
Supplementary file 

Small angle neutron scattering studies of shale oil occurrence status at 

nanopores 

Tao Zhang1,2, Qinhong Hu2,3,*, Qiang Tian4, Yubin Ke5,6, Qiming Wang2 

1 Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington 76019, USA 

2 National Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, 

P. R. China 

3 Laboratory for Marine Mineral Resource, Qingdao Marine Science and Technology Center, Qingdao 266071, 

P. R. China 

4 State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and 

Technology, Mianyang 621010, P. R. China 

5Spallation Neutron Source Science Center, Dongguan 523803, P. R. China 

6Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China 

 

E-mail address: tao.1220@outlook.com (T. Zhang); huqinhong@upc.edu.cn (Q. Hu); tianqiang@swust.edu.cn (Q. 

Tian); keyb@ihep.ac.cn (Y. Ke); wqmpetrophysics@sina.com (Q. Wang). 

* Corresponding author (ORCID: 0000-0002-4782-319X) 

Zhang, T., Hu, Q., Tian, Q., et al. Small angle neutron scattering studies of shale oil occurrence status at 

nanopores. Advances in Geo-Energy Research, 2024, 11(3): 230-240. 

The link to this file is: https://doi.org/10.46690/ager.2024.03.07 

 

 

 

This file includes: 

Supplementary Notes 

References 

 

 



Supplementary Notes 

Structural scale of closely-packed particles 

In polydisperse systems, Guinier’s approximation allows for structural analyses of widely-spaced 

particles by ignoring interparticle interactions (Guinier, 1939). The scattering intensity thereby 

follows an exponential decay with a slope of −
1

3
(𝑞𝑅𝑔)2 at low 𝑞 values where 𝑞𝑅𝑔 < 1 

(Hammouda, 2012). When considering interparticle interactions, for polydisperse closely-packed 

particle system, the scattering intensity formula for ensembled particles is expressed as (Guinier et 

al., 1955): 

𝐼(𝑞) = ∑ 𝑝𝑘𝐹𝑘
2(𝑞)̅̅ ̅̅ ̅̅ ̅̅

𝑘
+

∑ ∑ 𝑝𝑘𝑝𝑗𝐹𝑘(𝑞)̅̅ ̅̅ ̅̅ ̅ 𝐹𝑗(𝑞)̅̅ ̅̅ ̅̅ ̅ 1

𝑣𝑎
∫ [𝑃𝑘𝑗(𝑟) − 1]

sin 𝑞𝑟

𝑞𝑟
4𝜋𝑟2d𝑟

∞

0𝑗𝑘
   (S1)

 

Eq. (S1) is derived by considering the average orientations and positions of particles within the 

system. Here, 𝑝 indicates the probability for one kind of particle, while 𝑝𝑘 = 𝑣𝑘/𝑣𝑠, 𝑣𝑎 

represents the average volume of all particles with:  

𝑣𝑘 = 𝑁𝑘

4𝜋𝑟𝑘
3

3
(S2) 

𝑣𝑠 =
𝑣𝑝

𝜙0

(S3) 

For Eq. (S1), 𝑣𝑎 is expressed as: 

𝑣𝑎 =
𝑣𝑝

∑ 𝑁𝑘
𝑛
𝑘=1

(S4) 

and 

𝑣𝑝 = ∑ 𝑁𝑘

𝑛

𝑘=1

4𝜋𝑟𝑘
3

3
(S5) 



where 𝑣𝑘, 𝑣𝑠, 𝑣𝑎, and 𝑣𝑝 denote the volume for 𝑘 type of particle, total scattered sample 

volume, the average particle volume, and the total particle volume, respectively. Meanwhile, 𝜙0 is 

the sample porosity, and 𝑁 is the number for each type of particle.  

Within the first summation of Eq. (S1), 𝐹𝑘(𝑞) denotes the form factor, which is the Fourier 

transform of the scattering length 𝜌𝑘(𝑟) for particle of type 𝑘, as shown in Eq. (S7). The first 

summation term reflects the mean squared form factor of size and shape information for a collection 

of type 𝑘 particles, as shown in Eq. (S8). For particles with spherical symmetry, this simplifies to 

𝐹2(𝑞)̅̅ ̅̅ ̅̅ ̅̅ = 𝐹(𝑞)2̅̅ ̅̅ ̅̅ ̅̅ = 𝐹2(𝑞). 

𝐹𝑘(𝑞) = ∫ 𝜌𝑘(𝑟)e𝑖𝑞∙𝑟d𝑥 (S6) 

𝐹2(𝑞)̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝑝𝑘𝐹𝑘
2(𝑞)̅̅ ̅̅ ̅̅ ̅̅

𝑘
  (S7) 

For the consideration of the particle interactions in the second sum term, the radial distribution 

function for a pair of spherical particles (Yuste and Santos , 1991), 𝑃𝑘𝑗(𝑟), describes how particle 

density varies as a function of distance 𝑟 from a reference particle, which is connected to the 

probability of seeing a certain configuration of two particles realized. 𝑃𝑘𝑗(𝑟) essentially jumps 

from 0 to 1 at the diameter of the hard spheres because particles cannot overlap but do not interact 

otherwise, which expressed as a step function (A9): 

𝑃𝑘𝑗(𝑟) = {
0  if 0 < 𝑟 < 2𝑅
1  if 𝑟 > 2𝑅

(S8) 

where 𝑅 is the radius of the spheres. 

 For closely-packed systems, when neglecting complex interactions and only consider the 

interactions of particles as both individuals and pairs, the probability of finding the particles 

separated by a distance 𝑟 is given by 𝑒−v(𝑟)/𝑘𝑇, as described by Raman (1924). Built upon the 

Kirkwood-Boggs principle of superposition (Kirkwood and Boggs, 1942), for particle interactions 



beyond simple units and in pairs which extending to a system with multiple pairs governed by 

central forces over a distance 𝑟, Rodriguez  applied the theory of Born and Green (cf. Fournet, 

1951) to define the pair distribution function 𝑃𝑘𝑗(𝑟) as follows (Yuste and Santos, 1991): 

𝑃𝑘𝑗(𝑟) = e−
v𝑘𝑗(𝑟)

𝑘𝑇
+𝑓𝑘𝑗(𝑟) (S9) 

In Eq. (S10), the pairwise potential, 𝑣𝑘𝑗(𝑟), characterizes the interaction energy between two 

particles of types 𝑘 and 𝑗 separated by a distance 𝑟, while 𝑘 and 𝑇 are the Boltzmann constant 

and temperature. The function 𝑃𝑘𝑗(𝑟) gives the probability of finding a particle of type 𝑗 at a 

distance 𝑟 from a particle of type 𝑘, while the function 𝑓𝑘𝑗(𝑟) modifies the radial distribution 

function to account for additional correlations beyond simple pairwise interactions, which describe 

the effects of the surrounding medium on the pair distribution. 

Additionally, two functions are introduced here, 𝑔𝑘𝑗(𝑞) and 𝛽𝑘𝑗(𝑞), which relate to Eq. (S11) and 

Eq. (S12) through their Fourier transforms, respectively. These functions are ultimately 

interconnected through a set of relationships through Eq. (S13). 

𝑔𝑘𝑗(𝑞) =
1

√2𝜋
∫  

∞

−∞

  𝑟2𝑓𝑘𝑗(𝑟)
sin 𝑞𝑟

𝑞𝑟
d𝑟 (S10) 

𝛽𝑘𝑗(𝑞) =
1

√2𝜋
∫  

∞

−∞

  𝑟2 (𝑒−
v𝑘𝑗(𝑟)

𝑘𝑇 − 1)
sin 𝑞𝑟

𝑞𝑟
d𝑟 (S11) 

𝑣0

(2𝜋)
3
2

𝑔𝑘𝑗(𝑞) = ∑  

𝑖

𝑝𝑖[𝑔𝑘𝑖(𝑞) + 𝜖𝑘𝑖𝛽𝑘𝑖(𝑞)]𝜖𝑖𝑗𝛽𝑖𝑗(𝑞) (S12) 

Specifically, 𝛽𝑘𝑗(𝑞) is the Fourier transform of the pairwise potential v𝑘𝑗(𝑟) which contribution 

to the 𝐹𝑘(𝑞). Eq. (S8) implies that a mixture of form factor can be constructed from the form 

factors of the individual components represented by 𝑔𝑘𝑖(𝑞) and 𝛽𝑘𝑖(𝑞), along with their 

interactions represented by 𝜖𝑖𝑗𝛽𝑖𝑗(𝑞). The 𝜖𝑗𝑘 designates a mean value of 𝑓𝑗𝑘(𝑟) + 1 near the 

origin, 𝑟 = 0, which would influence the short-range order in the system. For an in-depth 



explanation of these connections, readers are directed to (Guinier et al., 1955). By the virtue of 

these introduced functions, substitute the 𝑃𝑘𝑗(𝑟) through 𝑔𝑘𝑗(𝑞) and 𝑔𝑘𝑗(𝑞) functions, Eq. (S1) 

becomes: 

𝐼(𝑞) = ∑ 𝑝𝑘𝐹𝑘
2(𝑞)̅̅ ̅̅ ̅̅ ̅̅

𝑘
+

(2𝜋)3/2

𝑣𝑎
∑ ∑ 𝑝𝑘𝑝𝑗𝐹𝑘(𝑞)̅̅ ̅̅ ̅̅ ̅ 𝐹𝑗(𝑞)̅̅ ̅̅ ̅̅ ̅

𝑗𝑘
[𝑔𝑘𝑗(𝑞) + 𝜖𝑘𝑗𝛽𝑘𝑗(𝑞)]   (S13)

 

Notably, 𝐹2(𝑞)̅̅ ̅̅ ̅̅ ̅̅  is the average intensity distributions for particles of different shapes which take all 

orientations with equal probability, for spherical system with the radius 𝑟, the form factor can be 

expressed as (Rayleigh, 1914): 

𝐹𝑘
2(𝑞)̅̅ ̅̅ ̅̅ ̅̅ = 𝜌𝑘

2(𝑟)𝑣𝑘
2Φ2(𝑞𝑟) = 𝜙𝑘𝑣𝑘𝜌𝑘

2(𝑟)Φ2(𝑞𝑟𝑘) (S14) 

Here, Φ(𝑞𝑟) is expressed in two different ways that either using sine and cosine functions or using 

the spherical Bessel function of the first kind 𝐽3/2(ℎ𝑅). 

  Φ2(𝑞𝑟) = [3
sin(𝑞𝑟) − 𝑞𝑟cos(𝑞𝑟)

(𝑞𝑟)3
]

2

=
9𝜋

2
[

𝐽3
2

(𝑞𝑟)

(𝑞𝑟)
3
2

]

2

(S15) 

Taking 𝑞𝑟 =  𝛼, Eq. (S16) is expressed as 

Φ(𝛼) = 3
sin 𝛼 − 𝑢cos  𝛼

(𝛼)3
(S16) 

Since Eq. (S14) begins with gas-like systems as a starting point. Considering hard spheres where 

the potential 𝑣𝑘𝑗(𝑟) becomes infinite for 𝑟 < 2𝑅, for the purposes of this analysis, 𝜖𝑘𝑗 is 

assumed to equal 1, and 𝑔𝑘𝑗(𝑞) is set to 0. 
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