Supplementary file

Failure patterns in layered gas-storage systems

Zhenqi Guo^{1,3}, Xiangbo Gao^{1,3}, Huanyu Wu⁴, Lei Liu^{1,3}, Liang Lei^{2,3,5*}

¹ College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, P. R. China

² Research Center for Industries of the Future, Westlake University, Hangzhou 310030, P. R. China

³ Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, P. R. China

⁴ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077 SAR, P. R. China

⁵ Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, P. R. China

E-mail address: guozhenqi@westlake.edu.cn (Z. Guo); gaoxiangbo@westlake.edu.cn (X. Gao); huanyu.wu@connect.polyu.hk (H. Wu); liulei84 @westlake.edu.cn (L. Liu); leiliang@westlake.edu.cn (L. Lei).

* Corresponding author (ORCID: 0000-0002-5276-3822)

Guo, Z., Gao, X., Wu, H., Liu, L., Lei, L. Failure patterns in layered gas-storage systems. Advances in Geo-Energy Research, 2024, 12(3): 183-193.

The link to this file is: https://doi.org/10.46690/ager.2024.06.03

Cap layer particle size (mm)	Capillary barrier (Pa)	Effective stress (Pa)	Injection rate (mm ³ /s)	Excess pore pressure (Pa)	Flow rate (mm ³ /s)	Permeabilit y (Darcy)	Phenomena
1.18 to 2.36	274.68	400.00	$\begin{array}{c} 25.00 \\ 50.00 \\ 100.00 \\ 200.00 \\ 400.00 \\ 800.00 \\ 1,600.00 \\ 3,688.00 \end{array}$	3.15 8.07 13.05 26.09 52.31 95.86 166.45 491.03	14.71 37.68 60.97 121.86 244.34 447.78 777.53 2,293.71	225.12	Capillary invasion Capillary invasion Capillary invasion Capillary invasion Capillary invasion Capillary invasion Capillary invasion Fracture opening
0.60 to 1.18	549.36	400.00	25.00 50.00 100.00 200.00 400.00 800.00 1,600.00	7.13 11.16 18.80 97.16 209.82 368.76 427.28	12.77 19.99 33.69 174.10 375.99 660.81 765.68	86.36	Integral uplifting Integral uplifting Integral uplifting Integral uplifting Integral uplifting Integral uplifting Fracture opening
0.30 to 0.60	1,098.72	400.00	$\begin{array}{c} 25.00 \\ 50.00 \\ 100.00 \\ 200.00 \\ 400.00 \\ 800.00 \\ 1,600.00 \end{array}$	17.17 44.18 93.01 187.20 333.36 456.67 530.07	16.32 41.99 88.39 177.91 316.81 434.00 503.75	45.80	Integral uplifting Integral uplifting Integral uplifting Integral uplifting Integral uplifting Fracture opening Fracture opening
0.15 to 0.30	2,197.44	400.00	$\begin{array}{c} 25.00 \\ 50.00 \\ 100.00 \\ 200.00 \\ 400.00 \\ 800.00 \\ 1,600.00 \end{array}$	55.52 76.17 232.10 423.61 932.96 1,526.52 1,755.52	18.10 24.83 75.66 138.09 304.13 497.62 572.27	15.71	Integral uplifting Integral uplifting Integral uplifting Fracture opening Fracture opening Fracture opening Heaving
0.075 to 0.15	4,394.88	400.00	$\begin{array}{c} 25.00 \\ 50.00 \\ 100.00 \\ 200.00 \\ 400.00 \\ 800.00 \\ 1,600.00 \end{array}$	269.23 354.60 1218.06 2647.03 4,200.36 4,666.67 7,232.63	18.10 23.84 81.89 177.96 282.39 313.74 486.25	3.24	Integral uplifting Integral uplifting Fracture opening Heaving Violent liquefaction Violent liquefaction Violent liquefaction

Table S1. Calculation details of excess pore fluid pressure and the failure patterns.

Fig. S1. Effective stress σ' varies at different depths during the capillary invasion, along with corresponding CT images. In these images, the black areas represent gas.