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Abstract:
The precise determination of minimum miscible pressure is of great importance for CO2
enhanced oil recovery and storage as it directly influences the efficiency of pore-scale oil
displacement and CO2 trapping. In this study, an interpretable machine learning framework
is developed, enabling the reliable evaluation of nano-confined minimum miscible pressure.
Four machine learning algorithms (Random Forest, Multi-layer Perceptron, Support Vector
Regression, and eXtreme Gradient Boosting) are employed to accurately predict the nano-
confined minimum miscible pressure of a CO2-oil system. The results demonstrate that,
excluding support vector regression, the determination coefficients for all models surpass
94%, signifying the robust predictive performance of our model. Subsequently, Shapley
Additive exPlanations is used to analyze the feature importance ranking and the impact
of each input feature on minimum miscible pressure in these models. Based on the
interpretation results, our multi-layer perceptron model is superior in mining the input-
output relationship and reflecting the petrophysical laws, rendering it highly suitable
for predicting the minimum miscible pressure while considering nano-confinement. In
addition, it is found that pore size significantly influences minimum miscible pressure
prediction and that minimum miscible pressure decreases with decreasing pore size when
the pore size is ≤75 nm. Single-factor sensitivity analysis is applied to validate the
trend patterns between input features and minimum miscible pressure in the multi-layer
perceptron model.

1. Introduction
In recent years, unconventional oil and gas resources, such

as tight/shale oil, have become crucial areas of global oil
and gas exploration and development (Wei et al., 2021). Due
to the low primary recovery rate of standard oil recovery
from these resources, which is only about one-third of that
from conventional reservoirs, enhanced oil recovery (EOR)
techniques for unconventional reservoirs have garnered sig-
nificant attention (Sambo et al., 2023). Gas injection has
emerged as one of the leading technologies for EOR around

the world. The potential of enhancing hydrocarbon recovery in
unconventional reservoirs by injecting CO2 (You et al., 2020)
or a hydrocarbon mixture has been demonstrated through
experimental measurements (Tovar et al., 2021), numerical
simulation (Wei et al., 2022b), and field pilot tests (Alharthy
et al., 2018). Meanwhile, CO2-EOR has also been considered
as an important means of achieving carbon neutrality (Cai et
al., 2020), since injected CO2 is partially stored in subsurface
formations.

The precise determination of minimum miscible pressure
(MMP) of the CO2-oil system is of great significance for the
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development of unconventional reservoirs (Zhao et al., 2022),
because oil recovery can be improved beyond MMP when
CO2 is miscible with the crude oil in place. However, in un-
conventional reservoirs with well-developed nanoscale pores,
the confinement of crude oil within these nanospaces can sig-
nificantly alter the thermodynamic phase behavior and related
fluid parameters (Hamada et al., 2007; Feng et al., 2020).
These changes directly impact the MMP of CO2-oil systems in
confined spaces, because MMP is closely associated with the
fluid phase behavior (Teklu et al., 2014b; Wei et al., 2022a).
Therefore, more attention should be directed to exploring
precise MMP prediction methods for CO2-crude oil systems
in nano-confined spaces.

Existing methods for predicting the MMP of CO2-oil
systems typically involve experimental tests (Novosad et
al., 1990; Nguyen et al., 2015; Zhang et al., 2019), empirical
modeling (Shokir, 2007; ZareNezhad, 2016), and numeri-
cal simulations (Zhao and Fang, 2020; Ge et al., 2021).
Experimental techniques, such as the slim-tube experiment
(Hao et al., 2020; Lu et al., 2022), rising bubble apparatus
(Li and Luo, 2017), and vanishing interfacial tension tests
(Safaei et al., 2023), have been widely utilized to measure the
MMP under different injected gases. However, these methods
are generally applied to measure the MMP of fluids in the
bulk phase, rather than in nanopores (Zhang et al., 2017).
Over the years, researchers have improved traditional MMP
determination methods to predict the MMP of the CO2-oil
system in nano-confined spaces. Bo et al. (2021) created a
nanofluidic device capable of gauging fluorescence intensity
changes within nanoscale confinement channels to ascertain
MMP below 50 nm. Numerous scholars developed theoretical
and empirical models for forecasting MMP in nano-confined
spaces based on diverse principles. These have included mod-
ified vapor/liquid equilibrium calculations combined with the
Peng-Robinson equation of state and the vanishing interfa-
cial tension method (Wei et al., 2022b), a multiple mixing
cells model coupled with modified vapor/liquid equilibrium
procedure (Teklu et al., 2014a), and a modified multiple
mixing cells method and Peng-Robinson equation of state
(Sun and Li, 2021). In general, the experimental testing of
MMP in nanopores is time-consuming, costly, and demands
rigorous experimental conditions. In contrast, the outcomes
of theoretical models are heavily dependent on the coupled
equation of state models, and also lack a standardized format
for modified models, thereby constraining their precision and
practicality. In summary, few studies exist on MMP within
nano-confined space, while the application of existing methods
is constrained by factors such as experimental conditions
and insufficient theoretical foundation. These shortcomings
increase the urgency to explore suitable approaches to study
the effect of nano-confinement on MMP.

Machine learning methods have demonstrated to be
promising in predicting MMPs owing to their data depen-
dency, high accuracy and high processing speed. Researchers
have utilized diverse machine learning algorithms to develop
MMP prediction models based on reservoir conditions, crude
oil properties, and injection gas compositions, such as the
hybrid neural-genetic algorithm (Dehghani et al., 2008), hy-

brid genetic algorithm-backpropagation neural network (Chen
et al., 2014), adaptive boosting support vector regression
(Dargahi-Zarandi et al., 2020), hybrid genetic algorithm-
support vector machine (Chemmakh et al., 2021), and random
forest (Lv et al., 2023). However, many current machine
learning models primarily focus on accuracy as the sole
evaluation criterion, neglecting the importance of capturing
the underlying physical relationships between model input and
output. Chen et al. (2022) established a novel support vector
regression model, which achieved high accuracy but exhibited
notable deviations from actual patterns in practical applica-
tions. Thus, besides focusing on prediction accuracy, more
effort should be given to enhancing the scientific fundamentals
behind these models.

Simple models like linear models or single decision trees
are inherently interpretable. In contrast, complex models such
as ensemble learning algorithms or neural networks often
exhibit better predictive performance but decreased inter-
pretability (Molnar, 2020). Concerning the complex high-
dimensional non-linear challenge of predicting MMP in nano-
confined spaces, machine learning models may simultaneously
present advanced predictive performance and poor model
interpretability. The prediction process of these models is
categorized as a “black box”, meaning that the process of
information flow from inputs to outputs is always invisible.
Therefore, interpretable methods are needed to verify that
the established model can accurately capture the relationship
between the input and output variables and to ensure that
it conforms to physical laws. Shapley Additive exPlanations
(SHAP), as a game theory-based and model-independent post-
hoc interpretable method, can significantly enhance the inter-
pretability of machine learning models without compromising
their performance. By providing explanations for individual
predictions, SHAP can simplify the interpretation of the model
predictions, making them easier to understand. This improved
interpretability can help to gain a better comprehension of
factors that influence the model predictions, leading to in-
creased trust in the modeling results. In the petroleum industry,
SHAP has been successfully used to elucidate the correlations
among tight gas production (Ma et al., 2023), coalbed methane
production (Min et al., 2023), and MMP derived from the slim-
tube experiment and rising bubble apparatus method (Huang
et al., 2023), showcasing its outstanding applicability and
performance. Accordingly, SHAP is selected and used in this
work to balance model performance and interpretability.

We introduce an interpretable machine learning model
that incorporates nano-confinement. Pore size is taken for
the first time as an input for the prediction of MMP in
a pure CO2-oil system. An in-depth analysis of the model
prediction by SHAP reveals the influence of various factors on
MMP in the confined space. Initially, 348 datasets are gath-
ered from published works (Teklu et al., 2014a; Hawthorne
et al., 2016; Wang et al., 2016). Subsequently, to simplify
and enhance the applicability of the established interpretable
machine learning framework, four research-based machine
learning algorithms rooted in different principles are used
for MMP predictions, including Random Forest (RF), Multi-
layer Perceptron (MLP), Support Vector Regression (SVR),
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and eXtreme Gradient Boosting (XGBoost). The performance
of the models is assessed based on evaluation metrics such as
coefficient of determination (R2), mean absolute error (MAE),
mean square error (MSE), and mean absolute percentage error
(MAPE). More importantly, SHAP analysis is performed to
consolidate the feature importance of each model and the
influence of each input feature on MMP, followed by a
comparison with the governing physical laws. The model that
best agrees with the dataset is identified by assessing both
predictive performance and adherence to SHAP explanation
outcomes. Finally, validation is conducted through a single-
factor sensitivity analysis. This work offers a novel approach to
investigate MMP in nanopores and provides valuable insights
into the phase behaviors of CO2-oil systems at the nanoscale
level.

2. Methodology

2.1 Random forest
Since RF was proposed by Breiman (2001) based on

ensemble learning, it has found extensive application in re-
gression issues. The term ”forest” in RF refers to an ensemble
of multiple decision trees, while the term “random” signifies
the use of random sampling and random variable space. For
RF regression modeling, the following steps are involved in
model construction using a training dataset with N samples
and M features:

1) Using the Bagging method, N samples are randomly
selected with replacement;

2) A subset of m variables (m << M) is randomly chosen as
candidate predictors for node splitting, as a contribution
to the construction of an individual decision tree. By
repeating this process, a large number of regression
decision trees are generated;

3) The prediction result of the model is obtained by aver-
aging the predictions made by these regression decision
trees.

During the model construction process, the principle for
selecting variables at tree nodes is based on minimizing
the mean squared error. Specifically, for any variable A and
splitting point s, the objective is to minimize the sum of mean
squared errors by partitioning the data into two subsets, D1 and
D2. This process helps to identify the corresponding variable
and splitting point, as shown below:

min︸︷︷︸
A,s

 min
xi∈D1(A,s)︸ ︷︷ ︸

c1

∑
yi

(y1)
2 + min︸︷︷︸

c2

∑
xi∈D2(A,s)

(yi − c2)
2

 (1)

where xi represents the feature attribute; yi denotes the true
value of the sample; c1 and c2 represent the sample output
mean of dataset D1 and dataset D2, respectively.

2.2 Multi-layer perceptron
MLP is a kind of feedforward network consisting of three

or more layers: An input layer, one or more hidden layers, and

an output layer. It utilizes a nonlinear base function to establish
mapping relationships through linear combinations of inputs.
The transformation from the input layer to the hidden layer
is generally nonlinear, whereas that from the hidden layer to
the output layer is linear. Units within the same layer are fully
connected, and so are all units between any two layers.

Each unit node in the MLP only receives inputs from the
adjacent previous layer. The output of every unit node, except
for those in the input layer, is determined by applying an
activation function F to the sum of the weighted inputs from
the previous layer. Given an input sample x, the output of the
i-th unit in the hidden layer ri can be represented as:

ri =
1

1+ exp(x)
, i = 1,2, · · · ,H (2)

where H denotes the number of units in hidden layer. Thus,
the formula for calculating the output of each unit in the output
layer will be:

y j =
H

∑
i=1

wi jri(x)+ ḡ j, j = 1,2, · · · ,Z (3)

where wi j represents the weight parameter of the connection
between the i-th unit in the hidden layer and the j-th unit in the
output layer. The output layer consists of Z units, with yi being
the output of the j-th unit in the output layer. Furthermore, ḡ
is an estimator of the mean value of yi.

2.3 Support vector regression
SVR is an application of Support Vector Machine to

regression tasks. It is a supervised learning method based
on statistical principles, specifically created for solving binary
classification issues. SVR utilizes Support Vector Machine to
fit a curve to achieve the regression analysis of data, effectively
addressing issues such as small sample size, nonlinearity and
high dimensionality. The primary steps of SVR are as follows.
Given a training sample set D, construct a regression model
f (x) that closely approximates y:

D =
[
(X ,Yi) |X ∈ Rd ,Yi ∈ R, i = 1,2, . . . ,n

]
(4)

f (x) =W D
φ(x)+b (5)

where X and Yi denote the feature and label matrix, Rd

represents the d-dimensional real space, W and b denote the
parameters to be determined.

The loss is zero only when f (x) exactly matches y.
However, SVR assumes that the allowable deviation between
f (x) and y is at most ε . The loss is calculated only if the
absolute difference between f (x) and y exceeds ε , akin to
constructing an interval band of width 2ε centered on f (x). If
the training sample falls within this interval, it is considered
as correct prediction.

2.4 eXtreme Gradient Boosting
XGBoost is a versatile supervised gradient boosting al-

gorithm that improves the computational efficiency of tradi-
tional boosting methods by the parallel combination of weak
tree learners with a stronger learner. It incorporates second-
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Fig. 1. Workflow of the interpretable machine learning framework.

order Taylor expansion to enhance precision and enables
the customization of loss functions through gradient descent.
This algorithm features the complexity of tree models in
regularization terms to mitigate overfitting. Specifically, it
employs shrinkage to reduce the influence of individual trees
and eliminate deviations. Compared with traditional boosting
approaches, XGBoost introduces model randomization to re-
duce variance (Li et al., 2022). The primary aim of XGBoost
is to minimize the objective function L, depicted by:

L(t) =
n

∑
i=1

l (yi, ŷi)+
K

∑
k=1

Ω
(

fk
)

=
n

∑
i=1

l
(

yi, ŷ
(t−1)
i + ft (xi)

)
+Ω

(
ft
) (6)

where l denotes the loss function, ŷi indicates the predicted
value of the i-th sample generated by the model; t is the num-
ber of iterations; K denotes the number of trees; xi represents
the feature vector of the i-th data point; fk corresponds to the
structure q and leaf weights w of the k-th independent tree.
Furthermore:

Ω( f ) = γT +
1
2

λ ||δ ||2 (7)

where γ and λ denote the regularization parameters applied to
the model; δ represents the scores of every leaf; T indicates

the leaves number of the tree.

2.5 Shapley Additive exPlanations
SHAP, proposed by Lundberg and Lee (2017), is a post-

hoc interpretability method designed to explain the feature-
contribution mechanism of machine learning models by com-
puting the contribution of each input feature to model output.
SHAP is represented as a linear additive model of feature
contributions, such as:

g
(
z′
)
= φ0 +

M

∑
j=1

φ jz′j (8)

where g denotes the explaining model; z′ ∈ {0,1}M denotes
whether the corresponding feature exists (0 or 1); φ0 is a
constant; φ j represents the Shapley value of the j-th feature.

Using SHAP for interpretability enhancement involves the
application of the Shapley value concept from cooperative
game theory, attributing the model output to the contribution
of each feature. The Shapley value represents the average
marginal contribution of a feature to prediction across all
possible feature subsets. Thus, it offers a fair method to
distribute the worth or payoff generated by cooperation among
participating players, and is defined as:
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φ j = ∑
S⊆(x1,...,xM)\x j

| S |!(M− | S | −1)!
M!

[
val

(
S∪ x j

)
−val(S)

]
(9)

where val(∗) represents the value function representing the
model and prediction value; {xi}M

i=1 denotes the features;
(xi, · · · ,xM)\ x j denotes the set excluding x j.

3. Establishment of the interpretable machine
learning framework

In order to explore the nano-confinement effect on MMP in
a pure CO2-oil system, a SHAP-based interpretable machine
learning framework is developed to understand the impact
patterns between input features and MMP. This framework
comprises three key steps to reveal and predict MMP behavior
under nano-confinement, as illustrated in Fig. 1.

Step 1: Data collection and preprocessing. 348 sets of
data from pure CO2 injection processes are first collected
from published works and then divided into two subsets:
80% training set and 20% testing set. Subsequently, min-max
scaling normalization is applied to bring all data within the
range of [0,1].

Step 2: Establishment and evaluation of MMP prediction
models. The intricate relationship between model input fea-
tures and MMP is extracted based on four machine learning
algorithms: RF, MLP, SVR, and XGBoost. Grid Search with
Cross-Validation (GridSearchCV) is employed to optimize the
model hyperparameters. Subsequently, the testing set is input
into the trained model using the optimized hyperparameters
to obtain predictions. After normalizing the input data, MMP
predictions are inversely normalized to generate final forecasts
corresponding to the original observations. Finally, the model
is evaluated based on the predefined evaluation criteria, and
the better-performing models are taken forward for subsequent
research.

Step 3: Model interpretation. SHAP is chosen to explain
the predictive outcomes of the tested models. Initially, both
the dataset and better-performing models are input into the
SHAP explainer to obtain the SHAP values of individual
samples. Subsequently, summary plot and dependence plot
are drawn to illustrate the feature importance ranking and the
pattern of impact of each feature on MMP. Moreover, the most
suitable model is chosen by comparing the SHAP interpretable
results with petrophysics among the better-performing models.
Sensitivity analysis is performed to verify the impact patterns
of the selected model.

3.1 Dataset description
The input features and data processing method are illus-

trated in Fig. 2. 348 sets of MMP data from pure CO2 injection
processes are collected, with each set containing three types of
group information, including reservoir temperature (TR), pore
size (r), and crude oil composition. The influencing factors
include TR, r, volatile component content (xvol), intermediate
hydrocarbon component content (xint ), the ratio of volatile to
intermediate component content in crude oil (xvol/xint ), and
the molecular weight of C7+ components (MWC7+

).

Data splitting

Training datasets Testing datasets

Min-max scaler Min-max scaler

Pore size
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Volatile component 
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Intermediate 
hydrocarbon 

component content (%)

Reservoir temperature
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Fig. 2. The data preprocessing step.

3.2 Data normalization
This step involves rescaling the data to achieve zero mean

and unit variance. Normalizing input data before training can
substantially reduce estimation errors and save computation
time. It is a crucial task because many machine learning algo-
rithms assume a normal distribution of data with zero mean
and unit variance. The min-max scaler method is employed
for data normalization, as defined by:

xnorm =
x− xmin

xmax − xmin
(10)

where xnorm denotes the standardized value, while x refers to
the original value; xmax and xmin represent the maximum and
minimum values of a specific feature, respectively.

3.3 Hyperparameter optimization
The performance of machine learning models has been

proven to be significantly influenced by the chosen param-
eter configuration (Yang and Shami, 2020). To maximize
the performance of established prediction models, the grid
search algorithm is employed to explore various parameter
combinations, creating a grid where each point represents
potential values. Coupled with cross-validation, the grid search
algorithm evaluates model performance through dividing the
dataset into training and validation subsets. Through iterative
training and evaluation, the hyperparameter combination that
features the highest accuracy on the validation set is chosen
as the optimal configuration. The hyperparameters for opti-
mization are presented in Table 1, employing a 5-fold cross-
validation.

3.4 Evaluation criteria
Several evaluation metrics are taken to assess the predictive

performance, including MAE, MSE, MAPE, and R2. MAE
quantifies the average absolute discrepancy between the pre-
dicted and actual values, revealing the magnitude of prediction
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Table 1. Hyperparameters and optimized values of machine learning models.

Algorithm Hyperparameter Definition Optimized value

RF

n estimators Mumber of decision trees 5

max depth Maximum depth of decision tree 5

min samples split Minimum number of divisible samples of a node 2

min samples lea f Minimum number of samples a leaf node contains 3

MLP

n layers Number of hidden layers 3

hidden layer sizes Hidden layer size (70, 30, 20)

activation Activation function tanh

solver Solver lbfgs

SVR

kernel Kernels rbf

C Penalty factor 1,000

ε Epsilon 0.01

XGBoost

max depth Maximum depth of decision tree 5

learning rate Learning rate 1

subsample Subsample 1

colsample bytree Feature random sampling ratio 0.75

errors. MSE calculates the mean squared error by averaging
the squared differences between predicted and actual values,
capturing the variance in prediction errors. MAPE assesses the
average absolute percentage difference between predicted and
actual values, which indicates the relative size of the prediction
errors in relation to the true values. R2 reflects model fitting,
with values closer to 1 indicating better fitting. The expressions
for these metrics are as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (11)

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣ (13)

R2 = 1−

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(ȳi − yi)2

(14)

where n denotes the number of samples; yi represents the
actual values; ŷi signifies the predicted values; ȳi denotes the
mean of the actual values.

4. Results and analysis

4.1 Performance of prediction models
Four models containing six features, TR, r, xvol , xint ,

xvol/xint and MWC7+
, are constructed using the dataset as

described previously. The raw data are preprocessed and used
to train the MMP prediction models. The hyperparameters
are optimized by the grid search algorithm, with the results

shown in Table 1. The testing set is then fed to the models
with optimized hyperparameters to predict the MMP. The
model performance is evaluated using the aforementioned four
assessment parameters.

The outcomes of the prediction models are presented in
Fig. 3, with Figs. 3(a) to 3(d) representing the results for the
RF, MLP, SVR, and XGBoost models, respectively. Each data
point corresponds to a set of true values and the matching
predicted values for MMP, and the red dashed line represents
the ideal curve. The proximity of the points to the ideal
curve indicates the degree of precision at those specific points.
Moreover, a regression line (blue solid line) is fitted to all
data points, and the deviation of this line from the ideal curve
reflects the magnitude of prediction error. A larger deviation
signifies a larger error in the predictions. The bar charts in each
subplot display the marginal distributions of true values and
predicted values, with the upper bar of the graph representing
the distribution of the true values and the right side depicting
the distribution of the predicted values. Find that the data
points in Figs. 3(a), 3(b) and 3(d) deviate much less from
the curve and the regression line almost completely overlaps
with the curve. From these results, aside from the SVR model,
it can be deduced that the performance of the tested models
is relatively good.

The bar charts in Fig. 4 illustrate the performance of the
four models. A smaller value of MAE, MSE and MAPE,
along with larger R2, indicates a better performance of the
prediction model. A comparison of these parameters reveals
that the SVR model exhibits poorer performance than the other
three models, both on the training and the testing datasets.
Specifically, the SVR model demonstrates the lowest R2 value,
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Fig. 3. Results of MMP prediction across the tested models. (a) RF model, (b) MLP model, (c) SVR model, and (d) XGBoost
model.

Table 2. Values of model evaluation metrics for the total
dataset.

Prediction model
Evaluation metrics

MAE MSE MAPE R2

RF 0.4111 0.3968 0.0268 0.9431

MLP 0.2412 0.2079 0.0152 0.9730

SVR 1.1227 7.1389 0.2579 0.3460

XGBoost 0.0560 0.0411 0.0040 0.9950

accompanied by the highest MAE, MSE and MAPE val-
ues, which is possibly caused by the uneven distribution of
data. The other three models show more robust performance,
thereby meeting the predetermined performance criteria. The
evaluation of the total dataset in Table 2 reveals that these
three models achieve R2 values exceeding 0.94 on the overall
dataset while simultaneously demonstrating comparable and
relatively lower MAE, MSE and MAPE values. In summary,

based on R2, the predictive performance of the four models
can be ranked as: XGBoost > MLP > RF > SVR, which is
also consistent with the other three evaluation parameters.

4.2 Model interpretation based on SHAP
4.2.1 SHAP summary plot

As indicated by the preceding analysis, machine learning
models based on different principles exhibit varying per-
formance in MMP prediction. The RF, MLP and XGBoost
models demonstrate favorable performance and are proven to
be capable of meeting the stringent prediction requirements.
However, determining the optimal predictive model based
solely on predictive performance remains unreasonable. Con-
sequently, SHAP is integrated to further refine model selection.
Given that the predictive performance of the SVR model falls
short of the requirements, this model is excluded from the
subsequent model interpretation.

Fig. 5 depicts the global interpretability results of SHAP,
which primarily reflects the feature importance with feature



148 He, Y., et al. Advances in Geo-Energy Research, 2024, 12(2): 141-155

0 . 0 2 1 0
0 . 2 0 9 9

0 . 9 5 1 8

0 . 3 7 9 7
0 . 2 1 8 5

0 . 3 8 2 3

1 . 7 7 7 6

0 . 5 3 9 6

R F M L P S V R
X G B o o s t R F M L P S V R

X G B o o s t
- 0 . 4
0 . 0
0 . 4
0 . 8
1 . 2
1 . 6
2 . 0

(a)

0 . 0 0 8 0 0 . 1 2 0 7

4 . 8 9 6 7

0 . 3 1 7 3 0 . 2 0 7 4 0 . 6 0 1 2

1 5 . 7 3 3 8

0 . 7 2 1 7

R F M L P S V R
X G B o o s t R F M L P S V R

X G B o o s t
- 8 . 0
- 4 . 0
0 . 0
4 . 0
8 . 0

1 2 . 0
1 6 . 0
2 0 . 0

(b)

0 . 0 0 1 7 0 . 0 1 5 4
0 . 1 4 9 6

0 . 0 2 5 3 0 . 0 1 3 2 0 . 0 2 3 1

0 . 6 7 3 0

0 . 0 3 3 0

R F M L P S V R
X G B o o s t R F M L P S V R

X G B o o s t
- 0 . 8

- 0 . 4

0 . 0

0 . 4

0 . 8

(c)

0 . 9 9 9 9 0 . 9 8 6 0

0 . 4 8 2 7

0 . 9 5 9 3 0 . 9 4 1 2
0 . 8 2 6 8

0 . 0 3 2 7

0 . 7 9 5 2

R F M L P S V R
X G B o o s t R F M L P S V R

X G B o o s t
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

(d)

Fig. 4. Values of model evaluation parameters for both the training and testing sets. The left side of the dotted line represents
the training set, while the right side represents the testing set. (a) MAE, (b) MSE, (c) MAPE, and (d) R2.

Table 3. Feature importance ranking of three MMP prediction models.

Prediction model Feature importance ranking Range of mean absolute SHAP values

RF r > TR > xint > xvol/xint > xvol > MWC7+
0.004-0.078

MLP MWC7+
> r > xvol > xvol/xint > xint > TR 0.05-0.29

XGBoost r > xint > TR > xvol > MWC7+
> xvol/xint 0.001-0.093

effects. Figs. 5(a), 5(c) and 5(e) present the SHAP values for
each feature within these three MMP prediction models. The x-
axis represents the magnitude of the SHAP value, encompass-
ing both positive and negative values. Positive SHAP values
mean that the input feature contributes to an increase in the
output, whereas negative values suggest that the input feature
leads to a decrease in the output. The y-axis denotes distinct
input features. Each point within the subplots corresponds to
the SHAP value of a specific feature within a given sample.
The vertical color bar transitions from blue to red, indicating
the progression of the feature’s raw values from small to large.
The color distribution horizontally along the x-axis for each
feature provides insight into the general relationship between
a feature’s raw values and its SHAP values. For example,
when the color of the data point changes from red to blue,
this indicates a decreasing impact of the corresponding input
feature on the model output, whereas a change in color from
blue to red represents an increasing impact of the feature.
In places with a high density of SHAP values, the points

are stacked vertically. Examining the distribution of SHAP
values reveals how a variable may influence the actual model’s
predictions. In addition, Figs. 5(b), 5(d) and 5(f) show that
feature importance in the model output is more intuitive based
on the average absolute SHAP value of each feature across all
input samples.

As depicted in the subplot of Fig. 5, the features influ-
encing MMP are ranked in decreasing order according to
their contribution level. For example, if the contribution of
r to MMP is more than that of TR, this suggests that the
interpretability based on r is much more reliable than TR, as
shown in Fig. 5(a). The feature importance ranking of the
three MMP prediction models is listed in Table 3. These
data demonstrate that there is significant variability in the
feature importance rankings among the three models when
SHAP explanation is used. As for the RF model, the most
influential feature is r, with the mean absolute SHAP value
being 0.078 and the relative value of MWC7+

being 0.004,
constituting a difference of 0.074. Only the importance of
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Fig. 5. SHAP summary plots of the prediction models. (a), (c), (e) denotes the SHAP values of individual samples, while (b),
(d), (f) denotes the mean absolute SHAP values of each parameter. (a)-(b) for RF model; (c)-(d) for MLP model and (e)-(f)
for XGBoost model.

feature r demonstrates consistent ranking across all models,
consistently ranked in the top three (first in RF and XGBoost
and second in MLP).

4.2.2 SHAP dependence plot

Given the notable disparities in the feature importance elu-
cidated by SHAP across the RF, MLP and XGBoost models,
a series of SHAP dependence plots are drawn to illustrate the
correlation between each feature and MMP, as shown in Figs.
6-8. These plots display the SHAP values of input features
(y-axis) and the raw values of features (x-axis) for individual
samples. The subplots (a) to (f) represent the dependence plots
of TR, r, xvol , xint , xvol/xint and MWC7+

, respectively.
The SHAP values represent the average marginal contribu-

tion of each input feature toward the prediction of MMP. They
quantify the degree of each feature value deviating from the
predicted value of MMP from the baseline prediction (Min

et al., 2023), which is the average prediction value of the
dataset. As the predictions are based on the average value, the
dependence plot effectively depicts the consistency between
input features and their corresponding SHAP values, which is
in agreement with their observed impact on MMP predictions.

In the dependence plots, the position of points reflects
the impact of feature values on the predicted MMP values.
For instance, as depicted in Fig. 6(a), within the range of
80-110 ◦C, the corresponding SHAP values are greater than
zero, indicating that increasing TR leads to an increase in
the predicted MMP. On the other hand, within the range of
110-130 ◦C, an increase in TR results in a decrease in the
predicted MMP value. Furthermore, it is important to highlight
the vertical dispersion of SHAP values for each point in Figs.
6-8, mainly caused by the interactions among the features. For
example, when xvol has a value of 0.16, the range of SHAP
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Fig. 6. SHAP dependence plots of the RF model for various input features. (a) TR, (b) r, (c) xvol , (d) xint , (e) xvol/xint , and (f)
MWC7+
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Fig. 7. SHAP dependence plots of the MLP model for various input features. (a) TR, (b) r, (c) xvol , (d) xint , (e) xvol/xint , and
(f) MWC7+

.
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Fig. 8. SHAP dependence plots of the XGBoost model for various input features. (a) TR, (b) r, (c) xvol , (d) xint , (e) xvol/xint ,
and (f) MWC7+

.

Table 4. Interpretability determined by SHAP.

Input feature RF MLP XGBoost

Reservoir
temperature

N M M

Pore size I I I

Volatile component
content

N P N

Intermediate
hydrocarbon
component
content

M N M

Ratio of volatile
to intermediate
component content

N P N

Molecular weight of
C7+ components

P P C

Notes: P and N denote the influencing factor taking the
positive and negative interpretability for MMP, respectively;
M denotes the influencing factor taking the positive inter-
pretability when there is an appropriate value; C denotes the
influencing factor taking the confusing interpretability; I de-
notes the influencing factor taking the positive interpretability
within a range, beyond which there is no effect.

values varies from 0.008 to 0.024, depending on the specific
values of other features at those points, as illustrated in Fig.
6(c).

Analyzing the overall trends between the nodes in the

dependence plot allows to readily establish the relationship
between feature values and MMP. Five distinct patterns of
trends among points in the graph are identified, which follows
data reported in the literature (Min et al., 2023). These patterns
are illustrated in Fig. 9. A positive correlation between the
feature value and the corresponding SHAP value is depicted
in Fig. 9(a), denoted as P , while a negative correlation is
observed in Fig. 9(b), denoted as N . As can be seen in Fig.
9(c), as the feature value increases, the corresponding SHAP
value exhibits an initial decrease followed by an increase,
representing a changing trend denoted as M . Fig. 9(d) reveals
no distinct correlation or inconclusive relationship between
these two variables, denoted as C. Fig. 9(e) illustrates a pattern
denoted as I , where the SHAP values initially increase and
then remain stable as the feature value increases.

Next, the trends shown in Figs. 6-8 are analyzed according
to the aforementioned recognition patterns. Fig. 7(f) demon-
strates that as MWC7+

increases, there is a corresponding
increase in the SHAP value, which agrees with pattern P .
As can be seen in Fig. 7(d), the increase in xint results in a
decrease in the SHAP value, which aligns with pattern N .
With an increase in TR in Fig. 8(a), the SHAP value initially
decreases and subsequently increases, following pattern M .
Fig. 8(f) is classified as pattern C, as the SHAP value exhibits
multiple inflection points with an increase in the MWC7+

value,
and the relationship is relatively inconclusive. In addition, as
shown in Fig. 6(b), an increase in r makes the SHAP value
initially increase before reaching a plateau, matching pattern
I . The results of all these features in the three models are
summarized in Table 4.



152 He, Y., et al. Advances in Geo-Energy Research, 2024, 12(2): 141-155

0 2 0 4 0 6 0 8 0 1 0 00

2 0

4 0

6 0

8 0

1 0 0
SH

AP
 va

lue
 fo

r fe
atu

re1

F e a t u r e 1
(a)

0 2 0 4 0 6 0 8 0 1 0 0- 1 6 0

- 1 2 0

- 8 0

- 4 0

0

4 0

SH
AP

 va
lue

 fo
r fe

atu
re2

F e a t u r e 2
(b)

0 2 0 4 0 6 0 8 0 1 0 0- 8 0

- 4 0

0

4 0

8 0

SH
AP

 va
lue

 fo
r fe

atu
re3

F e a t u r e 3
(c)

0 2 0 4 0 6 0 8 0 1 0 0- 2 0

- 1 0

0

1 0

2 0

SH
AP

 va
lue

 fo
r fe

atu
re4

F e a t u r e 4
(d)

0 2 0 4 0 6 0 8 0 1 0 0- 2
0
2
4
6
8

1 0

SH
AP

 va
lue

 fo
r fe

atu
re5

F e a t u r e 5
(e)

Fig. 9. Schematic diagram illustrating the five trend patterns between points in the SHAP dependence plot (Figs. 6-8). (a) P ,
(b) N , (c) M , (d) C and (e) I .

Table 4 reveals significant differences among the three
models in terms of interpretability, with some contrasting
trends. As reported previously (Liao et al., 2014), with in-
creasing temperature, the thermal motion of CO2 molecules
intensifies, making them less prone to blend with crude oil,
thereby increasing the MMP. In addition, the volatile compo-
nents in crude oil are more likely to evaporate into the CO2
phase during this process, leading to an overall increase in gas
volume and MMP. In contrast, the presence of intermediate
components (C2-C6), due to their molecular similarities with
CO2, leads to a significant reduction in MMP, following the
principles of similarity dissolution (Liang et al., 2017; Shen
et al., 2023). Laboratory experimental evidence confirms that
the MMP of crude oil in nanoscale pores is somewhat lower
compared to that in bulk phase, with a rapid decrease upon
pore size reduction (Bo et al., 2021). In summary, MMP
is prone to enlarge with increasing TR, r, xvol , xvol/xint and
MWC7+

, and it is prone to decline with increasing xint .
When comparing these outcomes with those presented in

Table 4, the interpretability result obtained from the MLP
model (Fig. 7) appears highly consistent with the theoretical
knowledge of the CO2-EOR process. The trends exhibited by
the various features, except for the non-monotonic changes in
TR, are congruent with the actual physical laws, suggesting that
the MLP model provides the most reasonable interpretability
of data among the models.

After conducting a comprehensive analysis of the SHAP
interpretation patterns of these three models, the trends ex-
hibited by r in each model are the least controversial. The

observed trends closely agree between the RF model in Fig.
6(b), the MLP model in Fig. 7(b), and the XGBoost model
in Fig. 8(b). These data indicate that MMP increases initially
and then remains unchanged as r increases. Notably, the value
of r corresponding to the stationary point is approximately
75 nm for the RF model, 75 nm for the MLP model, and
100 nm for XGBoost, Therefore, 75 nm is maintained as the
threshold representing the inflection point where the influence
of nano-confinement on MMP undergoes a significant change.
This implies that the miscible pressure between crude oil and
CO2 in unconventional reservoirs, which are predominantly
characterized by nanopores, is lower than that in conventional
reservoirs. This correlation is particularly strong when the pore
size in the reservoir is less than 75 nm. Bo et al. (2021)
reached similar conclusions through experiments, as did Wei
et al. (2021) using modified state equation calculations. This
discovery firmly establishes the pore size for the bulk phase
MMP theory at 75 nm, offering substantial evidence to sup-
port the extension of the validity of classical theory to the
nanoscale.

4.3 Sensitivity analysis of the MLP model
Based on the SHAP interpretation results, significant dif-

ferences are found in the correlations between the input
parameters and output variables among the RF, MLP and
XGBoost models. Subsequently, the MLP model is chosen as
the preferred prediction model by comparing it with petro-
physical laws, showing much better balancing performance
and interpretability. To verify the accuracy of the SHAP
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Fig. 10. Sensitivity analysis results of the MLP model for various input parameters. (a) TR, (b) r, (c) xvol , (d) xint , (e) xvol/xint ,
and (f) MWC7+

.

interpretability results of the MLP model, a sensitivity analysis
is conducted to establish the crucial relationship between
inputs and outputs.

For the above purpose, a single-factor sensitivity analysis
method (Chen et al., 2022; Shen et al., 2023) is employed.
This involves altering only one input feature at a time (One-
at-a-time) while keeping the values of the other five features
constant. For instance, the TR value in each sample is increased
by 5% compared to its original value, while the values of the
remaining five features remain unaltered. The new prediction
values of MMP are recorded, and a kernel density plot
is generated to visualize the relationship between the raw
values of TR and the discrepancy between the newly predicted
values and their corresponding raw values, as shown in Fig.
10(a). The sensitivity analysis results of the other features are
presented in order in Fig. 10.

When the change value of MMP exceeds zero, this suggests
that an increase in the feature value corresponds to a rise
in MMP, demonstrating a positive correlation, as depicted
in Fig. 9. The transition of the color bar from blue to red
represents the degree of data point aggregation in the region,
facilitating the observation of the main relationship between
the parameters of the coordinate axes. Accordingly, positive
differences in MMP are observed as increases in the features
TR, r, xvol , xvol/xint and MWC7+

, as seen in Figs. 10(a)-
10(c) and 10(e)-10(f), respectively, indicating a robust positive
relationship between these features and MMP. Most points in
the region with a difference greater than zero indicate that
xint experiences two changes and maintains a significantly
negative relationship with MMP, as demonstrated in Fig. 10(d).

In summary, the sensitivity analysis of all input features reveals
a consistent correlation with the SHAP interpretation results,
as presented in Fig. 7, excluding the features TR and xint .
This discrepancy can be attributed to the fact that single-factor
sensitivity analysis examines one factor at a time; therefore,
it cannot fully capture the interaction between input factors.
In contrast, the results explained by SHAP encompass the
interaction between model inputs.

5. Conclusions
In this study, SHAP-based interpretability machine learn-

ing models are developed to evaluate the impact of nano-
confinement on MMP in CO2-EOR processes. Four models
are established with inputs comprising three sets of parame-
ters, including reservoir temperature, pore size, and crude oil
composition. Furthermore, SHAP is utilized to enhance the
interpretability and rationality of prediction models, followed
by validation by sensitivity analysis. As the main contributions
of this work, the following conclusions can be generally
drawn:

1) RF, MLP, SVR and XGBoost models are established to
predict the MMP based on a dataset consisting of 348
cases. Various metrics, such as MAE, MSE, MAPE and
R2, are employed to evaluate the performance of these
models, yielding a performance ranking of XGBoost >
MLP > RF > SVR.

2) The SHAP interpretability results reveal significant dis-
parities among the XGBoost, MLP and RF models in
terms of feature importance ranking and the impact
pattern of each feature on MMP. The MLP model exhibits



154 He, Y., et al. Advances in Geo-Energy Research, 2024, 12(2): 141-155

superior suitability for the dataset. This model accurately
captures the correlation between features and MMP, with
a feature importance ranking of MWC7+

> r > xvol >
xvol/xint > xint > TR.

3) In nano-confined spaces, the influence of reservoir tem-
perature on MMP is decreased. This diminishing impact
is reflected in the average absolute SHAP value, which
is measured to be 0.05.

4) A distinct relationship between MMP and r is observed,
indicating that MMP undergoes a significant decrease as r
falls below a critical threshold. The critical values of r for
the RF, MLP and XGBoost models are determined to be
75, 75 and 100 nm, respectively. These findings suggest
that the threshold of r is around 75 nm, signifying notable
changes in the MMP of the CO2-oil system below this
pore size.
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