consisting of more than 8,000 cases.

The performance of the model was evaluated by calculating
the error relative to the measured TWT values for each data
point per resolution of one meter and calculating the absolute
mean value for all cases within a well (orange steps in Fig. 2).
For better visual comparison of the magnitude and distribution
of the error, box and whiskers plots as well as maps illustrating
error distribution were used.

4. Results
Well log interpretation, following the workflow shown in

Fig. 2, enabled the differentiation of permeable and imper-
meable units. Moreover, the combination of these results with
lithology data from Master logs enabled the definition of verti-

cal lithology distribution which is displayed in the “Lithology”
column in Fig. 3. Additionally, a maximum of four strati-
graphic intervals were interpreted for each well. These inter-
vals represent sediments of an age interval, similar in lithology
and, if applicable, sedimentary environment as factors that
can influence the change of petrophysical properties of rocks
with burial. The first interval represents Pliocene-Quaternary
unconsolidated sands, clays, gravels, and occasional coals. The
second interval consists of Upper Miocene-Pannonian, which
are predominantly sandstones and marls. The third interval
represents a lithologically heterogeneous sediment of Lower
and Middle Miocene breccias, conglomerates, sandstones,
marls, and limestones, with sporadic occurrences of effusive.
The fourth interval encompasses all rocks older than Miocene,
including older pre-Neogene sediments as well as the meta-
morphic and magmatic complex comprising the Basement.
One of the factors which was considered when the division
was performed, was the impact of the present-day burial depth
and its accompanying compaction and diagenetic processes
influencing units’ petrophysical properties. Consequently, it
was presumed that the largest change of interval velocities
would be from Neogene infill to Basement Neogene rocks
(from intervals three to four). This transition represents the
change from the lithologies in which petrophysical properties
are governed by compaction to lithologies where fractures play
a crucial role in controlling petrophysical properties, including
crystalline rocks or Triassic dolomites. Most of the selected
wells have been drilled through the first three intervals and
finished in the fourth as hydrocarbon accumulations at some
locations were expected even in the Basement rocks.

The selection of a representative training dataset is
paramount for successful ANNs prediction. As was already
established, a comprehensive training dataset was defined,
reflecting the complexities of geology and petrophysics in the
subsurface. The dataset comprised 18 wells, partitioned into a
training set of 14 wells and four holdout wells. Holdout wells
were used to evaluate the ANN model on previously unseen
data. Wells W-5, W-10, and W-16 were selected as holdout
wells because they were comprised of all four stratigraphic
intervals, while well W-18 was chosen to represent the case
where only the first two stratigraphic intervals were developed.
The holdout wells have significant geographical positions,
being close to one or more training wells. This arrangement
allowed for examining whether proximity is always the best
criterion for selecting the source for data extrapolation.

Given the continuous nature of the input dataset, time series
regression was selected to ensure sequence prediction, align-
ing with geological and geophysical principles. The neural
network architecture was optimized using various parameters
and validated through repeated training, testing, and validation
processes. The resulting correlation coefficients per each ANN
are presented in Table 1, encompassing training, test, and
validation process phases.

The correlation coefficient of the training set exhibited
an accuracy range between 0.995711 and 0.995877. The
testing data displayed a high accuracy range of 0.997796 to
0.997986. Similarly, the validation dataset yielded comparable
performance, with an accuracy range of 0.997811 to 0.997982.
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Fig. 3. Representation of the available well logs, interpretation of Ss and Sh as general lithology and stratigraphic intervals for
four wells.

Table 1. Correlation coefficients, RMSE, MAE and RSQ of observed and predicted data for ten neural networks for training,
test, and validation datasets from 14 wells.

Architecture TWT train
(ms)

TWT test
(ms)

TWT validation
(ms) RMSE MAE RSQ

MLP 6-17-1 0.995770 0.997845 0.997878 34.008562 25.699704 0.995660

MLP 6-11-1 0.995823 0.997940 0.997967 33.426744 24.911437 0.995816

MLP 6-4-1 0.995716 0.997812 0.997829 34.364610 25.690295 0.995575

MLP 6-9-1 0.995831 0.997959 0.997937 33.399862 25.004618 0.995812

MLP 6-14-1 0.995852 0.997881 0.997911 33.568955 25.978290 0.995774

MLP 6-16-1 0.995877 0.997986 0.997982 33.111525 24.540709 0.995890

MLP 6-15-1 0.995743 0.997837 0.997848 34.237448 25.675535 0.995602

MLP 6-4-1 0.995845 0.997963 0.997971 33.256294 25.232209 0.995851

MLP 6-11-1 0.995804 0.997906 0.997895 33.734191 25.044579 0.995732

MLP 6-10-1 0.995711 0.997796 0.997811 34.499635 25.997086 0.995535
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W-1 W-2 W-3 W-4 W-5 W-6 W-7 W-8 W-9 W-10 W-11 W-12 W-13 W-14 W-15 W-16 W-17 W-18

W-1 Ev 28,150 18,083 22,485 14,645

W-2 Ev 14,795

W-3 Ev

W-4 Ev 19,522

W-5 Ev 19,831 5,717 25,198

W-6 Ev 21,224

W-7 Ev 15,721

W-8 Ev 29,034 6,968 30,812

W-9 Ev 25,926 25,626

W-10 Ev 23,403 13,657 13,295

W-11 Ev 32,537

W-12 Ev

W-13 Ev 16,844 25,237 20,781 17,565

W-14 Ev 26,633 12,562 25,130 26,403 12,724 22,346 13,342

W-15 Ev 27,666 20,022 5,576 17,939

W-16 Ev 21,558 13,599 7,545

W-17 Ev 10,676 24,590 15,633

W-18 Ev 24,567 15,476 11,825

Pv % 88,24% 58,82% 100,00% 88,24% 70,59% 82,35% 41,18% 76,47% 100,00% 88,24% 100,00% 100,00% 94,12% 100,00% 94,12% 82,35% 88,24% 82,35%

Fig. 4. A visual representation of the successfulness of the ANN prediction over the extrapolation approach. Well names used
in the ANN training process are in green color, while holdout wells are highlighted in yellow. Cases with better Ev are labeled
in red, while wells with better Pv are in green. Pv% represents a percentage of wells for which prediction via ANN gave more
successful results while the green field indicates better results for Pv and the red field with the Ev approach.
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Fig. 5. Box and whisker plots representing the distribution of error in milliseconds (ms) for wells W-3 and W-10.

The root mean square error (RMSE) indicates that the average
difference between values predicted by the ANN model and
the actual values is approximately 34 ms. The mean absolute
error (MAE) is even smaller, around 25 ms. The coefficient of
determination (RSQ) value which is a measure of the goodness
of the fit, demonstrates that the data fits the regression model
very well. For prediction purposes, all ten neural networks
were combined into an ensemble.

To evaluate the successfulness of the ANN deployment for
the task, the TWT prediction results were compared to the
TWT extrapolation values from nearby wells based on the
average error relative to measured values from the well data.
Error values were calculated for both the extrapolated TWT
values versus measured values (Ev) and the ANN-predicted
values versus measured TWT values (Pv). A matrix table
was generated for each well to summarize these comparisons
(Appendix 1).

When focusing solely on the success of the ANN prediction
results, it is evident that 15 out of 18 wells show a closer
fit to the measured values compared to those extrapolated
from surrounding wells, i.e., they are more successful in over
75% of cases. It was found that for wells W-3, W-9, W-
11, W-12, and W-14 prediction of TWT was outperforming
the extrapolation method in 100% of cases (Fig. 4). Notably,
four of these wells serve as holdout wells, indicated with

yellow labels in Fig. 4 and Appendix 1. All of them achieved
successful predicted values (Pv), with three demonstrating
more than 80% more accurate outcomes than the extrapolation
method (Fig. 4). Only a few instances showed smaller errors
than those when TWT was predicted by the ANN analysis,
highlighted in red in Appendix 1. The extrapolation approach
achieved the best results for well W-7, with values from nine
wells showing lower average errors.

Results are even better illustrated through the box and
whisker plot (Fig. 5). The plot shows two representative wells:
W-3, which was used in the ANN training process, and W-
10, a holdout well. For W-3, ANN-predicted values exhibit
the smallest average error compared to all errors calculated
from extrapolating values from neighboring wells. In the case
of W-10, there are only two instances (that correspond to
extrapolations from W-11 and W-15) where the extrapolated
values have a smaller error than the ANN-predicted values.
Appendix 2 illustrates all case scenarios.

5. Discussion
The results of the ensemble ANN model demonstrate its

ability to generate synthetic values for time-to-depth conver-
sion using lithological parameters that can be interpreted from
the most basic well logs and stratigraphic interval delineation.
The trend observed in the predicted values closely aligns with
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(a) (b)

(c)

Fig. 6. Distribution of average errors obtained through extrapolation of TWT values from wells with available velocity
information. The five best results, indicated by the smallest errors, are highlighted with thick arrows ranging in color from
dark blue to dark purple (colors within the thick black rectangle in Ev Error Legend).

the measured values, as evidenced by the small average error,
which ranges from a minimum of 11 ms to a maximum of
52 ms, with an average of 26 ms. Outlier and spread of the
error are significantly lower when applying the ANN approach
instead of an extrapolation of the TDR. Appendix 1 quanti-
tatively presents the average errors, selected as the decisive
parameter to evaluate the accuracy of ANN predictions.

The distribution of these errors and their relationship are
illustrated in Fig. 6 for three representative cases and in
Appendix 3 for all 18 cases. Upon thorough examination,
several observations can be drawn. When extrapolating time-
to-depth relationships, wells W-7, W-9 and W-12 consistently
provide the largest errors (Appendix 2), indicating the poorest
results for estimating TWT values in wells lacking velocity in-
formation. For Well-9, this is understandable given its greater
distance from other wells in the area of exploration.

The analysis presents that proximity between wells does
not guarantee accurate extrapolation of time-to-depth relations.
Instead, the ANN predictions offer consistently more reliable
results, even for the holdout wells which were never included
in the building of the ANN model. This can be observed in Fig.
6 and Appendix 3. Despite the expectation that closely located
wells would provide dependable time-to-depth information
for extrapolation, the findings of this study disprove this
assumption. For instance, in Fig. 6, case W-5 shows that wells
W-7 and W-12, though remarkably close to well W-5 which is
treated as a no velocity data well in this case scenario, yield
extremely poor results with the highest errors compared to
more distant wells.

This pattern is not uniform across all close pairs of wells.
For example, extrapolating TWT values from W-6 to W-5

results in a satisfactory small average error of 21 ms. On the
other hand, well W-2 despite being the closest, displays a poor
correlation when extrapolating TWT information for W-18.

It is evident that, in most instances, extrapolating time-to-
depth relations from nearby wells leads to significantly poorer
outcomes compared to extrapolation from distant wells. This
discrepancy could be attributed to substantial variations in
subsurface lithology distribution and/or general orientation of
structures.

The predicted values generated by the ANN analysis (in-
dicated by the thick white line and “Pv” mark in the color
legend in Fig. 5) demonstrate exceptional accuracy for both
the training wells and, most importantly, the holdout wells
(marked with green and yellow labels, respectively). With
a high precision percentage observed, TWT values obtained
through neural network analysis prove to be more reliable, es-
pecially for holdout wells (highlighted in yellow in Appendix
1, Fig. 6 and Appendix 3).

The distribution trend is also evident in Fig. 6, particularly
highlighting the best five approximations. The results obtained
from extrapolating TWT values reveal a predominant NNW-
SSE strike, as observed in the top five approximations marked
with the thickest arrows ranging from dark blue to dark purple.
These findings are consistent with the strike of geological
structures and sediment paleotransport orientation documented
in recent investigations of the area (Rukavina et al., 2023;
Špelić et al., 2023; Matošević et al., 2024).

6. Conclusion
Accurate determination of time-to-depth parameters plays

a crucial role in various applications, including drilling opti-
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mization and reservoir characterization. However, this process
often entails significant economic and technical risks. To
address these challenges and mitigate associated risks, a novel
approach has been developed and is presented herein.

Building an ANN model to solve time-to-depth relation-
ships has proven highly effective. The ANN model exhibits
a high correlation coefficient for the training, testing, and
validation set, all above 0.99, with root mean square errors
under 35 ms and mean absolute errors around 25 ms. This
level of accuracy surpasses any method applied so far on
Pannonian Super Basin data, including the common approach
of extrapolating values from nearby wells. The ANN model
not only has smaller absolute errors but is also significantly
less sensitive to outliers. Since model predictions depend on
the local geological characteristics of the training data, a
separate ANN model for solving TDRs should be developed
for each basin or super-basin to account for their unique
geological features.

Overall, this study presents the effectiveness of the ANN
framework in conventional, dominantly clastic environments,
tailored to the specific objectives of parameter prediction.
Depending on the desired objective, the focus can vary from
precise values to understanding broader trends and variations
within the wells. This approach enhances efficiency and adapt-
ability, improving the accuracy of subsurface models. The
methodology remains open to further refinement through activ-
ities such as spatial information integration, hyper-parameter
fine-tuning, and the development of tailored models for spe-
cific geological settings.

The results highlight the effectiveness of the proposed
methodology in deriving TWT values from depth, litholog-
ical, and stratigraphical parameters by ANN analysis. This
ANN-driven solution proves to be an effective approach for
obtaining time-to-depth relations in mature basins with a large
number of historical well data often lacking acoustic well log
measurements and vertical seismic profiling.
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Špelić, M., Kovács, Á., Saftić, B., et al. Competition of deltaic
feeder systems reflected by slope progradation: A high-

resolution example from the Late Miocene-Pliocene,
Drava Basin, Croatia. International Journal of Earth Sci-
ences, 2023, 112: 1023-1041.

Stegena, L., Géczy, B., Horváth, F. Late Cenozoic evolution
of the Pannonian basin. Tectonophysics, 1975, 26(1-2):
71-90.

Sun, Z., Yang, S., Zhang, F., et al. A reconstructed method of
acoustic logging data and its application in seismic litho-
logical inversion for uranium reservoir. Remote Sensing,
2023, 15(5): 1260.

Thimm, G., Fiesler, E. High-order and multilayer perceptron
initialization. IEEE Transactions Neural Networks, 1997,
8(2): 349-359.
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