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Abstract:
The underground storage of gases, such as CO2 and H2, in the porous media is a critical
component for achieving carbon neutrality and economical energy storage. While previous
research has predominantly focused on gas injection in one piece of uniform porous
media, and gravity is often neglected, the reality is that natural storage formations are
typically multi-layered porous systems. An in-situ gas injection apparatus based on high-
resolution micro-CT was utilized to investigate gas injection behaviors and failure patterns
in layered porous media systems. The system includes a reservoir layer and a cap layer,
where both capillarity and permeability are meticulously controlled. Our findings reveal
that all cases experience cycles of a pressure built-up period and a sudden pressure release
when a barrier, either capillarity or effective stress, is overcome. Drainage conditions
within the layered system significantly impact both the volume of gas trapped and the
failure patterns observed. Effective stress analyses show that the key determinants of failure
patterns are capillarity, effective stress, and excess pore fluid pressure, affected by pore
size, cap layer thickness, gas injection rate and permeability. Five distinct failure patterns
are categorized: capillary invasion, fracture opening, integral uplifting, local heaving, and
violent liquefaction-based on two dimensionless parameters. This work provides new
insights into understanding the gas injection dynamics in layered porous media.

1. Introduction
Gas injection into geological settings, and the subsequent

trapping-storage or leakage, play a significant role in both
natural and engineering environments. Such processes con-
tribute to the formation of phenomena like shallow gassy
sediments in both marine and permafrost environments, in
addition to the well-known methane seeps, gas-mud diapir
structures and pockmarks (Brooks et al., 1986; Hovland, 1992;
Chiu et al., 2006; Szpak et al., 2015; Lu et al., 2017; Shakhova
et al., 2017; Mazzini et al., 2023). Furthermore, in engineering
applications, these processes are pivotal in enhanced oil recov-
ery, landfill operation, soil remediation, and underground gas
storage (Vidonish et al., 2016; Teng and Zhang, 2018; Blunt
and Lin, 2022; Phukan and Saha, 2022; Li and Cai, 2023).

Especially, carbon dioxide (CO2) geological sequestration, as
one type of gas storage, draws increasing attention for its
potential to reduce the greenhouse effect (Espinoza and Santa-
marina, 2010; Huppert and Neufeld, 2014; Ranaee et al., 2022;
Hematpur et al., 2023; Zhang et al., 2023a). Therefore, it
is imperative to understand the mechanisms and interaction
between gas and water in the pores and its influence on the
porous media skeleton (Fauria and Rempel, 2011; Reynolds
and Krevor, 2015; Blunt, 2017; Zhang et al., 2023b; Qin et
al., 2024; Zou et al., 2024).

In rigid porous media, displacement mechanisms of
immiscible fluids have been extensively studied through
both laboratory experiments and computer-based simula-
tions (Saffman, 1986; Lenormand et al., 1988; Fernández
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Table 1. Details in layered system preparation.

Layer Specimen case number Grain size range (mm) Thickness (mm) Waterhead (mm) Total weight (g)

Cap

C1 0.075 ∼ 0.15 / / /

C2 0.15 ∼ 0.30 / / /

C3 0.30 ∼ 0.60 20 / 13.1

C4 0.60 ∼ 1.18 / 165 /

C5 1.18 ∼ 2.36 / / /

Intermediate
reservoir

/ 0.10 (mean size) < 0.15 / 2.1

/ 2.36 ∼ 4.75 60 / 78.8

et al., 1991; Ferer et al., 2004; Toussaint et al., 2005; Liu
et al., 2013; Cai et al., 2021). Different invasion patterns,
including stable displacement, capillary fingering and viscous
fingering, have been suggested to be influenced by the fluid
flow velocity, pore structures, the viscosity ratio between
fluids, ratios between capillary and viscous forces and between
gravitational and capillary forces.

In a deformable media, gas migration can displace grains
and alter the pore structure (Saffman and Taylor, 1958; Cheva-
lier et al., 2009; Huang et al., 2012; Saintyves et al., 2013;
Oppenheimer et al., 2015; Varas et al., 2015; Cai et al., 2024).
Such alterations subsequently influence gas flow patterns.
Factors like gas entering pressure, capillary pressure, and
effective stress can lead to invasion patterns, such as gas-
driven fractures (Jain and Juanes, 2009; Holtzman et al., 2012;
Campbell et al., 2017; Sun and Santamarina, 2019) and stick-
slip bubbles (Sandnes et al., 2011).

Most previous studies use Hele-Shaw cells by simply
injecting gas with pumps, considered as two-dimensional (2D)
or quasi-2.5D, without explaining the driving forces, and few
studies examine the gas invasion process in three-dimensional
(3D) or consider the effect of gravity. Techniques like X-
ray CT provide a non-destructive insight into gas behaviors
at the pore scale (Barry et al., 2010; Zhou et al., 2010;
Choi et al., 2011; Mahabadi et al., 2018). In addition, these
studies start with homogeneous and isotropic porous media,
while the heterogeneity and anisotropy in natural geological
structures (Xue et al., 2006; Ranaee et al., 2022), may affect
pore pressure dissipation and lead to crack formation, as
suggested by field observations (Vidal-Gilbert et al., 2010;
Sultan et al., 2020). This variability in structural properties
can lead to non-uniform stress distributions during fluid in-
jection (Eyinla et al., 2023). To the best of our knowledge,
there is no study on multi-layered systems, and gravity is
seldom considered. Furthermore, when the system deviates
from mechanical equilibrium, excess pore water pressure ∆u,
first introduced to soil mechanics by Terzaghi (1943), often
referred to as overpressure in geology, becomes significant.
The term “overpressure” varies across different disciplines
(Peacock et al., 2017) and generally refers to the pore fluid
pressure without differentiating gas and water pressure.

This study considers the natural layered systems as a series
of two-layered systems and aim to extract universal rules in the

simplified two-layer systems with a reservoir layer and a cap
layer. An in-situ gas injection device based on high-resolution
CT imaging was utilized to visualize gas invasion behavior
in the reservoir layer and failure in the cap layer. Results
indicate that during the invasion process within the reservoir
layer, the drainage conditions and the associated excess pore
fluid pressure significantly affect the trapped gas volume and
variations in the effective stress. Moreover, a phase diagram
using two dimensionless parameters is introduced to categorize
the failure patterns of the cap layer.

2. Experimental setup and method
Here, natural conditions within a layered system sub-

merged in water are emulated, featuring a cap layer and
a reservoir layer beneath. Consider a gas source gradually
invading into the reservoir layer, corresponding to the gas
migration from the faults (Hustoft et al., 2007; Ostanin et
al., 2012). Our objective is to investigate the response of the
layered system during the gas invasion process.

2.1 The composition of the layered system
The controlling factor for the cap layer is the ratio between

capillary barrier Pc
∗ (related to pore/particle size) and effective

stress σ
′

(thickness related self-weight). In our experiments,
particle sizes are varied (Table 1) while maintaining a con-
sistent layer thickness. Specifically, the particle size in the
reservoir layer is purposely selected large so that the capillarity
would allow for a flat gas-water interface at the bottom of
the gas pocket (2.36 ∼ 4.75 mm in diameter, about 1.3 mm
of capillary rise as measured). There are cases in which the
selected particle size in the cap layer is too small compared to
the reservoir layer, which risks top particles descending into
the bottom pores, necessitating the addition of an intermediate
layer. A detailed setup schematic can be found in Fig. 1.

2.2 Specimen preparation, boundary conditions
and gas injection procedure

First, the acrylic glass tube is filled with a 40 mm depth
of 5 wt% potassium iodide (KI) solution, with KI added as an
enhancing agent to better separate pore water and pore gas in
CT images (Lei et al., 2018). Then, coarse sands are divided
into ten batches and added to the tube. A stirring rod is applied
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Fig. 1. Schematic of (a) the layered system and (b) detailed design.

to eliminate potential bubbles adhering to the sand particle
surface. Often, a few tiny bubbles are found later, but their
impact is considered small on the pore water saturation and
gas-water interaction. Next, the intermediate layer particles are
carefully placed in the surface pores of the coarse sand by a
tweezer one by one, roughly 0.15 mm in thickness. Finally,
fine sands are added to form the 20-mm-thick cap layer.

Consider the ratio between the gas invasion and pore fluid
drainage rate could vary in a natural boundary condition. A
hose is implemented to connect the reservoir layer and the top
water layer, mimicking a well-drained condition. When the
hose is not connected, the drainage has to go through the cap
layer, which could be much slower; in extreme cases, the gas
pocket can break the connection between the up and bottom
pore fluid, resulting in an undrained condition.

A syringe pump is employed to consistently control the
gas injection rate across experiments. Gas injection rates are
varied among 0.03, 0.06, 0.12, 0.24, 0.48, 0.96 and 1.92 mm/s
(equivalent to injection volume rates of 25 to 1,600 mm3/s).

2.3 Observation and micro-CT scan
The observation apparatus comprises a digital camera, a

micro-CT, and a pressure sensor. The pore pressure signal
is recorded every second, and the experimental apparatus
is illustrated in Fig. 2(a). A series of CT scanning points
is employed to gain insights into the pore scale behaviors.
These points are designed to capture system reactions at
main stages during a constant gas injection (further discussion
in Section 3.1). The CT images are segmented (Fig. 2(b))
by a machine learning method (Sommer et al., 2011), and
quantitative analyses and volume rendering are facilitated by
software tools like Avizo (VSG Inc.) and ImageJ (Rueden et
al., 2017).

3. Results and discussion
In this section, the impact of drainage conditions on gas

invasion behaviors and the volume of gas trapped within
the reservoir layer is initially examined. Subsequent analysis
focuses on the effective stress associated with various failure
patterns in the cap layer, alongside calculations of the excess
pore fluid pressure resulting from rapid gas injection rates.
Finally, the discussion is generalized by introducing two
dimensionless parameters that define the failure pattern of the
cap layer.

3.1 The drainage effect
The concept of a drained condition refers to the scenario

where the original pore fluid remains effectively connected to
the free water table, preventing the buildup of excess pore fluid
pressure during gas injection. In this context, the key balance
is between the maximum capillarity the pore structure can
hold Pc

∗ and the local effective stress σ
′
. First, specimen C1

(Table 1) is considered, with a high P∗
c /σ

′
ratio for the cap

layer. The gas injection rate is relatively low at 0.025 mm3/s so
that at each time point the system is considered at mechanical
equilibrium. The pressure variations in response to injection
time are depicted in Fig. 3(a). The injection process can be
divided into four stages (S1 to S4). Stage S1 features an initial
increase in pressure followed by a sudden drop; Stage S2 is
marked by a fluctuating but slowly increasing pressure; Stage
S3 shows a faster rise in pressure; and a sharp decline towards
the end distinguishes Stage S4.

CT scan slices (ii to v) in Fig. 3(c) correspond to these
stages. The pressure increase at the first stage is caused by gas
compression within the injection tube, and the pressure sudden
drop occurs when the gas overcomes the capillary threshold of
the injection tube (slice i to ii). Gas volume expanded during
the sudden pressure drop goes into the pores. Such repetitive
injection processes result in the fluctuating pattern in S2. Slice
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Fig. 2. Experimental setup and CT imaging. (a) The gas injection system using X-ray CT and (b) Segmentation on the right,
showing grains (yellow), pore liquid (blue), and gas ganglia (white), derived from the CT raw image on the left using a machine
learning algorithm.

iii shows the bubble trapping in the pore of the reservoir layer
at this stage. As the progression reaches to stage S3 and slice
iv, the bubbles form a connected network with a thickness
Hg. Finally, the cap layer is lifted by gas at stage S4. Fig.
4(a) demonstrates the 3D gas evolution segmented from CT
images. And Fig. 4(c) plots the gas saturations Sg (the ratio
between gas and pore volume) in horizontal slices against the
vertical slice index. From (iv) to (v), Sg gradually shifts to
a uniform distribution along the vertical direction within the
reservoir layer.

Under the partially-drained condition, the four stages S1
to S4 are still distinguishable in Fig. 3(b). Excess pore fluid
pressure built up during gas injection cannot be neglected since
the drainage has to go through the cap layer. The total injection
duration is notably reduced by half; in other words, the volume
of gas needed to induce cap layer failure is roughly half of the
drained condition. The pressure variation rates versus injected
gas volume from S2 to S4 are all significantly larger than
the drained condition. As shown in Fig. 3(d), from slice iv
to v, the bubbles create a narrow channel and suddenly cause

local lifting at the bottom of the cap layer. A non-uniform
spreading along the vertical direction within the reservoir layer
is demonstrated in the Fig. 4(d).

Under both conditions, the system undergoes a pressure-
built-up period and a sudden release period when a barrier
is overcome. The result differs from previous laboratory
experiments in 2D homogeneous porous media (Sun and
Santamarina, 2019; Liu et al., 2021). This cycle repeats if
gas injection continues as the barrier rebuilds after the sudden
release.

3.2 Effective stress analyses
Fig. 5 illustrates the variation of total stress σ , effective

stress σ
′

and pore pressure uw at different depths of the
specimen (C1), comparing its initial state to the final stage
just before failure. According to Terzaghi’s effective stress
principle (Terzaghi, 1943), the total stress σ in a saturated
specimen is given by the following equations at the initial
state:
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Fig. 3. System response in specimen case 1 under drained condition shown in (a) and (c), and partially-drained condition
shown in (b) and (d). (a) and (b) Pressure versus injection time. (c) and (d) Vertical CT slices showing the bubble trapping and
migration. The bright, gray and black phases indicate grains, pore liquid, and gas bubble. Gas initial growth and subsequent
detachment in slice i to ii. During the injection process, bubbles form a gas invasion area (drained) with a thickness (Hg) or a
narrow channel (partially-drained) to deform the cap layer, as seen in slice iii to v.
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σ = σ
′
+uw = γsatz

uw = γwz

σ
′
= γ

′
z

(1)

where γsat is the saturated unit weight, γw is the water unit
weight, γ

′
is the buoyant unit weight, and z is the depth of the

specimen.
Just before the cap layer is lifted, the gas layer thickness

increases to Hg, as mentioned in Section 3.1 (Fig. 5(a)). Here,
the thickness Hg refers to the vertical range of the gas phase
within the pores of the reservoir layer under drained conditions
(disregarding sidewall friction of the cap layer). Just before
the uplifting of the cap layer, the equilibrium among particles,
pore liquid, and gas bubbles can be described as follows:

Pg = uw +σ
′

(2)
where Pg is the gas pressure at the top of the reservoir layer:

Pg = γw (Hw +Hg)−ρggHg +Pc (3)
Since the capillarity in the reservoir layer Pc can be

neglected and the same applies for gas density in this study,
the equation could be simplified to:

Pg = γw (Hw +Hg) (4)

uw = γwHw (5)

σ
′
= γ

′
Hc (6)
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where Hw is the water head above the gas zone, Hc is
the thickness of the cap layer. γ

′
with a magnitude of ap

proximately 1.2 g/cm3 ≈ 1.2 γw in this study, and g is the
gravitational acceleration. It is then interesting to see the
gas zone thickness is roughly 1.2 times the thickness of the
cap layer, Hg ≈ 1.2H f , which agrees well with experimental
observations.

Meanwhile, uw increases due to the displacement by gas,
which raises the water head by ∆Hw (∆Hw = Hg ∗ng, where ng
equals gas saturation Sg times the porosity n of the reservoir
layer). The gas pressure equals the water pressure at the
bottom of the gas layer, as capillarity in the reservoir layer
is neglected. Then, the difference between gas pressure and
water pressure, also the capillarity, at the bottom of the cap
layer increases with Hg, that is Pc = (ρL −ρG)gHg. When the
capillarity exceeds the effective stress, gas uplifts the cap layer.

Fig. 5(b) illustrates an ideal undrained condition where

a thin layer of gas separates the pore water in the cap and
reservoir layers and pore water cannot escape. Water head and
total stress remain in the cap layer. Both gas and water pressure
in the reservoir increases, reducing the effective stress at the
top of the reservoir layer, and the cap layer is uplifted when
this effective stress decreases to zero.

3.3 Excess pore fluid pressure during fast
injection

Actual gas injection in geological settings could be pulsed
and fast (Ali et al., 2022), as indicated in observations from our
experiments: A pulse of injection occurs when a barrier such
as capillarity is broken by the accumulated gas pressure. Fast
injection combined with limited drainage leads to excess pore
fluid pressure ∆u, which could also overcome the effective
stress and cause sediment skeleton failure. Since pore fluid
pressure dissipates through uniform upward water flow, ∆u
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could be calculated by Darcy’s law:

Qout µL
kA

= ∆u (7)

where Qout is the vertical water flow rate, A and k are the
cross-sectional area, and permeability in the cap layer, and µ

is fluid viscosity. k and an averaged Q are measured in the
experiments (Detailed in Supplementary file, Table S1).

When the injection rate increases and the cap layer is
less permeable, excess pore fluid pressure can exceed the
effective stress and induce liquefaction. Such an analyses
applies if water is injected. However, when gas is injected,
new behaviors emerge. In an extreme case, when water flow
totally lifts the particles, the cap layer behaves like liquid,
and bubbles in such a system could displace the particles
without invading into the pores even in coarse sediments where
P∗

c < σ
′
. Therefore, fractures are observed in all specimens

when excess pore fluid pressure exceeds the effective stress.
As gas injection rate increases further, local heaving occurs
after fracturing in relatively fine cap layers.

Fig. 6 shows the mechanical analyses during local heaving.
As the accumulated gas bubbles, trapped by capillarity, ob-
structs the drainage pathways, fluid flow concentrates in a local
area. The distribution of fluid flow nets is plotted (depicted
as solid black lines, with arrows denoting flow direction)
surrounding the bubbles. The black arrows depict the flow
lines of the fluid. These lines indicate the path that the fluid
would take as it flows through the layered system. The red
dashed lines represent equipotential lines. Along these lines,
the total hydraulic head is constant, or the fluid pressure plus
the elevation head is the same at all points along a given red
dashed line. A simple analysis yields that the fluid pressure
at point B

′
is always larger than at point A, which induces a

local heaving on top of the gas bubble (Fig. 6(a)):

dE
dL

K f = Ff (8)

where dE > 0 because the flow Ff is positive, and dE between
points A and B can be described as, Therefore, PB = PB′ > PA.
So, the heaving would occur above the bubbles:

dE = (PB +HB)− (PA +HA)> 0 (9)
When gas injection rate increases further, violent liquefac-

tion occurs and totally destroys the initial fabric of the cap
layer. Fig. 6(b) shows the mechanical response of the system
during local heaving. The slope of the pore fluid pressure on
the saturated side reflects the local permeability and flow line
concentration. There is a sudden jump in pore fluid pressure
just beneath the cap layer, which is held by capillarity. The
excess pore fluid pressure works together with the capillarity
on top of the gas bubble against effective stress to locally lift
the cap layer.

3.4 Phase diagram for failure patterns
Two dimensionless parameters are defined at the bottom

of the cap layer: χC/R (the ratio between Pc
∗ and σ

′
, a higher

χC/R indicates a dominance of capillary forces) and χE/R (the
ratio between ∆u built up during gas injection and σ

′
, a higher
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patterns observed in 50 experiments are marked with color
points. Below are screenshots.

χE/R suggests significant excess pore pressure, potentially
causing particle deformation). These two parameters differ-
entiate two causes for cap layer failure: Capillarity or excess
pore fluid pressure. Pc

∗ is measured by the capillary rise height
in different cap layers, and σ

′
is calculated based on their

thickness L.
Two boundaries, χC/R = 1 and χE/R = 1, separate the

diagram in Fig. 7 into three sections: Non-failure, integral
failure and localized failure of the cap layer. In the non-failure
region (χC/R < 1 and χE/R < 1), Pc

∗ and ∆u at the bottom of
the cap layer are both lower than σ

′
. Here, as gas bubbles

migrate towards the cap layer base and form a gas layer, the
low capillary barrier allows the gas to invade into the cap
layer before causing failures of the cap layer. This process
is known as capillary invasion (effective stress analysis in
Supplementary file, Fig. S1).

As particle size in the cap layer decreases, the failure
pattern transitions into the integral failure (χC/R > 1 and
χE/R < 1). Under this condition, gas cannot penetrate the
capillary barrier, resulting in gas accumulation within the
reservoir. Eventually, the bubbles form a continuous gas zone
(as mentioned Section 3.1) under a low ∆u, leading to the
integral lifting of the entire cap layer.

When χE/R > 1, excess pore fluid pressure built up during
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the injection exceeds the effective stress. As the accumulated
gas bubble is not enough to form an evenly distributed gas
zone, the cap layer failure is often localized. In this high ∆u
region, the role of Pc

∗ is weakened, and effect of particle size is
mainly in determining the permeability, which influences the
pore pressure dissipation rate. As discussed in the previous
section, as gas injection rates increases, the failure shifts from
local fracturing in all specimens (7 > χE/R > 1), to subsequent
local heaving (10 > χE/R > 7, and χC/R > 1), and to violent
liquefaction (χE/R > 7).

3.5 Implication and limitation
Geological settings predominantly contain multiple layers,

most of which could be considered as a stacking of multiple
two-layer systems with different layer thickness, pore size,
effective stress lever and gas injection rate (Huppert and
Neufeld, 2014; Ali et al., 2022; Blunt and Lin, 2022). The
breakthrough of one cap layer could be the gas source injected
to the adjacent reservoir layer just above the cap layer. Then,
the different stages with pressure built up and sudden releases
apply universally.

The phase diagram, constructed from dimensionless pa-
rameters, is universal and can be applied to any systems with
similar settings. Obviously, these conclusions could be used
to explain observations in shallow systems such as pockmarks
and gas seeps. In a deeper environment, the pore size should
decrease to maintain the same χC/R ratio between capillary
barrier and effective stress, which can correspond to a deep
shale formation as the cap layer. For the other ratio χE/R, as
the drainage path, like effective stress, also increases linearly
with the depth, χE/R does not change if the thickness of
the cap layer increases, therefore, the critical injection rate
causing cap layer deformation could remain the same as that in
shallow systems. If one conducts safety analyses for a certain
reservoir during operation and long term storage, all failure
patterns should be considered. From another point of view, this
phase diagram provides a criterion to analyze the gas storage
capacity, which is closely related to the gas layer thickness as
shown in Fig. 5.

Our experimental work is constrained by certain assump-
tions, which include the following:

1) The simplified nature of our specimen may not fully
capture the complexity of real geological formations,
particularly in terms of layer anisotropy (Fishbaugh et
al., 2010);

2) The analysis here is conservative because the tensile
strength of the geological formations is not considered;

3) The effective stress analysis assumes linear changes with
depth, which simplify real-world scenarios that involve
nonlinear processes and variations along direction (Guer-
riero and Mazzoli, 2021).

4. Conclusions
This study employs X-ray imaging to observe gas invasion

and the subsequent particle failure patterns within a layered
porous media system. The system comprises a bottom reser-
voir layer, characterized by coarse sand exhibiting negligible

capillary pressure effects, and a cap layer, composed of fine
sand with various particle sizes. Salient conclusions follow:

1) The gas invasion in a layered system is featured by cycles
of pressure built up and sudden release when a barrier,
either capillarity Pc

∗ or effective stress σ
′

is overcome.
2) Drainage conditions significantly affect the trapped gas

volume and effective stress variation within the reser-
voir layer. Under drained condition, the key interplay
is between characterized capillarity and effective stress.
While under partially-drained condition, excess pore fluid
pressure ∆u becomes an element that cannot be ignored,
and the interplay is between effective stress and the sum
of capillarity and ∆u.

3) Excess pore fluid pressure ∆u accumulates during rapid
gas injection. This ∆u, when combined with non-uniform
migration of gas bubbles, leads to localized failure of the
cap layer.

4) The failure patterns of the cap layer are determined
by two dimensionless parameters, χC/R(Pc

∗/σ
′
) and

χE/R(∆u/σ
′
). When χC/R < 1 and χE/R < 1, the cap

layer does not deform, termed capillary invasion. Inte-
gral uplifting occurs if χC/R > 1 and χE/R < 1. When
χE/R > 1, localized failure is observed, leading to frac-
tures (7> χE/R > 1) or local heaving (10> χE/R > 7, and
χCER > 1). Violent liquefaction in the cap layer occurs
when χE/R > 10.

These findings, based on dimensionless analyses, are be-
lieved to be universal and could therefore be applied to
various practices with similar settings, such as gassy sedi-
ments, pockmark formation, and geological CO2 sequestration.
Future studies could explore the interactions between different
types of porous media layers in more detail. This includes
investigating how variations in layer composition and fluid
properties affect gas migration and trapping mechanisms under
varying pressure and temperature conditions.
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