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Abstract:
Neural-network, machine-learning algorithms are effective prediction tools but can behave
as black boxes in many applications by not easily providing the exact calculations and
relationships among the underlying input variables (which may or may not be independent
of each other) involved each of their predictions. The transparent open box (TOB) learning
network algorithm overcomes this limitation by providing the exact calculations involved
in all its predictions and achieving acceptable and auditable levels of prediction accuracy.
The TOB network, based on an optimized data-matching algorithm, can be applied in
spreadsheet or fully-coded configurations. This algorithm offers significant benefits to
analysis and prediction of many complex and difficult to measure non-linear systems.
To demonstrate its prediction performance, the algorithm is applied to the prediction of
crude oil formation volume factor at bubble point (Bob) using published datasets of 166,
203 and 237 data records involving 4 variables (reservoir temperature, gas-oil ratio, oil
gravity and gas specific gravity). Two of these datasets display uneven and irregular data
coverage. The TOB network demonstrates high prediction accuracy for Bob (Root Mean
Square Error (RMSE)∼0.03; R2 > 0.95) for the more evenly distributed dataset. The
performance of the TOB readily reveals the risk of overfitting such datasets. With its
high levels of transparency and inhibitions to being overfitted, the TOB learning network
offers an insightful approach to machine learning applied to predicting complex non-
linear systems. Its results complement and benchmark the prediction contributions of neural
networks and empirical correlations. In doing so it provides further insight to the underlying
data.

1. Introduction
Neural networks and other machine learning now rep-

resent the mainstay of tools applied to generate reliable
predictions from systems dependent upon multiple variables.
This is particularly so when some or all of the underlying
variables are either difficult and/or expensive and/or time
consuming to measure experimentally. Where complex, non-
linear relationships between the input variables cannot be
defined in terms of simple universally applicable formulas
are systems that also lend themselves to machine learning ap-
proaches to prediction. The most commonly applied machine
learning tools to complex non-linear systems are artificial
neural networks (ANN) (Bishop, 1995; Haykin, 1999). Two
distinct ANN architectures commonly applied are multi-layer
perceptron (MLP) and radial basis function networks (RBFN)
(Broomhead and Lowe, 1988). ANNs are often combined
with various optimization, back-propagation and forward-

feeding training algorithms to improve their predictions. Other
commonly applied machine -learning algorithms are adaptive
neuro-fuzzy inference systems (ANFIS) (Jang, 1993; Jang et
al., 1997), support vector machines (SVM) (Vapnik, 1998) and
least-squares support vector machine (LSSVM) (Espinoza et
al., 2003). The application of such machine-learning tools is
growing rapidly (Schmidhuber, 2015). However, their applica-
tions often pose problems and frustration for their users. Their
lack of transparency also poses difficulties in assessing their
reliability when applied to datasets with subtle differences to
the one used to calibrate them.

The lack of transparency provided by many machine
learning algorithms makes many researchers sceptical about
the benefits of their widespread uptake. Failure to provide a
clear explanation of how individual predictions are calculated
is a barrier to their universal acceptance. Also, the lack of
information on the relative weights and significance of each
input variable applied to each data record in the dataset
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contributing to a set of predictions associated with specific
data records does not help their cause. Some view them scep-
tically and suspiciously as obscure black-box tools (Heinert,
2008) of secondary value to more rigorous experimental and
analytical methods. It is possible to provide some insight to
the inner workings of the correlation-based machine-learning
tools mentioned, but that typically requires detailed simulation
studies to measure the significance of each input variable in
generating the prediction for a specified set of test data. That
approach can be informative, but only provides partial and
indirect insight to these complex machine-learning algorithms
(e.g., Elkatatny and Mohamed, 2017). Variable importance
algorithms and other data mining algorithms (e.g., random
forest algorithm) can also be used to provide the covari-
ances between the influencing variables of machine-learning
methods (Auret and Aldrich, 2012). Such approaches reveal
the relative importance of the input variables in influencing
the predictions, but again do not provide full transparency
to the exact correlations involved in the predictions of many
machine-learning methods.

A recently-proposed learning-network algorithm, based on
simple matching and optimization heuristics (i.e., the trans-
parent open-box (TOB); Wood, 2018a) provides an alterna-
tive approach and direction for machine learning. One of
its primary objectives is to provide reliable predictions of
high accuracy. Another is to provide complete access to the
underlying contributions to each variable from specific records
in the dataset that underpin the predictions generated by the
learning network. Moreover, the TOB methodology reduces
the risk of over-fitting data sets, a problem impacts many other
machine-learning algorithms. This is because their opaque and
complex correlations are only viable for the specific dataset
studied (Lever et al., 2016), yet those correlations are not
readily revealed for many machine-learning networks. This
tends to be a more significant issue for datasets with irregular
covering of records over the dependent -variable range to be
predicted.

The TOB algorithm is quite distinct from other locally-
weighted learning methods (Atkeson et al. 1997) but some of
its attributes are consistent with lazy-learning principles (Birat-
tari et al., 1999). Locally-weighted learning methods originate
from the various earlier algorithms commonly distinguished
as nearest-neighbour prediction methods (Fix and Hodges,
1951; Cover and Hart, 1967). Such algorithms can also be
readily configured to provide transparency in the predictions
that they generate (Shakhnarovich et al., 2006). Currently,
such approaches constitute part of some pattern recognition
algorithms (Garcia et al., 2012; Chen and Shah, 2018), but are
not so widely applied to improve the prediction of dependent
variables related to multiple independent variables by a suite
of highly non-linear distributions. The more-opaque neural
network, correlation-based, machine-learning algorithms men-
tioned now tend to be favoured for such predictions, despite
their general lack of transparency. The majority of nearest-
neighbour-prediction algorithms seek to linearize non-linear
and irregularly distributed systems to provide approximations
at the local level (Bontempi et al., 1999). The TOB algorithm
goes beyond such simple approximations, because its approach

relates the underlying independent variables in optimized non-
linear relationships to generate each of its predictions.

Here, we describe how the TOB approach can be suc-
cessfully applied to predict formation volume factor from
published crude oil datasets and compare its predictions to
those generated from a trained ANN algorithm and well-
established empirical correlations. Section 2 summarizes the
TOB methodology and how it is applied to generate individual
predictions. Section 3 describes the crude oil formation volume
factor datasets used to demonstrate TOB’s prediction capa-
bilities. Section 4 defines the statistical prediction measures
used to assess prediction performance. Sections 5, 6 and
7 compare the prediction performances of TOB and ANN
applied to the datasets analysed. Section 8 compares the
machine learning predictions with those achieved by published
empirical correlations for crude oil formation volume factor.

2. The TOB prediction approach to non-linear
systems

The transparent open-box algorithm involves 14 steps
(Wood, 2018a; Wood et al., 2019) which are tailored to provide
reliable and auditable predictions for non-linear systems with
comparable accuracy to the more-opaque machine-learning
algorithms (i.e., ANFIS, ANN, LSSVM and SVM). TOB
Stage 1 builds broadly upon lazy learning principles (Birattari
et al., 1999), which commonly underpin nearest-neighbour
prediction methods (Chen and Shah, 2018). However, the
TOB algorithm applies quite specific variable-error metrics to
derive its initial predictions. TOB Stage 2 goes far beyond k-
learning methods by applying standard optimizers to optimize
the weights applied to its input variables in high-ranking
nearest-neighbour data records. This approach leads to a more
flexible, effective and versatile weighting regime than typically
applied in k-nearest neighbour prediction methods (Samworth,
2012). The mathematical basis for the TOB methodology and
processes involved in the calculation steps are explained in
detail in Appendix 1 and are summarized in Fig. 1. Tables 1 to
3 display the intermediate TOB calculation results associated
with a specific data record from one of the datasets analysed
in this study. These displays highlight the level of calculation
and transparency detail the TOB method routinely provides.

TOB-Stage-one predictions (steps 1 to 10) are found to
provide credible but sub-optimal prediction accuracy (e.g.,
comparable to those provided by simple data-matching algo-
rithms). However, the TOB-stage-one predictions are almost
always significantly improved upon by applying TOB-stage-
two optimization, provided that the tuning subset is of suffi-
cient size.

It is straightforward to fully code the TOB algorithm using
Eqs. (A-1) to (A-9) (Appendix 1) in various mathematically-
focused software packages (Octave, R, Python, MatLab etc.).
For large data sets (i.e., with many thousands of data records
and large numbers of input variables) it is more efficient to
apply the TOB in that way.

For small and medium numbers of data records (e.g., up
to several thousand records and ten or so variables) hybrid-
VBA-spreadsheet can be a convenient way of maximizing the
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Summary of Setting up and Applying the Transparent Open Box (TOB) Learning Network

Setup learning network 
and prepare it for 
TOB calculations

Generate TOB Stage 1 
dependent-variable 

predictions for 
tuning subset:

Q fixed & equal weights 
applied to all variables

Generate TOB Stage 2 
optimized dependent-variable 
predictions for tuning subset:

Q fixed & equal weights 
applied to all variables

Apply optimized and 
tuned TOB assumptions 
to predict testing subset 

dependent variable

performance

Step 1
Setup 2D data

array

Step 6
Divide data
Into subsets

Step 2
Sort & rank
data in array

Step 3
Statistical 
analysis

Step 4
Normalize data

In array

Step 5
Verify normalized 

values

Step 7
Calculate squared errors
Tuning versus training

Step 8
Select top-Q ranking
Data record matched

Step 9
Calculate fractional

Contributions of
Matching records

Step 10
Calculate RMSE
&  accuracy of

Stage 1 predictions

Step 11
Apply optimizer
Varying Q and

Variable weights

Step 12
Calculate RMSE
&     accuracy of

Stage 2 predictions

Step 13
Apply tuned Network
to test subset records 
& calculate accuracy

Step 14
Compare accuracy to 

that achieved by correlations 
or other machine learning 

algorithms

Step 6 benefits from sensitivity analysis
(running of several cases by trial and error)
to establish the meaningful numbers of data
records to include in the tuning subset.

Step 11 benefits from sensitivity analysis
evaluating different values of Q.

Comparing the prediction accuracies for
Stage 1 and Stage 2 indentifies the
effectiveness of the different TOB stages in
the predictions derived. This helps to
identify and avoid cases of over-fitting.

2R

2R

Fig. 1. Diagrammatic illustration of the stages and steps constituting the TOB non-linear system prediction method (Wood, 2018a; Wood et al., 2019). Text
section 2 and Appendix 1 provide the calculation details of the algorithm.

benefits of the TOB algorithm’s transparency, by systemat-
ically recording the intermediate calculations, and exploiting
the standard optimizers available (i.e., the generalized reduced
gradient and/or evolutionary optimizers contained within Ex-
cel’s Solver package).

The crude oil formation volume factor at bubble point (Bob)
is predicted in this study using small published datasets of
166 to 237 data records involving four independent variables.
A VBA-driven Excel-Solver-based algorithm is involved, ex-
ploiting spreadsheet attributes to transparently record the in-
termediate calculations involved in the predictions generated
and display the results backed up by Excel cell formulas.

The TOB learning network provides easy access to detailed
calculations for the contribution of each of the top-matching
data records in the training subset to each dependent-variable
prediction value for records in the tuning and testing subsets.
There are no hidden correlations or inaccessible calculations
involved in the TOB algorithm. This key attribute of trans-
parency, is the detail it provides of the calculations involved
in the predictions generated for each specific data record from
the datasets studied (for such details see Wood, 2018b). An
example shown in the supplementary file identifies exactly
which top-ten matching data records are selected by the TOB
algorithm for a specific data record prediction. This provides

forensic-like information from the underlying dataset, i.e.,
close matches between new samples and existing samples in a
dataset can be revealed that would otherwise not be obvious.
For some datasets this TOB attribute can be used to identify the
likely provenance (e.g., a specific location origin) of a sample
from an unspecified source. If the TOB stage 2 optimizer is
setup to use Excel’s Solver, which is convenient for small
and mid-sized data sets, the intermediate calculations for each
data record are displayed in Excel cell formulas, making the
calculations even more visible and easy interrogate.

ANN and other neural networks do not provide easy
transparent access to their intermediate calculations in detail
and certainly not routinely on a record by record basis as
disclosed by the TOB. With effort, it is possible to extract
some parametric information from ANN models, but it is very
difficult and time consuming for a user to get to the exact step-
by-step calculations made in the prediction of each individual
data record. TOB makes forensic assess readily available for
the predictions it makes.

3. Predicting crude oil formation volume factor
at bubble point

Formation volume factor (FVF) is a key property of crude
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Table 1. Statistical summary of the key metrics measured in the PVT dataset of 166 Pakistani crude oils (Al-Marhoun, 1998). The TOB learning network,
the MLP-ANN network and several published Bob correlations are applied to predict Bob for this dataset.

Dataset #1 Used for Formation Volume Factor (Bob) Prediction (Bob Range Covered: 1.20 to 2.92)

Dataset: 166 data records Min Max Mean

Reservoir temperature T (◦F) 182 296 242

Solution gas to oil ratio Rs (scf/stb) 92 2,496 500

Specific gravity of gas γg (Air = 1) 0.8253 3.4445 1.760

Oil Gravity (degrees API) 29 56.5 39.1

Formation Volume Factor at bubble point (Bob) 1.200 2.916 1.479

oil derived from sub-surface reservoirs. The FVF of crude oil
establishes the ratio of the volume of crude oil in a sub-surface
reservoir at temperature and pressure higher than at the earth’s
surface to the volume of that same crude oil composition in
stock tank conditions at the earth’s surface. It is measured
as a fundamental crude-oil attribute during pressure-volume-
temperature (PVT) analysis. PVT data provide essential infor-
mation with which to characterize crude oils. PVT data are
also used in the calculation of the recoverable resources that
could potentially be recovered to the surface from specific oil
reservoirs. However, measuring the input variables required to
determine FVF is time-consuming and expensive.

Estimating FVF at bubble point (Bob) from PVT (pressure-
volume-temperature) data using formulaic relationships be-
tween the input metrics is also fraught with inaccuracies. This
is because the input-metric assumptions required for highly
non-linear and complex sensitivities for different ranges of
pressure and temperature conditions and crude-oil composition
types are difficult to define consistently. This is particularly
so for the compressibility factor (Z) of the entrained and
associated natural gas (solution gas) present in variable quan-
tities in all crude oils. Over past decades many correlations
were proposed and widely applied to relate bubble point
pressure and formation volume factor of crude oils of different
compositions (Katz, 1942; Standing, 1947; Al-Marhoun, 1992;
Karimnezhad et al., 2014; Jarrahian et al., 2015). However,
such correlations are difficult to apply with confidence to
crude oils from outside the dataset on which the correlations
are based. Various non-linear optimization methods have been
applied to predict PVT properties, including Bob (Arabloo et
al., 2014; Oloso et al., 2017; El-Hoshoudy and Desouky, 2018;
Fattah and Lashin, 2018). Also, a number of neural network
models have been developed to estimate Bob from PVT data
(Gharbi and Elsharkawy, 1997; Vartosis et al., 1999; Dutta
and Gupta, 2010; Moghadam et al., 2011; Irene and Sunday,
2013; Elkatatny and Mahmoud, 2017). These models attempt
to predict Bob and FVF from the more easily measured and
readily available input metrics, avoiding the need to derive
Z-factors.

Here, we apply the TOB learning-network to a pub-
lished PVT dataset (Mahmood and Al-Marhoun, 1998) for 22
bottom-hole samples of crude oils from Pakistan (Table 1). An
ANN model was recently applied (Rammay and Abdulraheem,
2017) to this dataset to predict FVF at bubble point pressure

(Bob). Here, we apply the TOB model to predict Bob from
the 166 data records of that dataset using only four easy-to-
measure variables:
• Temperature – T (◦F);
• Solution gas-to-oil ratio – Rs measured in standard cubic

feet per stock tank barrel (scf/stb);
• Specific gravity of the solution gas – γg, and,
• API gravity of the crude oil.
We compare the Bob predictions of the TOB algorithm for

three sets of data with a standard multi-layer perceptron (MLP)
artificial neural network ANN model. The two models were
specifically set up to evaluate a training subset, a tuning subset
and an independent testing subset, each containing specified
data records.

3.1 Dataset #1 including a range with Bob sparse data
representation

The 166 data records of the entire dataset of crude oils
from Pakistan (Al-Marhoun, 1998) are divided into: a training
subset consisting of 115 data records, a tuning subset consist-
ing of 18 data records; and, a testing subset (33 records). The
data ranges sampled by dataset #1 are listed in Table 1.

A challenge to prediction using dataset #1 is that the
density of samples is skewed towards the lower end of the
Bob scale: 134 of the samples have Bob values of < 1.6; only
32 samples cover the Bob range 1.6 to 2.9, with only 7 of
those samples having Bob values of > 2.0. For this reason,
two other modified datasets are also evaluated to reveal the
capabilities and limitations of the TOB method.

3.2 Dataset #2 introducing data from other sources

The 237 data records of the entire dataset #2 includes the
Pakistan crude oils from dataset #1 expanded with additional
crude oils from the United Arab Emirates (Dokla and Osman,
1992), Malaysia (Omar and Todd, 1993) and Iran (Moghadam
et al., 2011) in the Bob data range 1.1 to 2.1. The data records
are divided into: a training subset consisting of 172 data
records, a tuning subset consisting of 30 data records; and, a
testing subset (35 records). The data ranges sampled by dataset
#2 are listed in Table 2.

Although the density of data records for the dependent
variable range considered is increased in dataset #2 compared
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Table 2. Statistical summary of the key metrics measured in the PVT dataset #2 made up of 237 crude oils with published data from four countries (Iran,
Malaysia, Pakistan, and UAE ). The TOB learning network, the MLP-ANN network and several published Bob correlations are applied to predict Bob for

this dataset in the range 1.10 to 2.1.

Dataset #2 Used for Formation Volume Factor (Bob) Prediction (Bob Range Covered: 1.10 to 2.10)

Dataset: 237 data records Min Max Mean

Reservoir temperature T (◦F) 120 296 223

Solution gas to oil ratio Rs (scf/stb) 92 1,784 552

Specific gravity of gas γg (Air = 1) 0.5210 3.4445 1.3204

Oil Gravity (degrees API) 21.1 53.2 37.6

Formation Volume Factor at bubble point (Bob) 1.102 2.055 1.429

Table 3. Statistical summary of the key metrics measured in the PVT dataset #3 made up of 206 crude oils with published data from four countries (Iran,
Malaysia, Pakistan, and UAE ). The TOB learning network, the MLP-ANN network and several published Bob correlations are applied to predict Bob for

this dataset in a range 1.10 to 1.62.

Dataset #3 Used for Formation Volume Factor (Bob) Prediction (Bob Range Covered: 1.10 to 1.62)

Dataset: 206 data records Min Max Mean

Reservoir temperature T (◦F) 120 296 220

Solution gas to oil ratio Rs (scf/stb) 92 1,376 467

Specific gravity of gas γg (Air = 1) 0.5210 3.4445 1.3419

Oil Gravity (degrees API) 21.1 53.2 37.6

Formation Volume Factor at bubble point (Bob) 1.102 1.619 1.374

to dataset #1, particularly in the Bob range 1.1 to 1.6 (200 data
records), the density of data records remains relatively sparse
for Bob range 1.6 to 2.1 (only 37 samples). For this reason,
dataset #3 is also evaluated.

3.3 Dataset #3 focusing on a Bob range covered more
densely by the data records

The 206 data records of the entire dataset #3 consists
of those crude oils (from Pakistan, United Arab Emirates,
Malaysia and Iran) from dataset #2 in the Bob data range 1.10
to 1.62. The data records are divided into: a training subset
consisting of 145 data records, a tuning subset consisting of
31 data records; and, a testing subset (30 records). The data
ranges sampled by dataset #3 are listed in Table 3.

The density of data records for the dependent variable
range covered by dataset #3 is spread more evenly and densely
compared to that in datasets #1 and #2, for the Bob range 1.10
to 1.62. The 206 data records in dataset #3 are split as follows:
Bob range 1.1 to < 1.2 contains 11 records; Bob range 1.2 to
< 1.3 contains 46 records; Bob range 1.3 to < 1.4 contains
64 records; Bob range 1.4 to < 1.5 contains 47 records; Bob
range 1.5 to 1.62 contains 38 records.

4. Statistical measures of prediction accuracy
Several widely-used statistical error measures are calcu-

lated to determine the accuracy, precision and correlation of
measured versus predicted Bob. These measures, and compo-
nents used in their calculation, are expressed in Eq. (1) to Eq.
(8) where Xi refers to the measured value and Yi the predicted

value of data record i in a dataset.
Mean Squared Error (MSE) (Mood et al., 1974;

Lehmann and Casella, 1998):

MSE =
1
n

n

∑
i=1

(
Xi−Yi

)2
(1)

Also used for the GA fitness function f (Eqs. (4) and (5)).
Root Mean Square Error (RMSE) (Carbone and Arm-

strong, 1982; Hyndman and Koehler, 2006):

RMSE =
√

MSE (2)

RMSE calculated with Eqs. (1) and (2) is used as the
objective function of the TOB algorithm.

Percent Deviation between measured and predicted
values for data set record i (PDi) (Makridakis, 1993):

PDi =
Xi−Yi

Yi
×100 (3)

Average Percent Deviation (APD) (Makridakis, 1993):

APD =

n
∑

i=1
PDi

n
(4)

APD combines both positive and negative percent devia-
tions Eq. (3) and is expressed in percentage terms.

Absolute Average Percent Deviation (AAPD) (Makri-
dakis, 1993):

AAPD =

n
∑

i=1
|PDi|

n
(5)
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AAPD combines both positive and negative percent devi-
ations Eq. (3) and is expressed in percentage terms.

Standard Deviation (SD) (Pearson, 1894):

SD =

√√√√ n
∑

i=1
(Di−Dimean)

2

n−1
(6)

Where, Di is (Xi−Yi) for each (ith) data record of a dataset;
and, Dimean is the mean of the Di values of all the data records
in a dataset:

Dimean =
1
n

n

∑
i=1

(Xi−Yi) (7)

Correlation Coefficient (R) between variables Xi and Yi
(on a scale between -1 and +1) (Pearson, 1894):

R =

n
∑

i=1
(Xi−Xmean)(Yi−Ymean)√

n
∑

i=1
(Xi−Xmean)2

n
∑

i=1
(Yi−Ymean)2

(8)

Coefficient of Determination = R2 (on scale between 0
and 1) (Wright, 1921).

5. Bob prediction performances of TOB and ANN
compared for dataset #1 (166-samples extending
over a Bob range of 1.20 to 2.90)

The TOB model applied to dataset #1 achieves its optimum
Bob prediction performance (after TOB stage 2; based on its
objective function RMSE value) with Q = 2 and weights wT
= 0, wRs = 0.03268, wγg = 0; wAPI = 0.00077. Sensitivity
analysis (not shown) applies several Q values and a number of
distinct allocations (selected on a trial and error basis) of data
records between the three data subsets into which the dataset is
divided. This leads to slightly different but broadly acceptable
levels of Bob prediction performance. The optimum solution
with a Q value of 2 suggests that the dataset #1 is prone to
overfitting and this is further indicated by sensitivity analysis
(Table 4).

A multi-layer perceptron artificial neural network (MLP-
ANN) was also developed and tuned using standard Matlab
codes and functions to predict Bob for this dataset. The ANN
methodology is well documented (Bishop, 1995; Haykin,
1999) and widely applied. Conceptually, the ANN method
can be described in simple terms by the simple learning
law expressed as Eq. (9) indicative of underlying formulaic
correlations:

f : X → Y (9)

That function varies in the way it is applied (Bose and
Liang, 1995; Choubineh et al., 2017). MLP-ANN functions,
f (x), are comprised of I underlying contributing functions.
These contributing functions, gi(x), are formulated single
vectors, e.g., g = (g1, g2, ..., gI). Each component of vector g
is then related to the overall function f (x), by applying a set

of non-linear weights in a summed relationship constituting
Eq. (10):

f (x) = K

(
n

∑
i=1

wigi(x)

)
(10)

where, K = non-linear activation functions that determine the
MLP-ANN output; wi = weights applied to each function of
vector g.

A supervised-learning method further develops the MLP-
ANN model. Sets (x,y) are selected for which x ∈ X , y ∈ Y
to derive the function f : X → Y applying a specified cost
function. Mean squared error (MSE, Eq. (1)) between the
predicted and measured Bob values in the dataset is the cost
factor that is minimized as the objective function for the
MLP-ANN model developed. A gradient-descent algorithm is
applied to minimize MSE as the backpropagation algorithm
that is able to train the MLP-ANN rapidly and effectively to
optimize its predictions.

The MLP-ANN model applied to the Bob dataset #1,
involves two hidden layers in its network architecture. Hidden
layer 1 has 4 neurons, whereas hidden layer 2 has 3 neurons.
The developed MLP-ANN model, selected using a trial-and-
error sensitivity analysis to determine the optimum number
of hidden layers, neurons and activation functions, applies the
following activation functions:
• purelin between the input layer and hidden layer 1;
• logsig between hidden layer 1 and hidden layer 2; and,
• purelin between hidden layer 2 and the network’s output

layer.
1000 iterations were evaluated to tune the MLP-ANN ap-

plying a back-propagation algorithm that optimizes the mean-
squared error (MSE) between the measured and predicted Bob
values.

The value ranges and non-linear relationships between the
input variables, T , Rs, γg, API and the dependent variable
Bob are illustrated in Figs. 2A to 2D. These relationships are
primarily non-linear and, as revealed by Fig. 2, are distributed
irregularly for the wide Bob range covered by this dataset. The
most-dense coverage of samples is for Bob less than about 0.6
with sparse coverage of Bob at greater than 0.6. Gas-to-oil ratio
(Rs) is the input metric best correlated with Bob and therefore
has the greatest discriminatory impact in the record -match
selections for stage 1 of the TOB network.

Figs. 3 and 4 compare the Bob prediction results obtained
by the TOB algorithm with those derived from a multi-
layer perceptron ANN algorithm applied to the same dataset.
Both algorithms achieve a high degree of accuracy in the
predictions they generate for this data set. For the tuning
and testing subsets (Figs. 3 and 4) the ANN yields a higher
correlation coefficient and a lower RMSE value compared to
the TOB model. The ANN architecture (number of hidden
layers, number of neurons, type of activation function) selected
by the sensitivity analysis performs very well, so we believe
that the developed ANN structure should be considered fit for
purpose.

The TOB model is clearly unable to match the apparent
prediction accuracy of the ANN model. This is due to the
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Fig. 2. T , Rs, γg, and API relationships for data records in the TOB-training subset plus those in the TOB-tuning subsets used to evaluate dataset #1 to which
the TOB-algorithm is applied to predict formation volume factor at bubble point (Bob).

Fig. 3. Predicted versus measured formation volume factor at bubble point (Bob) for the tuning subset of dataset #1 (18 records).

Fig. 4. Predicted versus measured formation volume factor at bubble point (Bob) for the testing subset of dataset #1 (33 records).
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sparsity of data points in the full dataset for Bob values above
1.6 rsb/stb and especially above 2 rsb/stb.

The ANN model, assessed in terms of the statistical
accuracy measures described by Eq. (1) to Eq. (8), performs
particularly well with sparse and clustered datasets, such as
dataset #1 (Table 5). On the other hand, the TOB model, which
does not in any way involve the construction of a correlation,
is less prone to overfitting. The TOB relies on surrounding data
points with close matches to the data record being predicted
rather than on complex correlations established by neural
networks or those involved in published empirical Bob/PVT
correlations.

The more-widely spaced the surrounding data points and
the more non-linear and clustered the relationship between
the input variables, the less precise the TOB’s predictions
become, and rightly so. In practice, for datasets such as dataset
#1, a lower R2 value obtained for TOB versus that obtained
for ANN may not be such a bad outcome, as it highlights
some of the limitations of the dataset (e.g., sparse data over
half of the dependent variable’s value range). The R2 values
of > 0.994 achieved by the ANN may be overstating the
reliability of its correlation to predict new unknown data points
for that sparsely sampled upper range of the Bob distribution
constituting dataset #1. As its correlations depend on few data
points in that region it may be overfitting the available data.
It suggests that a more reliable TOB prediction model could
be constructed for Bob values less than 1.6 rsb/stb, because
of the greater density of data records. On the other hand, for
values greater than 1.6 rsb/stb the ANN algorithm provides a
more credible prediction model, albeit with a correlation that
is probably somewhat overfitted for the limited data points
available. Evaluations of datasets #2 and #3 further explore
these possibilities.

6. Bob prediction performances of TOB and ANN
compared for dataset #2 (237-samples extending
over a Bob range of 1.10 to 2.10)

One TOB model applied to dataset #2 achieves its optimum
Bob prediction performance with Q = 7 and weights wT =
0.0059, wRs = 0.6214, wγg = 0; wAPI = 1. Note that although
the weight applied to the gas gravity data is zero in TOB stage
2, gas gravity input data is still used (with equal weight to the
other input variables) to select the highest- ranking matching
records in TOB stage 1. A second TOB model applied to
dataset #2 ignored the gas gravity input data in TOB stages
1 and 2. It achieved its optimum Bob prediction performance
(after TOB stage 2; based on its objective function RMSE
value) with Q = 7 and weights wT = 0.0052, wRs = 0.418,
wγg = 0; wAPI = 1.

The MLP-ANN model applied to the Bob dataset #2,
involves two hidden layers in its network architecture. Hidden
layer 1 has 5 neurons and hidden layer 2 has 6 neurons.
The developed MLP-ANN model, selected using sensitivity
analysis, applies the following activation functions:

• purelin between the input layer and hidden layer 1;
• tansig between hidden layer 1 and hidden layer 2; and,

• purelin between hidden layer 2 and the network’s output
layer.

The MLP-ANN was evaluated in the same way as for
dataset #1.

Table 5 displays the prediction accuracies achieved by the
TOB and ANN models applied to dataset #2. Although dataset
#2 has a greater sample density in the Bob range 1.1 to 1.6, the
Bob range > 1.6 is only sparsely sampled (37 samples only
for that region). For the full testing subset, the TOB achieves
RMSE = 0.06698 and AAPD = 3.000%. For the 29 samples
of the testing subset within the Bob range 1.1 to 1.6 the TOB
achieves RMSE = 0.04367 and AAPD = 2.600%. For the full
testing subset, the ANN achieves RMSE = 0.03870 and AAPD
= 1.678%. For the 29 samples of the testing subset within the
Bob range 1.1 to 1.6 the ANN achieves RMSE = 0.02947
and AAPD = 1.462%. The accuracy metrics show slightly
less accuracy for TOB and ANN for dataset #2 compared to
dataset #1, particularly for the ANN for which the RMSE
has more than doubled (Table 5). Although, the ANN clearly
outperforms the TOB in terms of the accuracy achieved for
dataset #2, both methods are adversely affected in terms of the
accuracy they achieve when an even greater sampling density
contrast exists between the upper and lower ends of the Bob
range.

Interestingly, the TOB model that completely disregards
gas gravity as an input variable in stages 1 and 2 of its analysis,
yields slightly more accurate predictions (RMSE = 0.06282
and AAPD = 2.780%) than the TOB model that involves gas
gravity in the stage 1 data record matching process (RMSE =
0.06698 and AAPD = 3.000%). This implies that gas gravity
as an input variable is actually a hinderance to the TOB model
in achieving accurate Bob predictions for dataset #2. Table 5
reveals that this is also the case for datasets #1 and #3. On
the other hand, limiting the ANN to ignore gas gravity input
data reduces its accuracy; significantly so for dataset #3.

7. Bob prediction performances of TOB and ANN
compared for dataset #3 (206-samples extending
over a Bob range of 1.10 to 1.62)

One TOB model applied to dataset #3 achieves its optimum
Bob prediction performance with Q = 7 and weights wT =
0.0014, wRs = 1, wγg = 0; wAPI = 0.0981. A second TOB
model applied to dataset #3 ignored the gas gravity input data
in TOB stages 1 and 2. It achieved its optimum Bob prediction
performance with Q = 6 and weights wT = 0.0006, wRs = 1,
wγg = 0; wAPI = 0.0586.

The MLP-ANN model applied to the Bob dataset #3,
involves three hidden layers in its network architecture. Hidden
layer 1 has 6 neurons, hidden layer 2 has 5 neurons and hidden
layer 3 has 3 neurons. The developed MLP-ANN model,
selected using sensitivity analysis, applies the following ac-
tivation functions:

• purelin between the input layer and hidden layer 1;
• logsig between hidden layer 1 and hidden layer 2;
• logsig between hidden layer 2 and hidden layer 3; and,
• purelin between hidden layer 3 and the network’s output
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Table 5. Formation volume factor at bubble point (Bob) prediction accuracy achieved for TOB-testing subsets for datasets #1, #2 and #3 displaying values
for a range of statistical accuracy metrics and comparing the results with accuracies achieved by several published correlations applied to the same testing

subset data records.

Accuracy of Various Prediction Models for Formation Volume Factor of Oil at Bubble Point Pressure Appled to Datasets #1, #2 and #3

RMSE(*) APD% AAPD% SD R R2

Dataset (1) sparsely sampled Bob > 1.6

# Total Samples 166

Bob Range 1.20 to 2.90

# Samples in Testing Subset 33

TOB 0.05095 -0.056% 1.8515% 0.0517 0.9800 0.9605

TOB (ignoring gas gravity) 0.04861 0.245% 1.949% 0.0492 0.9817 0.9638

ANN 0.01502 -0.168% 0.582% 0.0148 0.9995 0.9989

ANN (ignoring gas gravity) 0.02112 -0.005% 0.796% 0.0214 0.9986 0.9971

Standing (1947) Correlation 0.03804 1.073% 2.112% 0.0363 0.9939 0.9879

Vazquez & Beggs (1980) Correlation 0.25860 15.064% 15.064% 0.1066 0.9676 0.9362

Glaso (1980) Correlation 0.06301 3.843% 4.066% 0.0306 0.9937 0.9875

Al-Marhoun (1988) Correlation 0.07271 3.036% 3.079% 0.0521 0.9950 0.9901

Petrosky & Farshad (1993) Correlation 0.10892 -5.423% 5.507% 0.0654 0.9917 0.9835

Arabloo et al. (2014) Correlation 0.25992 -
13.898%

13.898% 0.1342 0.9960 0.9919

Dataset (2) sparsely sampled Bob > 1.6

# Total Samples 237

Bob Range 1.10 to 2.10

# Samples in Testing Subset 35

TOB 0.06693 0.218% 3.000% 0.0674 0.9491 0.9007

TOB (ignoring gas gravity) 0.06282 0.463% 2.780% 0.0627 0.9550 0.9119

ANN 0.03870 0.541% 1.678% 0.0384 0.9806 0.9616

ANN (ignoring gas gravity) 0.04074 0.252% 1.866% 0.0411 0.9778 0.9560

Standing (1947) Correlation 0.03755 0.690% 1.724% 0.0367 0.9826 0.9654

Vazquez & Beggs (1980) Correlation 0.14178 7.689% 7.722% 0.0859 0.8994 0.8089

Glaso (1980) Correlation 0.06173 3.412% 3.636% 0.0379 0.9810 0.9624

Al-Marhoun (1988) Correlation 0.05241 1.964% 2.110% 0.0422 0.9906 0.9813

Petrosky & Farshad (1993) Correlation 0.06468 -1.496% 2.845% 0.0617 0.9570 0.9158

Arabloo et al. (2014) Correlation 0.19860 -
11.596%

11.596% 0.0982 0.9801 0.9606

Dataset (3) evenly sampled over Bob range

# Total Samples 206

Bob Range 1.10 to 1.62

# Samples in Testing Subset 30

TOB 0.02969 0.221% 1.729% 0.0299 0.9719 0.9446

TOB (ignoring gas gravity) 0.02664 0.542% 1.494% 0.0258 0.9767 0.9539

ANN 0.02263 0.488% 1.114% 0.0220 0.9833 0.9669

ANN (ignoring gas gravity) 0.03937 1.383% 2.131% 0.0350 0.9579 0.9176

Standing (1947) Correlation 0.02815 0.620% 1.474% 0.0274 0.9760 0.9526

Vazquez & Beggs (1980) Correlation 0.12005 7.421% 7.460% 0.0620 0.8582 0.7366

Glaso (1980) Correlation 0.05335 3.298% 3.478% 0.0292 0.9717 0.9442

Al-Marhoun (1988) Correlation 0.02971 1.274% 1.444% 0.0236 0.9843 0.9688

Petrosky & Farshad (1993) Correlation 0.05422 -1.774% 2.582% 0.0488 0.9418 0.8870

Arabloo et al. (2014) Correlation 0.16838 -
10.710%

10.710% 0.0762 0.9610 0.9234

(*) RMSE is used as the objective function of the TOB algorithm



Wood, D.A. and Choubineh, A. Advances in Geo-Energy Research 2019, 3(3): 225-241 235

layer.
The MLP-ANN was evaluated in the same way as that used

to evaluate dataset #1.
Table 5 displays the prediction accuracies achieved by the

TOB and ANN models applied to dataset #3. Dataset #3 is
characterized by a much more evenly distributed sampling
by the data records for the Bob range it covers (1.10 to
1.62). For the full testing subset, the TOB achieves RMSE
= 0.02969 and AAPD = 1.729%, whereas the full testing
subset the ANN achieves RMSE = 0.02263 and AAPD =
1.114%. The accuracy metrics show much improved accuracy
for dataset #3 compared to datasets #1 and #2 (Table 5). On
the other hand, although the ANN prediction performance for
dataset #3 is improved in comparison with dataset #2, it is
significantly worse than for the ANN applied to dataset #1
(RMSE = 0.01502 and AAPD = 0.582%) (Table 5). This
finding suggests that the accuracy recorded by ANN for dataset
#1 is likely to have included an element of overfitting, as when
applied to a much more densely sampled dataset it achieves
inferior accuracy. Although, the ANN does slightly outperform
the TOB in terms of the accuracy achieved for dataset #3,
their prediction performances are much more closely matched
(Table 5). Moreover, TOB is behaving as it should, i.e.,
improving its performance as sampling density increases and
sparsely sampled areas of the distribution are excluded. What
is encouraging about this finding is that as databases are
expanded with more and more samples added from around
the world the prediction performance of the TOB method
should continue to improve. Data augmentation does often also
improve the prediction performance of ANN methods, but the
way it achieves this is more complex as it depends upon the
multiple correlations it establishes between the variables.

8. Bob prediction performances compared to
published correlations

As mentioned in the section 3 there are many published
correlations developed using different crude oil datasets that
provide predictions of Bob. Here, we evaluate the performance
of some selected correlations applied to the testing subsets
used to evaluate datasets #1, #2 and #3 in order to compare
their performances with the TOB and ANN models (Table 5).
The selected correlations are expressed in Eq. (11) to Eq. (18).

Standing (1947) correlation:

Bob = k1 + k2

[
Rs

(
γg

γo

)k3

+ k4T

]k5

(11)

where, k1 = 0.972; k2 = 0.000147; k3 = 0.5; k4 = 1.25; k5 =
1.175.

Vazquez-Beggs (1980) correlation:

Bob = 1+ k1Rs +(T −60)
(

γAPI

γg

)
(k2 + k3Rs) (12)

where, If API ≤ 30: k1 = 0.0004677; k2 = 0.00001751; k3 =
-0.000000018106; If API >30: k1 = 0.000467; k2 = 0.000011;
k3 = 0.000000001337.

Glaso (1980) correlation:

X = RS

(
γg

γo

k1
)
+ k2T (13)

Bob = 1+10k3+k4logX+k5(logX)2
(14)

where, k1 = 0.526; k2 = 0.968; k3 = -6.58511; k4 = 2.91329;
k5 = -0.27683.

Al-Marhoun (1988) correlation:

X = Rk1
S γ

k2
g γ

k3
o (15)

Bob = k4 + k5(T +459.67)+ k6X + k7X2 (16)

where, k1 = 0.74239; k2 = 0.323294; k3 = -1.20204; k4
= 0.497069; k5 = 0.000862963; k6 = 0.00182594; k7 =
0.00000318099.

Petrosky-Farshad (1998) correlation:

Bob = k1 + k2

[
Rk3

s γ
k4
g

γ
k5
o

+ k6T k7

]k8

(17)

where, k1 = 1.0113; k2 = 0.000072046; k3 = 0.3738; k4 =
0.2914; k5 = 0.6265; k6 = 0.24626; k7 = 0.5371; k8 = 3.0936.

Arabloo et al. (2014) correlation:

Bo = 1+a1

[
(Rs +2a2)(γg +1)(log(API))+a2

](a3+T
a4
R )

(18)
where, a1 = 0.0003348062; a2 = 25; a3 = -0.2856905; a4 =
0.03640287.

For all these correlations the temperature T is in degrees
Fahrenheit (F), solution gas to oil ratio Rs is expressed in
scf/stb, and formation volume factor at bubble point pressure
Bob is expressed in rsb/stb.

For dataset #1 the ANN model outperforms all these
selected correlation predictions in all accuracy measures (Table
5). TOB outperforms all the correlations in terms of AAPD%
for dataset #1 but is outperformed in terms of RMSE only
by the Standing correlation. All of the correlations achieve a
higher R and R2 values for dataset #1 than the TOB model
even though they show (except for the standing Correlation)
much poorer RMSE and AAPD values. this is a very credible
prediction performance for the TOB method applied to a
dataset that is in part sparsely sampled.

For dataset #2 the ANN model outperforms all the selected
correlation predictions in most accuracy measures except the
Standing correlation (Table 5), which achieves slightly lower
RMSE, SD, and slightly higher R and R2 values. TOB is
outperformed by all but the Vazquez and Beggs and Arabloo
correlations for dataset #2, struggling to achieve high degrees
of accuracy in the sparsely populated Bob range of > 1.6. The
superior performance of Standing’s correlation compared to
other correlations is clear for dataset #2.

For dataset #3 the ANN model only just outperforms the
Standing’s correlation, the TOB model and the Al-Marhoun’s
model in all accuracy measures (Table 5). In fact, the per-
formance of the ANN, Standing’s correlation, Al-Marhoun’s
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correlation and TOB models achieve similar levels of accuracy
for this densely and evenly sampled dataset #3. On the other
hand, the Vazquez and Beggs’ and Arabloo et al’s correlations
achieve much lower levels of accuracy than the other models
for dataset #3. Interestingly the TOB model based on just
three input variables (i.e., excluding gas gravity completely)
performs almost exactly as the Standing’s and Al-Marhoun’s
correlations for dataset #3. This is an impressive performance
for the TOB method considering no correlations only record
matching and input variable weighting are involved in this
learning algorithm. Clearly TOB has the potential to improve
its prediction performance as more data records are added to
a dataset to sparsely populated regions are infilled.

Although the ANN clearly provides superior prediction
performance to TOB for two out of three of the Bob datasets
studied, the performance of the TOB is both credible and com-
parable with ANN, and the higher-performing published Bob
correlations, when applied to dataset #3. This makes the TOB
a useful tool for predicting Bob because it reveals details of its
underlying prediction calculations and can potentially simplify
those calculations by identifying non-contributing variables
(e.g., gas gravity in the case of TOB Bob predictions).

At first sight the relative prediction performances indicated
in Table 5 for the data set studied imply that it easier to simply
apply a published empirical correlation (in this case Standing’s
1947 equation) than to bother with TOB or ANN machine
learning networks. However, the value of the information
empirical correlations provide is quite different from that
provided by TOB. In the dataset presented, Standing’s (1947)
equation performs the best (compared to other published
correlations), but in other areas it is not unusual for some of the
other published empirical equations to outperform Standing’s
equation. Indeed, empirical correlations raise several issues
relating to the predictions they provide. They were developed
based on a specific set of data usually with some biases
to specific geographic regions and oil-producing provinces.
These correlations work well with data from some regions
but provide lower prediction accuracy when applied to other
regions. When applied to new areas it is not clear which one
of the published correlations is the best one to use to provide
the greatest accuracy. As TOB involves no correlations its
method works in the same way when applied to different
data sets. Moreover, as more data becomes available over
time, which occurs in most developing oil-provinces, the TOB
training subset becomes larger and the accuracy of the TOB
predictions typically improves. For empirical calculations that
progression does not occur as their parametric constant and
exponent values typically remain fixed.

Considering the pros and cons of the two approaches
evaluated it is apparent that the TOB and ANN algorithms
have the ability to complement each other’s performance.
Certainly, the TOB provides a useful method for evaluating
to credible levels of accuracy. Moreover, for more densely-
populated data sets the accuracy it achieves rivals ANN and
the best-performing prediction correlations.

9. Conclusions
The learning network applied in this study (i.e., trans-

parent open-box (TOB)) generates its predictions in quite a
different way to most neural-networks and other correlation-
based machine learning tools. Its predictions depend on closely
matching the record for prediction with a number of specific
records existing in the underlying training data subset. It
does so in a manner that is quite distinct from other nearest-
neighbour matching algorithms.

When applied to three data sets to predict crude oil for-
mation volume factor, and the prediction results are compared
to those produced by an artificial neural network (ANN) and
empirical correlations, the TOB’s prediction performance is
impressive. The prediction analysis with respect to crude oil
formation volume factor identifies the following key advan-
tages of the TOB approach:

• individual predictions are auditable revealing exactly how
they are calculated;

• when data sets are evenly distributed across an objec-
tive function range TOB can generate prediction with
accuracies that rival neural networks (e.g., for data sets
(3) analysed prediction accuracy achieved by TOB is:
RMSE∼0.03 and R2∼0.95 compared to ANN prediction
accuracy of RMSE∼0.2 and R2∼0.97);

• optimized solutions are linked to specific weightings
applied to input variables;

• standard optimizers (e.g., Excel’s Solver options) or cus-
tomized optimizers can achieve the necessary optimiza-
tion;

• sensitivity to its Q-factor helps prevent it overfitting
sparse datasets;

• TOB can act as a useful performance benchmark for more
complex neural and fuzzy network algorithms, and for
densely populated dataset rival their level accuracy.

The disadvantages of the TOB are:

• Its prediction capabilities are reasonable, but constrained,
when applied to sparse and/or clustered data sets (e.g.,
for data sets (1) and (2) analysed prediction accuracy
achieved by TOB is: RMSE ranges from 0.05 to 0.07
and R2 ranges from 0.90 to 0.96). It does not attempt to
overfit such data sets;

• As it involves no correlations, predictions cannot be
extended beyond the range of dependent variable values
in its training set.

By combining the application of a TOB algorithm with
the ANN algorithm (i.e., running them both in parallel), it
is possible to provide useful insight to sparsely populated
datasets and to better assess the issues of overfitting that
they pose. The TOB algorithm has the potential to improve
the transparency of predictions, enabling them to be audited,
and highlight overfitting risks in many complex oil and gas
datasets, as well as achieving credible levels of accuracy.
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the Creative Commons Attribution (CC BY-NC-ND) license, which permits
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Appendix 1. Calculations involved in the TOB method
The fourteen calculation steps of the recently introduced transparent open-box (TOB) is described in detail elsewhere (Wood,

2018a; Wood et al., 2019). The following summary information is provided to enable readers to reproduce the calculation steps
involved.

TOB Stage 1 (data matching to provide an initial prediction)

Step 1: Construct a 2-D array of number of variables defining the system and number of data records (M) involved. The
variables are distinguished as N independent or influencing variables and a dependent variable which constitutes the prediction
target.

Step 2: Configure the data into a sorted order of the prediction variable’s values. This order can be ascending or descending.
Step 3: Compute the maximum and minimum values for the data range sampled by each data record in the data set. Other

standard statistical measures for each variable (such as mean range, variance and standard deviation) also provide useful, but
optional, metrics to characterize the dataset of interest. Summary statistical information for the Bob dataset evaluated here is
listed in Table 1.

Step 4: Maximum and minimum values for each variable are used to normalize all the variables for each data record in the
data set to a range varying from minus one to plus employing Eq. (A-1).

X∗i = 2∗
[

Xi−Xmin

Xmax−Xmin

]
−1 (A-1)

where, Xi = the ith data record for X of N+1 variables, Xmin = minimum of variable X for the entire dataset, Xmax = maximum
of variable X for all data records, X∗i = normalized value for the ith record for X of N +1 variables.

Step 5. Review summary statistics for the adjusted / normalized values of each variable to verify that each variable has been
normalized correctly, i.e., -1 ≤ X∗i ≤ +1. It is good practice to make this important verification at this point in the process.

Step 6. Allocate all the data records in the dataset to either a training subset, a tuning subset or a testing subset. Sensitivity
analysis identifies the optimum allocations to provide the most accurate predictions for a specific data set. As a rule, for most
datasets the training subset is likely to constitute more than seventy percent of the dataset records. The two-stage process of
the TOB is exploited in to perform the sensitivity analysis required. A series of TOB cases are run with different sizes of
tuning subsets. Comparing the prediction performances of TOB stages 1 and 2 identifies the minimum number of data records
needed in the tuning subset for the Stage 2 TOB predictions to consistently and reliably outperform the stage 1 predictions.

The requirement for separate tuning and training subsets is to enable the optimizer to tune the weights applied to the
independent variables in the records of the training subset to provide better predictions for a representative, but relatively
small, tuning subset records. For quite small data sets it is possible to conduct TOB stage 1 for all records in the data set.
However, for datasets of more than 100 or so data records this adds to the computational effort without providing any benefits
to the optimization process of TOB stage 2. By focusing on relatively small tuning subsets computational effort is reduced.

Step 7. Compute the variable-squared error (V SE) for each of J tuning-subset records versus the K training-subset records
using Eq. (A-2):

V SE(X) jk = [Xk(tr)−X j(tu)]
2 (A-2)

where, Xk(tr) = variable X value for the kth training-subset record, X j(tu) = variable X for the jthtuning-subset record, V SE(X) jk
= variable-squared error (V SE) for variable X for the jth tuning-subset record versus the kth training-subset record.

∑V SE jk computes the weighted sum of the computed V SE values applying Eq. (A-3):

∑V SE jk =
n=N+1

∑
n=1

V SE(Xn) jk ∗ (Wn) (A-3)

where, V SE(Xn) jk = the variable-squared error (V SE) for variable Xn for the jth tuning-subset record versus the kth training-
subset record, ∑V SE jk = sum of variable-squared errors (V SE) for the N +1 variables (including the dependent variable) for
the jth tuning-subset record versus the kth data training-subset record, Wn = weights (0<Wn ≤ 1) applied to the calculated
V SE for all variables involved in the prediction (i.e., N +1). Each weight is set to a constant value (e.g., 0.5 or 1.0) in TOB
stage 1. This avoids any bias being introduced into the ranked initial matches derived for the tuning versus training subsets.

Step 8. Rank the matching data records in the training subset versus each tuning-subset record. The training-subset record that
possesses the smallest calculated ∑V SE value is identified as the best matching record for a specific tuning-subset record. The
top-Q-matching training-subset records, established for each tuning-subset record, are then selected for the initial TOB-stage-
one prediction. Q = 10 has empirically been found to be sufficient to provide reasonably accurate TOB-stage-one predictions
from a number of distinct small to large non-linear dataset.
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Step 9. The best identified matching records in the training subset (up to the limit set by the value of Q) for the jth tuning-
subset record each contribute fractionally to the TOB-stage-one prediction for that record. The exact contribution fraction
applied to the Q top-ranking-matching records is established with Eqs. (A-4) , (A-5) and (A-6). The computed contribution
fraction depends upon the ∑V SE values for each training-subset record versus the jth tuning-subset record.

f jq =
∑V SE jq

r=Q
∑

r=1
∑V SE jr

(A-4)

where, q = the qth of Q top-ranking training-subset records from the training subset for the jth tuning subset record, r = the
rth of Q top-ranking training-subset records from the training subset for the jth tuning subset record, fq = the contribution
fraction calculated for the qth of Q top-ranking records for the jth tuning subset record.

Eq. (A-5) imposes a key constraint that normalizes the fq values to sum to 1.

q=Q

∑
q=1

fq = 1 (A-5)

The best-matching training-subset record (i.e., the one with the lowest ∑V SE jk value) must make the greatest contribution to
the prediction of the dependent variable associated with the jth tuning-subset record. To facilitate this outcome the contribution
fractions are applied as (1 − fq) multipliers in Eq. (6).

(XN+1)
predicted
j =

q=Q

∑
q=1

[
(XN+1)q ∗ (1− fq)

]
(A-6)

where, (XN+1)q = dependent variable for the qth training-subset record (i.e., one of Q best-matching records), (XN+1)
predicted
j

= TOB-stage-one predicted-dependent-variable value for the jth tuning-subset record.
This TOB-stage-one prediction is provisional because for this prediction equal weights (Wn) are applied to the variables in

TOB stage 1. This prediction is further refined in TOB stage 2.
Step 10. Three statistical metrics that establish accuracy are computed for the TOB-stage-one predictions, although a number

of other accuracy metrics could also be used for this purpose. The ones applied in this study to the measured versus predicted
values of dependent variable for all J tuning-subset records are:

Coefficient of determination (R2) defined by Eq. (A-7):

R2 = 1−

j=J
∑
j=1

(
Xactual

j −X predicted
j

)2

j=J
∑
j=1

(
Xactual

ave −X predicted
j

)2
(A-7)

Mean square error (MSE) defined by Eq. (A-8):

MSE =
1
J

j=J

∑
j=1

(
Xactual

j −X predicted
j

)2
(A-8)

Root mean square error (RMSE) defined by Eq. (A-9):

RMSE =
√

MSE (A-9)

where, X j = dependent variable (previously referred to as (XN+1) j in Eq. (A-6)) for the jth tuning-subset record, Xactual
j = the

directly measured value of the dependent variable for the jth tuning-subset record, X predicted
j = predicted value of the dependent

variable for the jth tuning-subset record, Xactual
ave = average measured value of the dependent variable for all J tuning-subset

records.

TOB Stage 2 (optimizing the weights and number of matching records)

Step 11. Optimization is the key focus of TOB stage 2. This is achieved by minimizing the RMSE metric (Eq. A-9) measured
across the entire set of J tuning-subset records. Two metrics applied as constants in TOB stage 1 are applied as optimization
control metrics with specified constraints imposed.

The two TOB-stage-two optimization control metrics are Q and Wn:
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1. The N input-variable weights (Wn) are allowed to vary across the full constrained range (0 < Wn ≤ 1) leaving the
optimizer free to select the best values for them to minimize RMSE. It is not unusual for quite small non-zero values to be
assigned to certain Wn by the optimizer. However, these low weights often have significant impacts that improve prediction
accuracy of TOB stage 2.

2. The optimizer is allowed to vary Q defining how many of the best-matching records should be used for TOB-stage-two
prediction calculations computed by Eqs. (A-4), (A-5) and (A-6). For most datasets the optimizer is free to apply values of Q
in the integer range 2 ≤ Q ≤ 10 in its quest to minimize RMSE.

Here, the Generalized Reduced Gradient (GRG) non-linear optimization algorithm option of the standard “Solver” optimizer
available in Microsoft Excel spreadsheets (Frontline Solvers, 2018) is employed for TOB-stage-two optimization. This is applied
in a coded algorithm with the visual basic for application (VBA) language available as a standard feature of the Excel software.
Other customized evolutionary optimizers (including one available in Excel’s Solver package) could be utilized for this TOB
step. For mid-sized datasets, calculating the TOB-stage-one and stage-two predictions in Excel, aided by VBA code, enables
the TOB algorithm to routinely display all its intermediate calculations, which is ideal for transparency purposes.

The advantage of Excel-based configurations is that all of the TOB Stage 2 optimization calculations are then displayed
on spreadsheets linked with Excel’s cell-by-cell calculation formulas. This means that the intermediate calculation results
are not only visible, but a user can interrogate all the numbers in Tables 1 to 3 for example via cell formulas involved in
the calculation of those results. TOB configured in a fully coded manner in any programming language could display the
intermediate calculation results, but they cannot easily display the formulas relating each number in the calculation to the next
calculation step in the same display. Excel (or other spreadsheets) can do that.

The top-matching training-subset records (typically applying Q = 10 in TOB stage 1) established for the J tuning-subset
records are carried forward from TOB stage 1 for selection by TOB stage 2. Eq. (A-3) is re-evaluated by the optimizer algorithm
by varying Wn across its constrained range. TOB stage-2 ∑V SE jq values are also recomputed with Eq. (A-4) for different Q
values (2 < Q ≤ 10) in each iteration of the optimizer. This contrasts with the fixed value of Q applied in TOB stage 1 and
leads to one value of Q in that range being identified as yielding the most accurate predictions.

Step 12. Compute the RMSE and R2 accuracy metrics for the TOB-stage-two predictions. Compare the TOB-stage-2
predictions with the TOB-stage-1 predictions in terms of their accuracy to quantify the prediction improvements achieved
by TOB stage 2, if any. Performing sensitivity analysis by optimizing with different fixed values of Q (i.e., Q = 2 to 10) also
generates a set of useful sub-optimal solutions. This set of solutions (all but one being sub-optimal) provide insight to potential
underfitting or overfitting issues with the data set being evaluated.

Step 13. Compute TOB-stage-one and TOB-stage-two predictions for the independent testing-subset records applying the
optimum values established for Wn and Q in step 11 with the tuning subset. RMSE and R2 accuracy metrics calculated for
the testing and tuning subset predictions facilitate a direct comparison of their prediction accuracies.

As part of this step it is often appropriate to audit the intermediate calculation steps to reveal which variables are having
the greatest impact on the TOB predictions. Reviewing the intermediate calculations can also facilitate comprehensive outlier
analysis (i.e., understanding why some data records lead to less-accurate predictions than the main trend of predictions) and
identify regions of the dependent-variable range that could be under-fitted by the TOB method.

Step 14. Compare the prediction accuracy provided by the TOB algorithm with empirical calculations and/or other machine
learning algorithms and empirical correlations. Such comparisons can be used to complement and benchmark the prediction
performance achieved by the less-transparent machine-learning methods for the data sets of interest. Also, they typically provide
further insight to the relationships between the variables in the underlying dataset. It is best to use the results of these methods
collectively to aid interpretation regarding specific data records or dependent-variable-value segments of the underlying dataset.

TOBScalability. The dataset evaluated in this study are small in terms of the number of data records and the number of
independent variables involved in the predictions. However, the TOB learning network is scalable. It is now routinely being
applied to datasets of up to 10,000 data records and 10 to 15 independent variables configured to use Excel Solver optimizers
and/or fully coded customized optimizers. As the datasets get larger than about 10,000 records and 10 to 15 variables it becomes
more efficient and flexibly to use a fully coded configuration for TOB Stages 1 and 2. For small-sized and medium-sized dataset
there are advantages to use Excel Solver optimizers in parallel with fully coded optimizers. Development plans for the TOB
learning network are to test whether it can be usefully adapted for application to process “big data” (e.g., 50,000 data records
and more independent variables). This work is ongoing.

Appendix 2. Supplementary file of the dataset evaluated
An Excel file is available for readers to download that includes all the data records evaluated in this study.


