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Abstract:

Subsurface rocks exhibit multiscale heterogeneity characteristics ranging from the micro-
scopic to macroscopic levels. A significant challenge in geophysical exploration research
is how to accurately analyze the cross-scale characterization of rock component structures
and physical responses. The advancement of rock imaging equipment and computational
resources has led to the emergence of digital rock physics technology as a crucial tool
for addressing these challenges. This paper explores common methods and issues in three
dimensional modeling and numerical simulations, spanning from micro-nano scale rocks
to meter-scale wellbores, and presents relevant research insights. An initial review of the
previous research and evolving trends in multiscale rock modeling and physical property
simulation is firstly carried out. Subsequently, the primary methods and application range of
multiscale simulation are summarized, followed by an outline of the modeling approaches
and application directions for digital wellbores. The progression from digital rocks to
digital wellbores signifies the successful cross-scale application of digital rock physics
technology from the microscopic to macroscopic levels.

1. Introduction

Sadeghnejad et al., 2021). Currently, the research scale of

Digital rock and digital wellbore technologies have become
effective means for studying the physical response mecha-
nisms of subsurface rocks. Digital rock technology focuses on
analyzing the characteristics of rock physical responses with
nanometer to micrometer precision, enabling the direct assess-
ment of how pore structure and mineral composition influence
physical properties. Utilizing digital rock technology facilitates
the intuitive and visual examination of response mechanisms
and features of physical parameters such as rock electricity,
elasticity, permeability, and nuclear magnetic resonance at the
microscale (Andri et al.,, 2013; Lucas-Oliveira et al., 2020;

digital rock technology can reach the size of a full-diameter
core, but this is still microscale for meter-scale wellbores or
formations, with limitations in scale and data discreteness.
A digital wellbore can be viewed as a continuous, large-
scale digital rock, created by integrating core and logging
data to provide richer formation information and analyze how
macroscopic factors like bedding and fractures influence rock
physical properties. From digital rock to digital wellbore,
it represents a crossing of scales in digital rock physics
technology. This paper will address challenges and solutions
encountered in multiscale modeling and simulation of digital
rock and digital wellbore.
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2. Multiscale digital rock technology

The pore structure of underground rocks generally exhibits
multiscale characteristics. Achieving multiscale digital rock
modeling and physical property simulation is crucial for
bridging the gap between methodological research and field
application. Currently, digital rock multiscale modeling mainly
comprises two methods: the fusion modeling method based
on the volume of digital rock data and the integration method
based on the pore network. The former method allows for
a three dimensional (3D) representation of rock pores and
minerals, enabling numerical simulations of multiple physical
fields, albeit with a large overall data volume. On the other
hand, the integration method based on the pore network
primarily captures the multiscale pore structure, offering a
smaller data volume and higher simulation efficiency, but
with limitations in mineral description and calculable physical
properties. Given the comprehensive study of rock physical
properties, this paper mainly focuses on the discussion of
multiscale modeling and simulation methods based on 3D
digital rock data volume.

The 3D digital rock modeling methods can be categorized
into physical experimental methods and numerical recon-
struction methods. Physical experimental techniques mainly
include X-ray computed tomography (Saxena et al., 2019)
and focused ion beam scanning electron microscopy (Za-
krzewski et al., 2019). Numerical reconstruction methods
mainly utilize experimental information or two dimensional
images for 3D reconstruction. Common methods include
process-based method (Coelho et al., 1997), simulated anneal-
ing method (Hazlett, 1997), sequential indicator simulation
(Keehm et al., 2004), multiple point statistics (MPS) (Okabe
and Blunt, 2004), and Markov chain Monte Carlo method
(Wu et al., 2006). Additionally, deep learning techniques have
found application in digital rock modeling, employing meth-
ods like generative adversarial networks (GAN), variational
autoencoders, and diffusion models to enhance the efficiency
of 3D digital rock generation tasks (Wang et al., 2021; Luo et
al., 2024).

Models generated through different methods vary in scale,
making multiscale modeling of 3D digital rocks dependent
on a combination of physical experimentation and numeri-
cal reconstruction. Common approaches to multiscale mod-
eling currently include superposition, template matching, and
deep learning. Superposition, as the earliest multiscale fusion
method, aligns digital rocks of varying sizes constructed
via different methods to a consistent resolution, superim-
posing them into a multiscale data volume (Tahmasebi et
al., 2015). Template matching, involves comparing whether
information from two scales matches by using fine-scale
details to pinpoint the most relevant region on coarse-scale
data for refinement purposes (Lin et al., 2019). Deep learning
methods for multiscale modeling mainly involve the fusion
of super-resolution models with various GAN models, such
as combinations with CycleGAN, CinCGAN, AttentionGAN,
converting low-resolution rock images to high-resolution ones
(Chen et al., 2020; Niu et al., 2020; Chi et al., 2024). Another
direction involves refining coarse-scale pore structures while

adding fine-scale information. The advantage of deep learning
methods lies in the efficient fusion of data once the model
is trained, and the fully convolutional neural network can be
applied to rock images of any size.

In general, different multiscale modeling methods have
their own advantages and limitations. The superposition
method offers high computational efficiency but is susceptible
to information overlap across scales. Conversely, the template
matching method is more in line with the statistical char-
acteristics of rocks but has lower modeling efficiency. Deep
learning is more suitable for processing large amounts of data,
with long training time but high efficiency in data fusion
in later stages. The current issue is that existing multiscale
modeling work is all completed under the condition of not
much difference in resolution, typically a resolution difference
of 2-20 times. Due to the above data fusion is based on the
processing of rock images, which inherently contain limited
information, it lacks the capability to seamlessly integrate data
across significantly disparate scales. Multiscale digital rock
modeling is generally suitable for rock types with relatively
small pore size spans such as sandstone, conglomerate, and
pore-type carbonate rocks. In contrast, for rocks featuring
multiscale information spanning from nanometers to microm-
eters, such as shale, coal, and fractured carbonate rocks, where
scale differences can exceed thousands of times, a single
data set proves inadequate in capturing the full structural
characteristics. Current methods often add the information of
pores into models through equivalent substitution, failing to
achieve the purpose of intuitive display.

Compared to multiscale digital rock modeling, numerical
simulation faces greater challenges. The primary issue stems
from the higher computational performance requirements in
numerical simulations. Failure to strike a balance between
data size and computational performance would render the
construction of the aforementioned multiscale models futile.
For instance, simulating the absolute permeability of a digital
rock of 1,000 size via the lattice Boltzmann method demands
over 60 GB of runtime memory for smooth computation,
with computation time spanning from tens to hundreds of
hours. Furthermore, employing the finite element method to
determine the electrical and elastic properties of a model
necessitates even greater memory and computational power.
Hence, the capability to achieve efficient numerical simulation
directly influences the potential extension of multiscale mod-
eling methods into field applications. To effectively serve the
scientific research or field application requirements, multiscale
digital rocks typically need exceed a size of 1,000° voxels,
or even larger, to prevent multiscale integration efforts from
losing their practical significance. In practical applications,
small-sized data volumes can be directly obtained using a
physical imaging method or numerical reconstruction method,
without the need for cross-scale data integration. Therefore,
the feasibility of conducting numerical simulations on large-
scale digital rock volumes fundamentally dictates the mean-
ingfulness of multiscale modeling.
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Fig. 1. Example of direct simulation process of multiscale digital rock. Divide a multiscale integrated large size digital rock
into 64 regions for simulation respectively, and then use the obtained rock physical parameters for upscaling simulation to

obtain the results of the entire model.

3. Recommended approaches for multiscale
numerical simulation

In response to the above issues, two multiscale digital rock
simulation methods have been summarized: direct simulation
method and indirect simulation method. The direct simulation
method entails conducting simulation calculations directly
on the multiscale digital rock to determine rock physical
properties, such as elasticity, electricity, and permeability.
If the model size is too large, it can be partitioned into
multiple subregions for sequential simulation, with subsequent
aggregation of results to derive the overall physical parameters
through subregion numerical simulation or homogenization
methods (Dehghan Khalili et al., 2013). Utilizing the deep
learning technology, varying resolution information can be
consolidated to construct a large-scale, high-precision digital
rock. However, the data volume is too large to directly perform
numerical simulations. The process of multiscale digital rock
simulation for a sandstone, as depicted in Fig. 1, involves
dividing the constructed large-scale multiscale integrated dig-
ital rock into multiple subregions. Each subregion simulates
the physical parameters, which are then integrated into the
corresponding positions to conduct further simulations for
the physical properties of the entire model. Furthermore,
employing layered homogenization methods with data-driven
surrogate models can enhance computational efficiency in
predicting physical properties (Ahmad et al., 2023; Elmorsy
et al., 2023; Jiang et al., 2023; Liu et al., 2023).

Multiscale digital rock modeling is essentially the pro-
cessing of 3D images, which requires that the resolution gap
between the datasets used for fusion is manageable to prevent
excessive model data volume that could overwhelm computer
computation capabilities. For rock structures with significant
scale differences like shale, coal, and vuggy carbonate rocks,
direct simulation may not be applicable, prompting the use
of an indirect simulation method. The indirect simulation
method is an equivalent alternative method that does not use
multiscale digital rocks but integrates the physical properties of

rocks expressed by different scale data to calculate the overall
properties of the samples (Miarelli and Della, 2021; Najafi
et al.,, 2021). Fig. 2 shows a multiscale simulation process
of shale, with the selected sample pores mainly consisting of
nanoscale pores and fractures, and occasionally micrometer-
scale pores. The thickness of the laminations ranges from
micrometers to millimeters, exhibiting clear multiscale char-
acteristics. Various techniques like CT, Modular Automated
Processing System (MAPS), and Quantitative Evaluation of
Materials by Scanning Electron Microscopy (QEMSCAN) are
utilized to capture diverse scale features. CT data with a 2
Um resolution forms a coarse-scale framework; each voxel
represents a basic unit for simulation, comprising minerals
and pores. QEMSCAN identifies mineral distribution, while
MAPS, with a 4 nm resolution, extracts and reconstructs
nanoscale pores of different minerals. The 3D reconstruction
result depicts developed pores in each basic unit, creating high-
precision digital rocks. Initial nano-scale simulations on each
basic unit determine their physical properties in the coarse-
scale data, establishing the fundamental characteristics of each
type of mineral. At this point, the coarse-scale data can be
further used for simulation to obtain the overall upscaled phys-
ical properties. In cases where high-precision data is lacking,
theoretical formulas can deduce the basic physical properties
of minerals for input into coarse-scale data, enabling sample
property simulations (Liu et al., 2021; Wang et al., 2022). Both
simulation methods, direct and indirect, can be synergistically
employed based on specific requirements to enhance parameter
calculation accuracy and efficiency.

Furthermore, there remain numerous promising avenues to
investigate within the realm of multiscale digital rock technol-
ogy. These include the integration of multiscale information
through both direct and indirect methods, the characterization
and fusion of samples at multiple levels, and the development
of lightweight multiscale grids to achieve a comprehensive
depiction of rock properties.
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Fig. 2. Example of indirect simulation process of multiscale digital rock. Coarse-scale data serves as the overall framework,
with each voxel representing the basic unit of numerical simulation. The 3D reconstruction fine-scale samples are used to
determine the physical properties of each basic unit, and upscaling simulation can obtain the physical properties of the entire

sample.

4. Exploration of digital wellbore modeling and
simulation methods

The development of digital wellbore technology is based on
the multiscale digital rock. A digital wellbore is a data volume
at the scale of a wellbore, similar to a digital rock, generally
representing a depth range from a few meters to hundreds of
meters. Three-dimensional digital wellbore modeling is also
a multiscale modeling process. In contrast to digital rock,
the grid data of the wellbore model is generally continuous,
rather than having clearly defined boundaries with single-
mineral composition. Well logging curves and images are
used as coarse-scale data, and digital rock as fine-scale data
for matching, aiming to reconstruct complete wellbore for-
mation images (Zhang, 2015). The specific modeling process
involves dividing the well section into distinct layers based
on lithofacies, under the assumption that each layer exhibits
similar internal structural characteristics. Subsequently, well
logging data and images are utilized to construct a complete
3D cylindrical image of wellbore porosity. Digital rock images
serve as the training images, with wellbore porosity image
serving as hard data and porosity curve as soft data for the
hierarchical construction of a digital wellbore porosity model.
Ultimately, the mineral composition of each grid point is fine-
tuned using elemental logging data. This results in multi-
component digital wellbore models, which can then be used
to conduct numerical simulations of rock physical properties.

The research on simulating rock physical properties using
digital wellbores can be categorized into direct simulation
of formation physical properties and forward simulation of
logging instrument detection characteristics in wellbores. Fig.
3 shows the two approaches for digital wellbore modeling
and simulation. Before the forward simulation, determining
the physical parameters of the formation is essential, and
these steps are interrelated. Similar to multiscale digital rock

simulation, direct simulation of formation physical properties
is also a multiscale process. In the fine-scale digital rock
shown in Fig. 2, each grid point represents a single com-
position, facilitating the acquisition of physical properties.
Conversely, in the coarse-scale digital rock, each grid point
contains both minerals and pores, necessitating reliance on
the fine-scale model to determine physical properties. Notably,
at the digital wellbore scale, each grid point contains more
information, including pores and various minerals. Hence,
rock samples in different formations, despite having similar
mineral compositions, may exhibit distinct physical proper-
ties. Therefore, it is difficult to directly determine physical
properties based solely on mineral composition proportions.
Similarly, the physical properties of the digital wellbore can be
inferred through an upscaling process utilizing finite element
or effective medium theory. This involves assigning fine-scale
physical parameters to wellbore grid points to deduce the
wellbore’s physical parameters. Subsequent to determining the
formation parameters, further simulations can be conducted
on the logging instrument in the digital wellbore, setting
parameters like formation temperature, pressure, and drilling
fluid invasion to establish a realistic formation environment.
By adjusting mineral and fluid proportions, researchers can
effectively explore the instrument’s detection characteristics
under varying factors. The digital wellbore simulation involves
complex processes like multiscale data fusion modeling and
equivalent substitution simulation, leading to significant com-
putational demands in field application. To balance compu-
tational efficiency and accuracy, it is possible to bypass the
multiscale fusion modeling step in digital rock simulations and
occasionally skip the digital wellbore modeling process for
wellbore parameter simulations. In recent years, deep learning
has been applied at a deeper level in digital rock modeling,
such as conditional generative adversarial network, conditional
variational auto-encoder generative adversarial network, multi-
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Fig. 3. Two approaches for digital wellbore modeling and simulation. One is to use well logging data and multiscale digital
rocks to construct large-scale models of the wellbore and surrounding formations for simulating logging responses. The other
is to batch construct continuous-depth digital rocks for simulating at the core scale.

condition denoising diffusion probabilistic model, leading the
digital rock technology based on deep neural networks from
research to field application (Chi et al., 2023; Luo et al., 2024).
By applying the above methods, it is possible to construct
digital rock samples with different pore structures based on
predefined conditional information. For instance, porosity and
pore size distribution can be used as constraints to control
digital rock modeling. Introducing well logging data as control
conditions during training and generation phases allows for
the batch generation of continuous-depth digital rock samples
along the entire wellbore, enabling the exploration of various
factors affecting rock physical parameters and solving the issue
of inadequate continuity in rock samples.

5. Conclusions

This paper provides an overview of the common methods,
key challenges, and research directions related to digital rock
and digital wellbore in multiscale modeling and numerical
simulation. For rocks with small-scale structural variations,
the integration of multi-resolution data offers a viable ap-
proach to develop a model containing multiscale information
for simulation purposes. However, for rocks with significant
structural variations, direct fusion of multi-resolution data
becomes impractical. It is recommended to develop models
of varying resolutions and progressively analyze their physical
properties from small to large scales. Of course, these methods
can also be combined to improve computational accuracy and
efficiency. The thought for multiscale modeling and simulation
can transition from the core scale to the wellbore scale.
Through the integration of logging and core data, macro-

scale digital wellbore and surrounding formation models
can be established for investigating the response character-
istics of downhole logging instruments. Additionally, creating
continuous-depth digital rocks with diverse pore structures in
batches can address discontinuity issues in core data. The tran-
sition from digital rock to digital wellbore establishes a link
between microstructure and macro response. In future work,
a combination of direct and indirect fusion techniques, multi-
level representation and fusion of multiscale data, as well as
the development of lightweight multiscale grids, is essential
for the complete expression of rock information. Ultimately,
constructing a full-scale 3D digital model centered around
the wellbore will accurately describe formation parameters at
micro and macro levels, leading to enhanced reservoir trans-
parency and robust support for geological resource exploration
and development.
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