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Abstract:
Borehole imaging well-log datasets provide a wide range of valuable information for
various aspects of petroleum reservoir characterization. In particular, electrical borehole
images make it possible to detect and quantify the distributions, orientations, and forms of
fractures at high resolution. Acoustic borehole images are extensively used for breakout
detection and width measurements to determine horizontal principal stress magnitudes
and orientations. However, by combining information from different types of borehole
imaging tools more comprehensive reservoir characterization can be achieved. Data from
the dipole shear-wave imager can be used to provide anisotropy insights that are of
complementary value for lithofacies, poro-permeability, and seismic dataset interpretations
of heterogeneous reservoirs. Cases are made to incorporate data from both electrical
and acoustic borehole imaging datasets into integrated reservoir characterization analysis.
Moreover expanding the reach of borehole imaging data is becoming increasingly possible
with the aid of machine learning models configured to predict key borehole imaging metrics
from standard suites of petrophysical well-log and drilling mud-log datasets.

1. Introduction
Fractures occur in reservoir formations as natural and

artificially induced phenomena and are of particular inter-
est because of their contribution to porosity/permeability in
otherwise tight heterogeneous formations of limestone (Boro
et al., 2014; Hosseinzadeh et al., 2023), sandstone (Faraji et
al., 2020), shale (Ismail et al., 2024) and coal seams (Wood
and Cai, 2022). However, fluid-flow predictions from fractured
formations are difficult to generate from multi-phase-flow
models incorporating geomechanical information derived from
rock cores (Hawez et al., 2021). The reason for this is the
sporadic and uneven distribution of fracture zones and fluc-
tuations in principal stress magnitudes and directions across
complex structural and stratigraphic traps (Fanchi, 2018).
However, if fracture clusters can be identified with confidence
they frequently correlate with the most productive zones in
many reservoirs. Hence, reliable fracture characterization and
distribution prediction can be a valuable field exploration and

development tool.
Discrete fracture network models require accurate frac-

ture characterization details to provide meaningful reservoir
simulation results. Fracture/fault detection, orientation, and
characterization can be predicted with the aid of borehole
imaging (BHI) well-log tools verified with core data (Hossein-
zadeh et al., 2023) and then predicted using various machine
learning methods (Tabasi et al., 2022; Vijouyeh et al., 2023).
Information from BHI tools has been widely used since their
development more than four decades ago (Bourke et al., 1989),
particularly for quantitative fracture-characterization purposes
(Luthi and SSouhaité, 1990). In recent years, it has been
demonstrated that faulting, fracture orientation (Zhou et
al., 2022), fracture density (Tóth et al., 2023), geomechanical
rock properties (Vahle et al., 2020), reservoir stress magnitudes
and orientations (Faraji et al., 2020), and fracture dimensions
(Vijouyeh et al., 2023) can all be effectively quantified by the
use of borehole-image information. BHI data usefully comple-
ments sparsely available core data because it can be recorded
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continuously over extensive depth intervals and, depending
on the BHI tool used, can record wellbore features at high
resolutions. By exploiting supervised machine learning models
trained with BHI data, verified with some core information,
to predict various fracture characteristics, it is possible to
integrate such models within reservoir simulations to function
as proxy or surrogate models, saving time and cost (Ng et
al., 2023).

Convolutional neural networks (CNN) are now applied to
directly detect fractures and linear features from BHI data
(Krizhevsky et al., 2017), when supervised with a training
set of annotated images. Subsequent developments involving
fast-region CNN (Dias et al., 2020) and Mask-R CNN (Liu
et al., 2022) and improved image pre-processing sequences
(Du et al., 2023) have further improved the functionality of
automated feature detection from BHI datasets.

However, BHI data can provide a much broader spectrum
of useful information for reservoir characterization than frac-
ture analysis. By combining information from different types
of BHI tools, together with core, petrophysical, and mud-
logging data it is possible to characterize heterogeneous and
anisotropic reservoirs more comprehensively. In particular, the
use of shear-wave data extracted from the dipole shear wave
sonic imager can provide valuable information regarding the
magnitude and orientation of anisotropy in complex reservoir
formations (Sadeqi et al., 2022). The objective of this study
is to describe the broad range of capabilities of BHI data
concerning reservoir characterization and illustrate the benefits
of using that data as part of an integrated reservoir analysis.
Published sources that provide the equations and further details
of methods used in the quantitative analysis of BHI data are
listed in the Supplementary file.

2. Types of borehole imaging devices
Although there are many different BHI tools offered by

drilling service companies, those tools fall within two main
categories: electrical BHI tools and acoustic (ultrasound) BHI
tools. These two types of BHI detect different types of
features to different resolutions. The manufacturers’ spec-
ifications highlight the higher resolutions of the electrical
BHI tool can detect features at scales of approximately 50
µm (SLB, 2024), whereas the acoustic tools can distinguish
features of approximately 1 cm thickness (IODP, 2024).

The formation micro-imager (FMI) is a wire-line electrical
BHI tool (SLB, 2024; note that SLB is the name of the
former service company “Schlumberger”). The FMI directs
electrical currents at the walls of the borehole and detect-
s/records the electric currents induced processing/converting
those signals into spatially oriented assembled images (Ek-
strom et al., 1986). The tool is effective in a wide range
of borehole conditions and drilling fluid types (Brown et
al., 2015). It extends and places four equidistant arms from
the lower part of the tool with pads and flaps and places
them close to the wellbore wall. Each arm carries 48 source
electrodes (192 in total) (Nabiei et al., 2021). In ideal borehole
conditions, and according to the tool manufacturers’ claims,
the tool achieves about eighty percent coverage of the wellbore

wall and assembles eight continuous strips of images along
the wellbore each with a specified orientation. The other
major service companies offer comparable tools. For example,
Halliburton (2024) offers its X-tended Range Micro Imaging
(XRMI™) tool, and Weatherford (2024) offers its Compact™
Microresistivity Tool.

The formation micro-scanner (FMS) is a lower specifi-
cation alternative to the FMI with each of its four pads
carrying 16 source electrodes (64 in total). The FMS samples
current intensity every 2.5 mm and covers about fifty percent
of the wellbore circumference (Columbia University, 2024).
The features detected by the FMI and FMS tools can be
accurately calibrated with data from rock cores where it
is available (Khoshbakht et al., 2012). However, the high-
resolution coverage provided by these tools goes far beyond
what can be covered by fragmentary rock cores, as these BHI
tools can be run to survey thousands of meters of wellbore
wall. The FMI and FMS resolutions are adequate to detect
fractures and micro-fractures with precision.

There are several acoustic BHI tools offered by different
service companies but all essentially provide similar ultra-
sound images that cover 360 degrees of the borehole wall
because the acoustic transducers rotate a high speeds as the
tools record their signals. The ultrasonic borehole imager
(UBI), offered by SLB, operates at high frequencies: 250 KHz
to deliver an image resolution of 1.02 cm; or 500 kHz to
deliver an image resolution of 0.51 cm (IODP, 2024).

The acoustic images provided by these tools are of suffi-
cient resolution to delineate wellbore breakouts and survey
wellbore-stability detection purposes. In addition, detailed
reservoir analysis of ultrasonic image logs is also possible. For
example, it is possible to invert the 360◦ porosity spectrum for
large depth intervals from ultrasonic BHI tools combined with
standard wireline log petrophysical data (Zhang et al., 2018),
demonstrating good agreement with direct porosity measure-
ments. This technique is particularly useful in heterogeneous
carbonate reservoirs.

The circumferential borehole imaging tool (CBIT), of-
fered by Baker Hughes, is designed to operate and generate
interpretable acoustic images in a wide range of borehole
conditions including those with casing in place and with large
and irregular diameters (LandSea, 2024). It operates at 250
kHz and records and processes magnitude (amplitude) signals
and travel-time signals displaying each as images.

The dipole shear sonic imager (DSI) tool is a full-waveform
acoustic imaging tool, offered by Schlumberger (now traded
under the company name SLB) (Columbia University, 2024).
The DSI tool generates a range of frequencies from two
orthogonal-dipole transmitters and a single monopole transmit-
ter (Esmersoy et al., 1995). It records signals from the wellbore
wall and beyond with an eight-receiver array. The DSI and
FMS tools are sometimes run in combination to provide both
electrical and acoustic images. The DSI generates part of its
acoustic signal at high frequency (8 to 30 kHz bandwidth).
These signals induce both compressional and shear waves
through the formation adjacent to the wellbore recordings as
they are transmitted through rock formations. The two dipole
transmitters emit lower-frequency pulses (80 Hz to 1.5 kHz
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Fig. 1. Diagram representing features that may appear differently in wellbore cores and borehole wall images recovered from
the same depth intervals. Modified from Khoshbakht et al. (2012).
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Fig. 2. Terminology and form of rock-formation fractures.

bandwidth) that create mainly shear waves within the adjacent
formations, plus low-frequency pulses (∼5 kHz) which func-
tion specifically to generate more deeply penetrating Stoneley
waves (Qobi et al., 2001; Haldorsen et al., 2006). DSI-
generated acoustic recordings can be processed and interpreted
to provide stress anisotropy conditions in adjacent rock forma-
tions (Pachineelam et al., 2011).

Other trademarked BHI tools work on similar principles to
the four tools briefly described (FMI, DSI, UBI, and CBIT)
and deliver similar types of images. In addition, some Chinese
companies now offer BHI tools (e.g. Chongqing Gold Mechan-
ical & Electrical Equipment, 2024), although these are yet to
rival the tools offered by the international service companies
for worldwide borehole applications. The capabilities of the
different types of BHI tools are described and illustrated in the
following sections with the aid of published image examples
of selected tools applied in specific wellbores.

3. Features observed in cores versus borehole
images

Wellbore features that are imaged by BHI logs are not
identical to those observed in cores from the same depth
section of a wellbore, for the reasons illustrated in Fig. 1.

Typically there is a difference in diameters between re-
covered cores and the full wellbore of between about 10 and
20 cm. This width disparity results in certain features being
detected at different depths in cores and by BHI tools or only
being detected in one and not the other. Moreover, cores only
rarely involve 100% recovery and there are some gaps in the
wellbore wall surveys conducted by electrical BHI tools (50%
to 80% based on tool manufacturers’ claims depending upon
the specific recording tool used and borehole conditions).

4. Fracture characteristics discernible in
borehole images

Fractures in rock formations have unique characteristics
that provide valuable information about the formations and
their stress conditions. Figs. 2 and 3 describe some of the
fundamental characteristics of fractures that are discernible
and measurable in cores and BHI datasets.

Although fractures are planar features they rarely have
uniquely linear trajectories along their entire lengths display-
ing asperities and with surfaces that are not smooth when
studied in detail. They may also be filled or partly filled by
diagenetic minerals (Fanchi, 2018), or empty and open. These
factors mean that fracture widths and apertures have to be
measured at multiple points along a fracture’s length, even
at a well-bore-diameter scale to generate meaningful average
values (Liu et al., 2021). It is often informative to characterize
fractures into distinct categories based on their forms and fill
status (e.g., Mazdarani et al., 2023). Fractures tend to occur in
different densities (frequencies) throughout a formation, often
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Fig. 3. Non-uniformity (surface roughness) and asperity typi-
cally characterizes rock formation fractures.

forming clusters in certain formation zones. Detecting such
zones is often beneficial as they tend to coincide with high-
permeability sections from which petroleum fluid recovery is
greatest (Ajami et al., 2024).

The dips and strikes of fractures, and their azimuths (the
angle measured clockwise from true north in the horizontal
plane), as well as their apertures, other dimensions, and density
of occurrence, can be derived from borehole images. For most
forms of fracture analysis, it is best to calibrate BHI fracture
interpretations with information derived from available rock
cores, and thin sections taken from those cores to fully
understand the form of microfractures. Statistical methods for
evaluating fracture-spacing distributions are well established
(Gillespie et al., 1999; Hooker et al., 2013) using coefficient
of determination to assess the regularity of that spacing across
a wellbore section of interest.

Fracture apertures are typically measured in the vertical
direction (Nian et al., 2016, 2021), and their distributions are
extrapolated through formations from wellbores measurements
by a range of statistical techniques exploiting data from
standard well logs (e.g., Ponziani et al., 2015), experimental
measurements combined with simulations (e.g., Van Stappen
et al., 2018) to provide some empirical guidance.

Fractures appear as distinct traces on FMI/FMS images
depending upon their inclinations relative to the borehole
trajectory (Fig. 4). Significantly, quasi-planar fractures do
not appear as linear traces on borehole images but display
sinusoidal forms. From those forms, particularly the wave
amplitude, strike, dip, and azimuth can be relatively easily de-
termined taking into account borehole trajectory. The appear-
ance of mineral-filled fractures varies significantly on electrical
and acoustic image logs, depending upon their acoustic and
electrical properties and the contrast of those properties with
the lithology of the fracture walls. Quantitative analysis of
mineral-filled and partially-filled fractures can be conducted
with BHI data combined with core and/or outcrop data to
identify the types of fractures making the most beneficial
contributions to production (Wang et al., 2023; Ajami et
al., 2024).

Fig. 5 provides annotated examples of FMI images of
inclined fractures transecting a wellbore. The left image in

Fig. 5 displays a prominent planar, inclined fracture that
crosses the sedimentary bedding planes. In the right image
of Fig. 5, a discontinuous fracture is “bed-bound” (Luthi and
SSouhaité, 1990). There tends to be a high-resistivity contrast
between fractures invaded with drilling fluids compared to the
rock-formation matrix, rendering quite narrow micro-fractures
discernible on FMI/FMS images. However, the apparent aper-
tures of such features on the BHI logs need to be calibrated
with their widths as observed in corresponding cores. The
same is true for fracture intensity measurements, which are
typically expressed as the area of the fractures present per unit
volume of formation (m2/m3). These should not be confused
with fracture density measurements typically expressed as the
number of fractures per unit of length of borehole or core using
units of 1/cm or 1/m. Both fracture intensity and density tend
to show positive correlations with formation permeability and
can be predicted with relatively high accuracy by machine-
learning methods using standard petrophysical well-log vari-
ables as inputs (Tabasi et al., 2022; Azadivash et al., 2024).
Seismic-attributes from seismic datasets can also be combined
with BHI data to extrapolate fault/fracture density/intensity
analysis away from wellbores across prospective reservoirs
(Babasafari et al., 2022).

5. Automated detection of fractures from
borehole images

Computer-vision technologies together with CNN provide
a means to potentially detect fractures directly from multi-
ple segments of borehole images (Krizhevsky et al., 2017).
Katterbauer et al. (2022) developed a deep-learning neural
network to function in two stages. The first stage applied
binary classification to determine the presence or absence of
fractures in borehole image segments (8 cm long). The second
stage applied a regression model to determine fracture density.
In their current form such methods extensive image cropping,
pre-processing, and/or annotation. Fast-region CNN has been
used to detect breakouts and/or fractures from acoustic BHI
tools (Dias et al., 2020). However, that method cannot be used
to quantify the dimensions, inclinations, or apertures, of the
fractures it detects. In contrast, mask region-based CNN (Mask
R-CNN) models, with user-defined annotations have managed
to generate more reliable automated BHI-feature detection
(Liu et al., 2022).

Du et al. (2023) modified the Mask R-CNN pre-processing
steps and demonstrated their method based on BHI images
from six wells (Xinjiang field, China), examples of which
are shown in Fig. 6. That model trained with a suite of
user-annotated fracture examples was able to detect complete
and partial fracture traces directly from annotated borehole
images with training, validation, and testing datasets. This
technique involved binary classification distinguishing user-
annotated masked fracture zones from background regions
of the images with no fractures. The model was further
tested with deteriorated annotated masked images by applying
Gaussian noise and/or blur and was able to detect fractures
within the masks of those images with reasonable accuracy.
Crucially, the redisplayed detected images. derived from un-
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Fig. 4. Schematic diagram of a borehole image trace of a continuous planar feature oriented and inclined in specific directions
transecting a wellbore’s walls. Modified from Davarpanah et al. (2016).

Fig. 5. FMI images displaying fracture traces. In the left image
a continuous fracture crosses a bedding plane, whereas in the
right image a discontinuous fracture occurs within a specific
formation and does not transect the bedding planes. Modified
from Nian et al. (2021).

masked test images, could be used to determine fracture
apertures and orientations. The model is in development and
requires further improvements to be able to detect features
in BHI images recorded at different resolutions. If perfected,
this technique offers the potential to substantially speed up the
analysis of fracture traces (and other detected features) from
long BHI image sections. Developments continue in deep-
learning applications for automated fracture detection (Baraian
et al., 2023; Olya et al., 2024).

Fig. 6. Mask R-CNN borehole image processing to automate
the detection and redisplay of fracture traces: (a) Initial
borehole image, (b) detected and mask annotation applied
to fracture traces and (c) annotated versus model detected
masks of a fragmented sinusoidal borehole image fracture
trace. Modified from Du et al. (2023).

6. Breakout analysis and stress orientation
determination from acoustic borehole images

Stress-induced wellbore failures occur frequently during
drilling operations. The determinations of principal stress
directions are crucial for wellbore planning, and reservoir
development planning (e.g., wellbore trajectories and frac-
ture stimulation orientations. It is also necessary to establish
long-term stability information for the wellbores servicing
underground gas storage facilities (Heidbach et al., 2018;
Wood, 2024). Wellbore stress failures occur as “breakouts”
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Fig. 7. Example UBI image of wellbore breakouts plus minor
indications of DITF. Modified from Goswami et al. (2020).

and drilling-induced tensile fractures (DITF), which are readily
distinguished on acoustic-tool borehole images (Fig. 7).

Acoustic BHI tools are widely used for breakout analysis
due to their ability to provide complete three-hundred and
sixty degree coverage of the wellbore walls and their lower
operating costs to acquire BHI data across large depth inter-
vals. High-resolution electric BHI tool images could also be
used for this analysis but for many applications it is not cost
effective to do so. Breakouts are typically aligned along the
minimum horizontal stress (Shmin) direction, as shown in Fig.
8, in near-vertical wellbores in tensional tectonic stress settings
(Barton et al., 1988). They occur as gaps left by caved wellbore
wall materials in circumstances where borehole stress magni-
tudes are greater than the compressive strength of the drilled
formations. On the other hand, a DITF trajectory is more
closely aligned with the maximum horizontal stress (SHmax)
direction. Breakouts typically appear in borehole images as
two symmetrical failure features, aligned over specific depth
intervals approximately 180◦ apart (Zoback et al., 2003) (Fig.
7).

The wellbore breakout relationships displayed in Fig. 8
are commonly exploited to calculate the magnitudes of the
horizontal principal stresses (Zoback, 2009). BHI data are par-
ticularly effective at determining the horizontal principal stress
directions when integrated with core data (Nie et al., 2013).
Shmin magnitude can be separately determined by executing
wellbore leak-off and/or mini-frac tests. Such tests do not
though provide information regarding SHmax magnitude, so
breakout analysis from borehole images offers a useful means
to do so (Zoback et al., 2003) and is widely used for that pur-

Fig. 8. Wellbore breakout orientations in relation to the
prevailing principal stress directions (SHmax and Shmin). θ is the
azimuth angle between the SHmax direction and the nearest
edge of the observed breakout. Modified after Huffman et
al. (2016).

pose (Heidbach et al., 2018). At the edges of a breakout,
compressional stress exerted by the wellbore exists in equi-
librium with the rock formation’s strength. It is that stress
condition can be used to estimate SHmax magnitude. Several
well-established empirical methods are available to do that
(e.g., Barton et al., 1988; Zhou, 1994).

However, there are some uncertainties in using the em-
pirical methods to predict SHmax magnitude from breakout
measurements. For example, not all breakouts occur in the
horizontal plane, which is an assumption made by these
methods, breakouts tend to become deeper and wider as
borehole diameter increases (Lin et al., 2020). In some wells
the type of breakout and crucially their width vary substantially
over relatively short vertical distances (Fig. 9), e.g., Harvey-
1 well (Perth Basin, Australia) (Faraji et al., 2020). Hence,
it is appropriate to validate SHmax magnitude determinations
from BHI breakout measurements with additional poro-elastic
information for the formations penetrated, such as static elastic
modulus, static Poisson’s ratio, and strain from rock core
measurements (Nian et al., 2016). Machine learning methods
can also assist in relating breakout dimensions to laboratory-
derived rock strength measurements. For instance, Lin et
al. (2020) developed a neural network model to predict Shmin
from three easily measured inputs: Borehole-wall strength,
vertical stress, and breakout width. It is also feasible to predict
BHI breakout measurements with machine-learning methods
using petrophysical well-log inputs to predict principal stress
magnitudes (Ibrahim et al., 2021). Such models can then be
applied to make predictions of stress magnitudes across a
reservoir in wells where no BHI or core data is available.

Rose-diagram representations are usually used to display
multiple breakout and fracture orientation determinations from
borehole image measurements to indicate the uncertainty in-
volved (Fig. 9).

7. Characterizing reservoir anisotropy using
borehole image data

Rose-diagram representations are usually used to display
multiple breakout and fracture orientation determinations from
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Fig. 9. Annotated CBIL image for a section of the Harvey-1 well highlighting the variability of breakout width measurements
with depth. The purple box outlines (placed manually) delineate each identified breakout. Modified from Faraji et al. (2020).

Fig. 10. Maximum energy and minimum energy traces versus
depth, associated with the DSI fast and slow shear-wave
slowness for a section of the South Pars Field Dalan/Kangan
reservoir. Modified from Sadeqi et al. (2022).

borehole image measurements to indicate the uncertainty in-
volved (Fig. 9). Acoustic shear wave data recorded by the
DSI can be used to quantify reservoir anisotropy distributions,
which can be very useful, especially for complex hetero-
geneous reservoir formations. The term “Anisotropy” used
in the context of reservoir formation characteristics refers
to directional variations in rock properties (Nelson, 2001),
which is different from “heterogeneity” which is used to
refer more generally to spatial variations in rock properties.
Many carbonate reservoirs deposited in fluctuating platform
depositional environments tend to be comprised of multiple
microfacies, some of which have good reservoir properties,
whereas other facies are tight and unproductive. Such for-
mations are characterized by heterogeneity and anisotropy,
with at least some of the higher reservoir-quality micro-facies

exhibiting high degrees of anisotropy.
It is the comparison of the fast and slow DSI-recorded

shear-wave components that makes it possible to quantify
the extent of anisotropy at specific depths. Typically, there
is a substantial difference between the recorded fast and slow
shear-wave slowness in highly anisotropic zones. This can be
usefully displayed in terms of the maximum versus minimum
relative energies of the fast and slow shear-wave recordings,
respectively. Sadeqi et al. (2022) evaluated DSI data from
a wellbore penetrating the prolific gas-condensate Permo-
Triassic carbonate Dalan/ Kangan reservoirs of South Pars gas-
condensate field (Iran) to assess their relative anisotropy (Fig.
10). To do this reliably it is necessary to select the bandwidth
of recorded shear wave data carefully and pre-process it to
extract consistent information. For the Dalan/Kangan reservoir
study sensitivity analysis revealed that the shear-wave band-
width 2 to 4 kHz yielded the most reliable and consistent
anisotropy results.

Shear-wave slowness differences can also be evaluated to
determine the azimuth of anisotropy. The azimuth derived for
the fast shear wave is usually interpreted as the azimuth of
anisotropy for the filtered waveforms (Fig. 11), with multiple
readings displayed in rose diagrams to provide an indication of
uncertainty/confidence in those anisotropy azimuth readings at
specific depths. The anisotropy orientations (∼N60◦E) derived
for the Dalan/Kangan reservoir study are consistent with the
alignment of fractures, and indicative of the SHmax direc-
tion. That direction is also consistent with regionally estab-
lished structural orientations and SHmax directions (Zampetti
et al., 2010).

8. Discussion: Integrated reservoir studies
incorporating borehole image data

Ongoing studies of the Permo-Triassic Dalan/Kangan car-
bonate reservoir (offshore Iran) are progressively integrating
sequence stratigraphy, lithology, poro-permeability data, and
interpretations with combined FMI and DSI datasets (Fig. 12).
Provisional results indicate that zones displaying high DSI-
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Fig. 11. Anisotropic zones and their orientations calculated
from azimuths of the DSI fast shear wave for a portion of the
South Pars Field Kangan K4 reservoir. Modified from Sadeqi
et al. (2022).

Fig. 12. Integrated display of lithology, porosity, fast shear
wave strike direction (DSI), anisotropy map (DSI; bright color
indicates high anisotropy), porous versus tight zones (static
FMI image) for a portion of the Upper Dalan formation.

recorded anisotropy and high FMI-recorded heterogeneity are
closely related to highstand (regressive) sedimentary tracts and
associated with high reservoir quality (porosity/ permeability).
Such zones can be readily distinguished from transgressive,
lowstand (transgressive) tracts associated with low reservoir
quality. In detail, the most (visible) conductive zones on the
FMI images tend to be the most porous/permeable, whereas
most resistive zones tend to more highly cemented exhibiting
low porosity/ permeability. Hence, the DSI and FMI data
provide complementary insights into reservoir characteristics.

There is potential to convert the fast and slow DSI shear-
wave depth variations (e.g., Fig. 10) into a relative anisotropy
index. Such an index then has the potential of being predicted
by machine learning using a basic suite of petrophysical well
logs or mud-log drilling variables. In that way, DSI data from
just a few wells could be used to extend anisotropy analysis
across an entire reservoir using data from wells that have not
been cored or surveyed with DSI logs. Further studies on a
range of heterogeneous/anisotropic reservoirs are required to
assess the reservoir-characterization value of such an approach.

The results of the integrated analysis illustrated in Fig. 12
provide indications of the potential benefit of adopting a more
integrated reservoir characterization approach involving both
acoustic and electrical BHI datasets. This approach is not just
useful for heterogeneous carbonate reservoirs, heterogeneous

and highly fractured shale and coal reservoirs could also be
more comprehensively characterized in this way.

BHI logs are sometimes run in vertical coal-bed methane
(CBM) wells but access for these logging tools in highly de-
viated, short-radius, narrow-diameter multi-lateral CBM wells
is difficult and has restricted their deployment. However, the
information BHI logs can potentially provide for relatively
tight (permeability < 10 mD) sporadically fractured CBM
wells is highly relevant to their characterization. For exam-
ple, identifying the distributions and orientations of fractures
and cleats to guide wellbore positioning and lateral-wellbore
trajectories. Zhou et al. (2022) presented electrical-BHI data
for a 1,900 m horizontal lateral section of a Bowen Basin
(Australia) coal seam, representing the first time that such a
tool had been run in such a complex well in that basin. They
used the data obtained to refine the discrete fracture network
model for that area of the coal basin, refining the fracture/fault
distribution and orientation interpretations from available 3D
seismic and adjacent vertical wells. The BHI data analysis
revealed that fracture/cleat orientations progressively changed
direction from NE to NW across the studied area, something
that was not observable from the existing data. Moreover,
fracture/cleat orientation changes correlated with a decrease
in permeability and a reduction in natural gas productivity,
a trend that the BHI data was able to quantify and relate to
directional permeability.

The results obtained for the Dalan/Kangan carbonate and
the Bowen Basin CBM heterogeneous reservoirs highlight the
benefits of integrating BHI data with other available reservoir
data to provide more comprehensive reservoir characteriza-
tions.

9. Conclusions
BHI well-log tools represent a well-established technology

that has been exploited successfully for more than three
decades to provide a range of quantitative measurements
relating to specific reservoir characteristics. The electrical BHI
tools, such as the FMI, are routinely used for high-resolution
fracture distribution and characterization analysis, calibrated
with core measurements. On the other hand, acoustic borehole
images are routinely used for breakout studies to determine
the directions and magnitudes of the local principal horizontal
stresses. However, BHI datasets contain a wealth of additional
information that is generally not exploited to its full potential
in terms of the contributions it could make to comprehensive
reservoir characterization studies.

A case is made for the additional reservoir-characterization
benefits provided by incorporating BHI datasets with sequence
stratigraphy, lithology, poro-permeability, and seismic datasets.
An approach that has been successfully demonstrated by a
few recent studies. Such an approach is particularly rele-
vant for highly heterogeneous/ anisotropic reservoirs, such
as many carbonate, shale, and coal formations. Combining
the information from both electrical and acoustic borehole
images, particularly the DSI, provides complementary in-
sights into such complex reservoirs. Recent machine learning
developments have substantially expanded the interpretation
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possibilities for BHI datasets, including automated fracture
detection. Moreover, the ability to predict BHI measurements
from standard petrophysical well-log and drilling mud-log
datasets extends their findings across reservoirs using the more
limited data available in the majority of existing wellbores.
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